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On singular systems of nonlinear equations
involving 3n-Caputo derivatives

AMELE TATEB

ABSTRACT. We study singular fractional systems of nonlinear differen-
tial equations involving 3n-Caputo derivatives. We investigate existence
and uniqueness results using the contraction mapping principle. We
also discuss the existence of at least one solution by means of Schauder
fixed point theorem. Moreover, we define and discuss the Ulam—Hyers
stability and the generalized Ulam—Hyers stability of solutions for such
systems. To illustrate the main results, we present some examples.

1. Introduction and preliminaries

Fractional differential equations play a central role in engineering
sciences and applied mathematics to create mathematical modeling of many
physical phenomena. For more details, see [8]. Furthermore, many authors
have established existence and uniqueness results for fractional differential
equations and for singular fractional differential equation (see, for instance,
[1,2,3,4,9, 11, 12, 13]).

On the other hand, Ulam-Hyers stability for fractional differential prob-
lems are quite significant in realistic problems, numerical analysis, biology
and economics. Some results concerning this stability have been obtained in
[5, 6, 7, 10, 12, 13, 14].

Inspired by the above cited works, this paper is devoted to build the exis-
tence and uniqueness of solution in addition to the existence of at least one
solution, Ulam-Hyers stability and the generalized Ulam—Hyers stability of
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solutions for the following system of singular fractional nonlinear equations:
(D%, (t) = fi (Vo (), i=1,2,3, 0<t<1,
k—l<al<k, k=12...,n =123,

3 n—2 ) (1)
S| @) =0, DR (1) = S (1),

i=1 j=
n—2<mw<n-—-1, 6>0 i=1,2,3,

where
v, (1) = [ B 0w (®),ug (), D (£) 1oy D=1y (1),

T\ Doty (t) ., Dty (), Dug (1) ..., DOt (8) )
neN*:=N\ {1} ={2,3,...}, and the functions f; : (0,1] x R — R are
continuous, singular at ¢t = 0, and lim+ fi (t) = co. The operators D%, k =

t—0

1,2,...,n, and D", ¢ =1,2,3, are the derivatives in the sense of Caputo,
defined by

t
D x(t) = s /0 (t — )" L2 () ds = JmFL M (1)

= T(m—r

with m — 1 < k < m, m € N. The Riemann-Liouville fractional integral JV
of order ¥ > 0 for a continuous function ¥ on [0, 00) is defined by

JU(t) = oy Jo (8 =5)" "1 (s)ds, 9 >0,
w(t)a 19 = 0,
where t > 0, and T (¢9) := fooo e Ty

We give some properties of the fractional calculus theory which can be
found in [8].
(i) Fora, B3>0, n—1 < a < n, we have D=1 = %tﬁ_a_l, B >n,
and Dt/ =0, j=0,1,...,n— 1.
(ii) DPJIf(t) = JIPf(t), where ¢ > p > 0 and f € L ([a, b]).

(i) Let n € N, n—1 < o < m, and D%u(t) = 0. Then, u(t) = nil cjt,
« o (= j ]70
and JYDYu(t) = u(t) + j;o ¢it!s (¢)j—oq, . €R
In the following we use, for fixed numbers =, ¢, r, w, the notations

_ (t=g)entr (=)=

Q;@F(t7577) = W, QT—L(t7S?’Y) = W’

. _LtgLn—r)tn1=» + . Tn+qT(n—r)tn—1t-w
Bt 6.7) = T g Tty Anwt 6 7) = a5 g Te-nT



ON SINGULAR SYSTEMS OF NONLINEAR EQUATIONS 181

It is clear that in the case w = 0 we have

I'(n+q)T(n—r)tn—1! T'(n+q)T'(n—r)t™ 1
Bnolt:a:7) = Gttt T Snolt 1) = GG

We need the following fundamental lemma to prove our existence results.

Lemma 1.1 (Shauder fixed point theorem). Let (E,d) be a complete
metric space, let X be a closed convex subset of E, and let A: E — E be a
mapping such that the set {Ax : x € X } is relatively compact in E. Then A
has at least one fixed point.

Let us now import the integral solution of system (1).

Lemma 1.2. Let there be given the numbers n € N* and o, (i = 1,2,3)

. n
such that n — 1 < al, < n, and the functions U; € C ([0,1],R) (i =1,2,3).
Then the system

D%uz(t):Ui(t), 0<t<1, i=1,23,
> 514 0 ()] =0, Dty (1) = Jui (1), (2)

=1 j=0
n—2<p<n—1 6§>0

has a unique solution (ui,uz,us) (t):

/ Qi (t,5,0)U; (3)ds + A (.60, )
(3)
X / (@ (1,5,8) — Qr (1,8, 13)) Ui (s) ds.

0

Proof. Thanks to the property (iii), the system (2) can be written as
equivalent integral equations

t n—1
t) = / Qf (t,5,0)U; (s)ds — > cit!, i=1,2,3 (4)
0 =0
with
g o e
g ¢ .. i | € M3, (R).
o oy

u(0)=—jli =0, i=1,2,3, j=0,1,...,n—2,
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Thus
C";:O’ 7::1’2,3, j:O,l,...,n_Q,
| v ) (5)
C:z—l = An,U (17 517#1) /0 (Qn (17 svéi) - Qn (17 37/JJ’L')) Ul (8) ds.
Substituting (5) in (4), we receive (3). O

Now, let us introduce, for n € N*, the Banach space
B = {(’LL17U2,U3) s UG, Dai‘ui e C(0,1],R), i=1,2,3, k= 1,...,n—1},

endowed with the norm

[,z us)llp = | max {fulle . || D%}
1<i<3
where
ui|l .. = sup |u;(¢)], Dazui = sup Daiui t)|.
o0

t€[0,1] o0 teg[0,1]

2. Existence and uniqueness

In the present section we establish sufficient conditions for the
existence and uniqueness of solutions to system (1). Then, we will give some
examples to illustrate the applications of our theorems.

Define the nonlinear operator 1" : B — B by

T (ur,ug,ug) (t) := (T1 (w1, u2,u3) (t),To (u1,u2, uz) (t), T3 (u1, u2, u3) (t)),
where t € [0, 1] and, for i = 1,2, 3,

t
T; (u17u27u3) (t) = /0 Q:zr(t7 S, O)fz (Vu (3)) ds + An,O (ta 51':/111')

1
<[ (@560 = @ (Losug) i (Vi (9) s,
0

Lemma 2.1. Forn € N*, letn—1<a!, <n (i =1,2,3). Assume that
Gi: (0,1] = R (i =1,2,3) are continuous functions with lim+Gi (t) = 0.
t—0

Let 0 <m; <1 (i =1,2,3) be such that t"G; (t) are continuous for each t €
[0,1]. Then the functions
t
ul(t) 1= / Q:Lr(t, S, O)Gz(s)ds + An,O (t, 0i, Hi)
0
1
< [ (@1 15.8) - @y (15 m)) Gis)ds.
0

are continuous on [0, 1].
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Proof. By the continuity of t":G; (t), and since
t
ws(t) = / Q7 (£, 5,0)5 s Ga(s)ds + An o (£, 65 1)
0

<[ (QF(1,5,85) — Q= (1, 5, jus)s~ ™) Gi(s)ds,
0

it is clear that u;(0) = 0 (i = 1,2,3). Let us divide the proof into three
cases.

Case 1: Since, for to = 0 and ¢t € (0,1], the functions t"G; (t) (i =
1,2,3) are continuous, there exist numbers R; > 0 (i = 1,2,3) such that
|t"G; (t)| < R; for all t € [0, 1]. Therefore,

n

t )
(1) = (0 < iy [ (0= 9% s AT (16

X

1
0

i 1 i
< Rzi_’f(;%)m /0 (1-— s)a” Lg=mids + RZ‘A:;O (t, 6i, i)

1
8 / (Q:Lr(l’ 5 51)877” - Q’:L(]'7 S),U’i)sim) ds
0

R;Be(a},1—-mn; tag*W
( F(a%)) + RiAZ’O (t’ 52" /‘I’Z)

% <Be(o¢fl+5i,1—77i) + Be(a%—m,l—m)> :

IN

T'(a,+6;) T(ad,—ps)
where Be denotes the Beta function. Then we have that

RiT(1—n; )t@n =i
i (£) — i (0)] < BEEEs™

At . L(1—n:) D(1—n:)
+ RzAnﬂ (t-; (517 MZ) <F(a%+5i+1*m) + F(Oé%*/ii‘i‘l*??i)) — 0, ast — 0.

Case 2: For ty € (0,1) and for all ¢ € (g, 1], one has
|ui (8) = ui (to)]

to

t
/ Q7 (t,5,0)s "G (s)ds — | Qf (to,5,0)s ™8™ G, (s) ds
0 0

<

t A:LF’O (17 51’ Ui) (tn_l _ tgfl)

1
/ (@i (1,8,6i) — Q@ (1,8, 1)) s~ "M Gy(s)ds
0

X

Rir(l—m)(ta%—m—tgif’”)
< :
= I(a, +1-ni)

+ R’L'AZ,O (17 51'7 :U’Z) (tn_l - tgil)
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D(1—n;) I(1—m;)
X (F(a%+5i+1—m) + F(a%—m-i-l—m)) — 0, ast — tp.

Case 3: For tg € (0,1] and for all t € [0, tp), the proof is similar to that of
Case 2. This completes the proof. O

Lemma 2.2. Forn e N*, letk—1<al <k (i=1,2,3, k=1,2,...,n).
Assume that f; @ (0,1] x R — R (i = 1,2,3) are continuous functions
with liIrﬁ_fi (t,...) = oo, and there exist constants 0 < n; < 1 such that

t—0

the functions t"i f; (t,...) are continuous on [0,1] x R3™. Then, for all k =
1,2,...,n—1andi=1,2,3, the functions

. ¢ ,
DTy (uy, ug, ug) (t) = / Qn (s, 03) fi (Vu(s)) ds + Ay, 4 (L, 65, p12)
0

1
<[ QE (15,80 = Qi (Lsu) £ (T (9) s
are continuous on [0, 1] x R3™.

Proof. For (u1,uz2,u3) € B we have u;, D%u; (t) e C([0,1]), i=1,2,3,
k=1,2,...,n — 1. Then, there exist ay > 0 and aj, > 0, ¢+ = 1,2, 3, such
that |u; ()] < af and ‘Do‘iui (t)‘ < al for k=1,2,....,n— 1 and for all
t € [0,1].

On the other hand, the functions " f; (t,...) (i =1,2,3) are continuous
on [0, 1] x R3". So, denoting

Ci=t"fi Vu ()l i=12,3,
for —a% <u; < aé and —a}; < Dazui < az, we get

DT, (s, . us) (1)

t . .
< % / (t _ S)av’h*aﬁcil s Mids + CZA:;O[ (ta 6i7 /“Ll)
0 )

F(oc’n—ak k

X

1
0

) . a:’lfai —M4
< Gl (1—n)t*n %k +CiA:;a (t, 6i, i)

- I‘(aflfa}frlfm) :
% P(1—n;) 4+ b0=ni)
Dlog,+0i+1-m) — Dlop—pi+l-m:) )’

where k = 1,2,...,n — 1, i = 1,2,3. From inequality (6), by the same
method as in Lemma 2.1, we can show that the functions DT} (u1, uz, u3)
are continuous on [0, 1]. O

Lemma 2.3. Forn € N*, let n —1 < o, < n (i = 1,2,3). As-
sume that f; : (0,1] x R3 — R (i = 1,2,3) are continuous functions
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with lim+fi (t,...) = oo, and there exist constants 0 < n; < 1 such that
t—0

the functions t"i f; (t,...) are continuous on [0,1] x R3™. Then the operator
T : B — B is completely continuous.

Proof. From Lemma 2.1 and Lemma 2.2 we have that T : B — B. Now,
we divide the proof into three steps.
Step 1: We shall show that T: B — B is continuous. For (u,u,uj) €

B with H(ul,uQ,u:g)HB =: ¢¢ and for (uy,uz,us) € B with ||(u1,us,us)
— (“?7“27“3)“3 < 1, we have [|(u1,u2,u3)|g <14 ¢ =: ¢.
Since t" f; (t,...) are continuous on [0, 1] x R3" it yields that t7 f; (¢,...)

are uniformly continuous on [0,1] x [—¢, ¢]*" .
Then, for all £ € [0,1] and € > 0, there exists ¢ > 0 (¢ < 1) such that

8% fi (Vu (£)) = 87 fi (Vo (1)] <€, (7)

whenever (up,us,us) € B and H(ul,u2,u;z,) — (u(l),uz,ug))HB
Thanks to (7), we obtain, for i = 1,2, 3,

HE (U1,U2,U3) - j_lb (ugaugvug)Hoo < GFé,

HDO‘;; (7_‘1 (u17u27u3) - E (u?7u87ug)) HOO S 6FI§;7

i T(1—m) + o I'(1—m) I'(1—mn:)
Fy = W{]—m) +A00 (L, 94, pus) (F(a%+5i11—m‘) T L(a, —Miil—m‘)> ’

i I(1-n;) + . I'(1—mn:) I'(1—m)
By = (al,—ai+1-7;) T An,a}; (1,05 pi) (F(a%éﬁl n:) T D(ad, —pi+1- m))

Therefore,

HT(Ul,UQ,Ug) -T (u?,uz,u3)‘}B el<1]£1§az<_1 (FS,F,Q) .
1<i<3
This implies that HT(Ul,UQ,Ug) —T(u?,uQ,u3 HB — 0 as ||(ug,uz,us)

— (uf, ud, uf) HB — 0. Thus T': B — B is a continuous operator.

Step 2: Let Q := {(u1,ug,u3) € B : ||(u1,u2,us)|lg <0}, 6 > 0. Our
aim is to show that 7' (Q2) is bounded. The continuity of ¢7 f; (¢,...) on
[0,1] x [0, 6]*™ yields that, for all ¢ € [0,1] and for all (u1,ug, us) € 2, there
exist P; > 0 (i = 1,2,3) such that

[t fi (Vo ()| < P, i=1,2,3. (8)
By (8) we get

|T; (ur, us, uz)| o < PiFS, HDQ};Ti (Ul,uz,us)H < P,F}.
o
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Hence,

I (w1, uz,us)ll < max Py (F§, Ff). (9)
1<i<3

That is, T'(Q2) is bounded.
Step 3: We show that T (£2) is equicontinuous. For (ui,u2,u3) € © and
ti,ty €10,1], t1 < tg, we have
1T (w1, ug, us) (t2) — Ti (w1, u2, uz) (t1)||
PiF(lfni) t;zinift?zim B _
F(g:ﬂrlm) ) T PiAszr,o (1,83, ) (857" =771 (10)

« P(1—n;) I(1—mn)
Dlad+0;+1-n;) * T(ah—pi+1-n;)

<

and

HD"‘ZTi (w1, u2,u3) (t2) — DT, (w1, ug, u3) (tl)H

Pir(l—m‘)(t2 ek tf‘ —ai—m’)
) + n—1— Otk o ne 1— ak
= F(a%—a};—i—l—m) + PZA (1 517#@) ( t )

F(l_ ) (1 1)
x ( (O‘Z +6i+1— 771) + F( #111 771))

o0

(11)
The right-hand sides of (10) and (11) are independent of (uj,us2,us3) and
tend to zero as t; — t2. Hence, T (Q2) is equicontinuous. By Arzela—Ascoli
theorem we state that T' is a completely continuous operator. ]

Theorem 2.4. Suppose that
i=1,2,3

(H1) there exist nonnegative constants (A;) s such that
J=1;..,0m

1\ fi (b wan) = fi (B yn, - yan)| <N o —
j=1
fori=1,2,3,te]0,1], and each (z1,...,%3,), (yl, ey Y3n) € R
(HQ) A= maXj<kg<m—1 (Z?il )\;FOZ, Z?nl )\;FZ )

1<i<3
Then the system (1) has a unique solution on [0, 1].

Proof. We shall show that 7' is contractive on B. If (u1, ug, us) , (v, v, v3) €
B and t € [0,1], then

T (w1, u2,uz) — T (v1,v2,v3) || o

< sup / Qi (£,5,0) s | i (Vi (5)) — fi (Vi ()] ds + Ao (1,65, )

te[0,1]
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1
<[ @ (1.8 4@y (L)) 57 1 (V. (5)~ i (V () .
0
Thanks to the hypothesis (H1), we get

I(1—n —
T3 (w1, uz,u3) — T; (v1, v, v3)] 5o < (Mtzl[ép” tom

+ . C'(1—n;) r(1-mn:)
+A”70 (1,6, pa) (F(Oé%'f‘fsﬁ‘l—m) + F(a%—ﬂﬁ-l—m)))
X (AL [Jur = v1lo + MG flug — v2log + Ab [lus — vl

XD (1 = 00 4 N | D1 2 — 03
oo

e ew])
oo
So,
15 (w1, u2, us) — T (vi,v2,03) [ o
o 12
SZ)\}FSH(Ul—Ul,u2—027u3—U3)HB- (12)
Similarly, using anew (H1), we obtain
| D (T2 (2 wg) = T (01, 02, 09) |
o
(13)

< ZA;ZF; [[(ur — v1,up — v2,uz3 — v3)|| 5 -

It follows from (12) and (13) that

T (w1, ug,u3) — T (vi,v2,03)| 5

< | Jnax. ZAlFo,ZA’Fk, (1 = w12 = v, — v3)] .-

By the hypothesis (H2) we deduce that T' is a contractive operator. Con-
sequently, from Banach fixed point theorem we conclude that 7" has a fixed
point which is the unique solution of system (1). This completes the proof.

0

Example 2.5. Consider, for 0 < ¢t < 1, the singular fractional system of
equations

Diuy (t) = (sinwuq (t) + sinwug (t) + sinug (¢)
2 3 1 4
+cos D3wu;y (t) + cos D2uy (t) 4+ cos D3ug (t) + cos D3ug (t)
+cos D2uy (t) + cos DSug (t)) / <18O7n/£> ,
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D3uy (t) = (cosuy (t) + cosug (t) + cos us (t)
2 3 1 4
—sin D3uy (t) —sin D2uy (t) — sin D3ug (t) — sin D3ug (t)
—sin D3ug (t) — sin DS ug (t)) / (1447rt%) ,
Diug (£) = |ur (8) +ua (8) + us (8) + D (1) + D¥us (1
1
3y

+D ()+D3uz()+D2U3()+D5U3 ‘/(72%2155

X (1 + ’Diul (t) + cos Diuy (t) + cos D3usy (t)

+cos Diug (t) + cos D3ug (t) + cos D5 us (t)‘)) ,

where 3% 12] _0 ( ’ = 0 and D3u1( ) = Jsu (1), Diuy (1)
J3uy (1), D4U3() T4 uz (1),

We have n = 3, o} =7/3, o} =5/2, a3 =9/4, ol =2/3, ol =
3/2, a2 =1/3, a3 =4/3, o} =1/2, a3 =6/5, 1 =5/3, p2=3/2, us
7/4, 6 =10/3, &y =9/2, 03 = 11/4.

Then, for each t € [0,1] and (21,...,29), (y1,---,¥9) € R, we get

3
t4 ‘fl(t')xl?"'axg)_fl(tvyla"'7y9>‘ 1807|—Z‘$J 1K

2 1
i3 ‘f2(t7$17'-'7x9)_fQ(tvyla"'vyS))‘ S %Z“rj_yj‘7
=1

9

4 2
t5 |fs(tr,. .. w0) — fa (byn,. . 00)l < s > Jay — w4l
j=1

where m = 3/4, n2 =2/3 and 73 = 4/5. So, we can take

1
()\Jl) §=1,2,..,9 807 ()‘i) J=1,2,..,9 t@’ ()‘?) j=12,.,9 ot
9

9

1_ 1 _ 3

DA = ZJ—W’ZA =2

=1 j=1

Indeed,
F} =24.2284, F! =40.1320, F} = 52.6663,
F? =28842, F?=3.7843, F3=59714,
F$ =5.2610, F?=17.2219, F; =8.6856,
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9 9 9
> NF; =03856, > MF! =06387, Y AF) =0.8382,
j=1 j=1 j=1

9 9 9
S ONFF =00574, Y MNFP =00753, Y AFy =0.1188,
j=1 j=1 j=1

9 9 9
> ONFS =00666, > AFP=00915, Y AF =0.1100.
j=1 j=1 j=1
It is clear that A < 1. Thus, our system has a unique solution on [0, 1].
Theorem 2.6. Forn € N*, letn —1 < o), <n (i = 1,2,3). As-

sume that f; : (0,1] x R3® — R (i = 1,2,3) are continuous functions with
lim+fi (t,...) =00, and there exist constants 0 < n; < 1 such that the func-
t—0

tions ti f; (t,...) are continuous on [0,1] x R3™. Then the system (1) has at
least one solution on [0, 1].
Proof. Let

L; = sup t" | f; (V ()], (14)
t€(0,1]

and consider B, := {(u1,u2,u3) € B : ||(u1,u2,u3)|| g < r}, where

r= max L;(F} F}).
1<k<n—1 i (£, F)
1<i<3

We will show that T : B, — B,. Let (uj,u2,u3) € B, and ¢t € [0,1]. By
(14), taking into account (9), we get

1T (u1, ug, us)llp < (15)

Then, by Lemmas 2.1 and 2.2, we have T} (uy,us,uz), DT} (uy,uz, ug) €
C ([0,1]). Thus, T : B, — B,. From Lemma 2.3 it follows that 7" is com-
pletely continuous. Consequently, by Lemma 1.1 we deduce that the system
(1) has at least one solution on [0, 1]. This completes the proof. O

Example 2.7. Consider the system of equations
D2u1 =7 ( (uq ( (t) us (t)) + cos (D%ul (t) + Diuy (t)
7
&
X sin ( Diug (t) + D3us (t) + D%g (t))) :
D3 uy(t) = 3 (cos <u1 (t) + Dzuy (t)+ Diuy (t)+ Dy (t))

x sin(u2 (t)+D%u2(t)+D%uQ(t)+D%uz(t))) / (r—sin(us(t)
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+Dius (t) + Dius (1) + DT us (1)) )
Dy ()= ¢4 (sin (Dur (0 + Dhun (6)+ Dl (1)) cos (Db (1)
3 s (t) + D5 uy (t))> / (27T2 — sin (u (t) + u2 (1)

+w (1)) + cos <u3 (t) + Diug (t) + D3us (t) + D7 us (t))) ,

+D

32 ,
where 0 < ¢ <1, %> 3 [ul” (0)] = 0, and Diu (1) = J3ur (1), Diug (1) =
i=0j=0
J3uy (1), D3ug(1) = J7us(1).

We have n = 4, o} =7/2, af =11/3, o} = 15/4, o} =1/2, od =
3/2, af = 7/3, o2 = 1/3, a3 = 4/3, o3 = 11/5, o} = 1/4, o3
5/3, aj =15/7.

Taking m = 5/7, n2 = 2/3 and n3 = 5/9, we satisfy all assumptions of
Theorem 2.6. Thus, the considered system has at least one solution on [0, 1].

3. Ulam—Hyers stability

In this section, we define and discuss the Ulam-Hyers stability and the
generalized Ulam-Hyers stability for system (1).

Definition 3.1 (cf. [12, 13, 14]). System (1) has Ulam-Hyers stablity, if
there exists o > 0, such that for all €1,€3,e3 > 0, and for all solutions
(Ul,vz,vgg) € B of

‘Daivi(t)—fi(vv(t))‘«i, i=1,2,3 0<t<l,
k—1<ali<k, k=12.,n, i=123,

3 n—2 .
> X [ @ =0, D) = (1),

i=0 j=0
n—2<wm<n—1, §6>0 i=1,23,

there exists a solution (uq,ug,u3) € B of system (1)) with
|(v1 — w1, v2 —ug,v3 —usz)||g < o€, €>0.

Definition 3.2 (cf. [12, 13, 14]). System (1) has generalized Ulam-Hyers
stablity if there exists T € C (RT,R*), Y (0) = 0, such that for all € > 0,
and for each solution (v1,wv2,v3) € B of system (16), there exists a solution
(u1,u2,uz) € B of system (1), where

|(v1 — w1, v2 —ug,v3 —uz)|g <Y (e).

Theorem 3.3. Forn € N*, letn—1<al <nand0<n <1, i=1,23.
Assume that
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(S1) fi: (0,1] x R — R, i = 1,2,3, are continuous functions with
limy o+ fi (¢,...) = oo, and t" f; (t,...) are continuous on [0,1] X
Ri’m;

(S2) the following inequality holds:

|erDhn]| > max L (R, )

oo 1<k<n-—1
1<i<3

(S3) the hypotheses (Hi), i = 1,2, of Theorem 2.4 hold;
3

n
i
(S4) 1n§1%x3]§1 A <L

Then the system (1) is generalized Ulam—Hyers stable in B.

Proof. Using (S1), we receive (15), and for each solution (v1,vs,v3) € B
of (16), we can write

[(or,v2,03)l15 < max Ly (F§, F) - (17)
1<i<3

By (17) and (S2) we get

1(v1, v2,03) || < max Htmpaivi (18)

1<i<3 00

Thanks to (S3), there exists a solution (u1,us,us) € B of system (1). So,
the inequality (18) implies

|(v1 — w1, v2 — ug,v3 — u3)|| g < max Ht’“DO‘% (v; — uy;)

1<i<3 I~

< ma || (D% 0~ £ (T (1)) = £ (D% = £ (V0 (1))
" (fi (Vu (1) = fi (Vo (1)) || -
Then

|(v1 — w1, v2 — ug,v3 — u3)|| g

< o (16" oo [ D0 = 7 (Vu 0)

g | D% = £ (T @)+ 1% (£ (V@) = £ (To 0D -

By (1), (16), and (S3) we obtain

[e.e]

|(v1 — w1, v2 — uz,v3 —us3)|lg
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Thus,
€
[(v1 — u1,v2 — uz,v3 —uz)||p < e =
1— max > A%
1<i<3 .=/

It follows by (S4) that o > 0. Hence, the system (1) has Ulam-Hyers stablity.
Putting T (e) = oe, we see that the system (1) is generalized Ulam-Hyers
stable. This completes the proof. O

References

[1] R. P. Agarwal, D. O’'Regan, and S. Stanék, Positive solutions for mized problems of
singular fractional differential equations, Math. Nachr. 285(1) (2012), 27-41.

[2] C. Bai and J. Fang, The ezistence of a positive solution for a singular coupled system
of monlinear fractional differential equations, Appl. Math. Comput. 150 (2004), 611—
621.

[3] Z. Bai and W. Sun, Ezistence and multiplicity of positive solutions for singular frac-
tional boundary value problems, Comput. Math. Appl. 63(9) (2012), 1369-1381.

[4] D. Baleanu, S. Z. Nazemi, and S. Rezapour, The existence of positive solutions for a
new coupled system of multiterm singular fractional integrodifferential boundary value
problems, Abstr. Appl. Anal. 2013, Art. ID 368659, 15 pp.

[5] Z. Dahmani, A. Taleb, and N. Bedjaoui, Solvability and stability for nonlinear frac-
tional integro-differential systems of right fractional orders, Facta Univ. Ser. Math.
Inform. 31(3) (2016), 629-644.

[6] R. W. Ibrahim, Stability of a fractional differential equation, Internat. J. Math. Com-
put. Phys. Quantum Engrg. 7(3) (2013), 300-305.

[7] R. W. Ibrahim, Ulam stability of boundary value problem, Kragujevac J. Math. 37(2)
(2013), 287-297.

[8] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Frac-
tional Differential Equations, Elsevier B.V., Amsterdam, The Netherlands, 2006.

[9] R. Li, Ezistence of solutions for nonlinear singular fractional differential equations
with fractional derivative condition, Adv. Difference Equ. 2014, 2014:292, 12 pp.

[10] Z. Lin, W. Wei, and J. R. Wang, Ezistence and stability resullts for impulsive integro-
differential equations, Facta Univ. Ser. Math. Inform. 29(2) (2014), 119-130.

[11] S. Stanék, The ezxistence of positive solutions of singular fractional boundary value
problems, Comput. Math. Appl. 62(3) (2011), 1379-1388.

[12] A. Taleb and Z. Dahmani, A new problem of singular fractional differential equations,
J. Dyn. Syst. Geom. Theor. 14(2) (2016), 165-187.

[13] A. Taieb and Z. Dahmani, On singular fractional differential systems and Ulam-Hyers
stabilities, Internat. J. Modern Math. Sci. 14(3) (2016), 262-282.

[14] A. Taleb and Z. Dahmani, The high order Lane-Emden fractional differential system:
existence, uniqueness and Ulam stabilities, Kragujevac J. Math. 40(2) (2016), 238-
259.

LPAM, Facurry ST, UMAB MOSTAGANEM, ALGERIA
FE-mail address: taieb5555@yahoo. com



