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Certain sufficient conditions for close-to-convexity
and starlikeness of multivalent functions

Mohamed K. Aouf, Teodor Bulboacă, and Adela O. Mostafa

Abstract. By using Jack’s lemma, we derive simple sufficient condi-
tions for analytic functions to be multivalent close-to-convex and multi-
valent starlike.

1. Introduction

Denote by A(p), where p ∈ N := {1, 2, . . . }, the class of multivalent
analytic functions in the open unit disk U := {z ∈ C : |z| < 1} of the form

f(z) = zp +
∞∑

k=p+1

akz
k, z ∈ U,

and let A := A(1).
For 0 ≤ α < p, we say that the function f ∈ A(p) belongs to the class of

p-valently starlike functions of order α, denoted by S∗p(α), if it satisfies the
inequality (see Owa [7] and Aouf [1, 2])

Re
zf ′(z)

f(z)
> α, z ∈ U. (1.1)

Also, we say that the function f ∈ A(p) belongs to the class of of p-valently
convex functions of order α, denoted by Kp(α), if (see Owa [7])

Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ U. (1.2)

Received June 7, 2018.
2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic functions; multivalent functions; starlike; convex and

close-to-convex functions; p-valently starlike functions; Jack–Miller–Mocanu lemma.
https://doi.org/10.12697/ACUTM.2019.23.18

201



202 M. K. AOUF, T. BULBOACĂ, AND A. O. MOSTAFA

For the special case α = 0, we denote S∗p := S∗p(0) and Kp := Kp(0), and
from the formulas (1.1) and (1.2) we have

f ∈ Kp(α)⇔ zf ′(z)

p
∈ S∗p(α).

Furthermore, a function f ∈ A(p) is said to be in the class of p-valently
close-to-convex functions, denoted by C(p), if there exists a function g ∈
S∗(p) such that (see Aouf [3] and Owa [8])

Re
zf ′(z)

g(z)
> 0, z ∈ U.

Since g(z) = zp ∈ S∗(p), it follows that a function f ∈ A(p) satisfying

Re
f ′(z)

zp−1
> 0, z ∈ U,

or ∣∣∣∣f ′(z)zp−1
− p
∣∣∣∣ < p, z ∈ U, (1.3)

is a member of the class C(p).
In order to prove our results, we have to recall the following lemma of

Jack [4] (generalized by Miller and Mocanu [5, 6]).

Lemma 1.1. Let ω be a non-constant analytic function in U with ω(0) =
0. If |ω| attains its maximum value on the circle |z| = r at a point z0 ∈ U,
then z0ω

′(z0) = kω(z0) where k ≥ 1 is a real number.

2. Main results

Theorem 2.1. Let f ∈ A(p), and suppose that it satisfies, for γ ≥ 0, the
inequality ∣∣∣∣f ′(z)zp−1

− p
∣∣∣∣1−γ ∣∣∣∣ f ′′(z)pzp−2

− (p− 1)

∣∣∣∣γ < p, z ∈ U. (2.1)

Then (1.3) holds, i.e., f belongs to C(p) and is a bounded function in U.

Proof. For a function f ∈ A(p) satisfying the assumption (2.1), we define
a function ω by

ω(z) :=
1

p

(
f ′(z)

zp−1
− p
)
, z ∈ U. (2.2)

Then ω is analytic in U with ω(0) = 0. To prove our conclusion (1.3) we will
show that |ω(z)| < 1, z ∈ U.

Differentiating (2.2), we have

f ′′(z)

zp−2
− p(p− 1) = p(p− 1)ω(z) + pzω′(z), z ∈ U. (2.3)
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From (2.2) and (2.3) we obtain that∣∣∣∣f ′(z)zp−1
− p
∣∣∣∣1−γ ∣∣∣∣f ′′(z)zp−2

− p(p− 1)

∣∣∣∣γ
= |pω(z)|1−γ

∣∣p(p− 1)ω(z) + pzω′(z)
∣∣γ

= p |ω(z)|
∣∣∣∣p− 1 +

zω′(z)

ω(z)

∣∣∣∣γ , z ∈ U.

(2.4)

Supposing that there exists a point z0 ∈ U such that max
|z|≤|z0|

|ω(z)| =

|ω(z0)| = 1, from Lemma 1.1 we obtain that z0ω
′(z0) = kω(z0) where k ≥ 1.

Hence, from (2.4) we have∣∣∣∣∣f ′(z0)

zp−1
0

− p

∣∣∣∣∣
1−γ ∣∣∣∣∣f ′′(z0)

zp−2
0

− p(p− 1)

∣∣∣∣∣
γ

= p |p− 1 + k|γ ≥ pγ+1,

which contradicts (2.1). Therefore, |ω(z)| < 1 for all z ∈ U, and the conclu-
sion (1.3) has been proved.

Finally, from (1.3) it follows that |f ′(z)| ≤ 2p |z|p−1 < 2p, z ∈ U, hence

|f(z)| =
∣∣∣∣∫ z

0
f ′(ζ)dζ

∣∣∣∣ ≤ ∫ r

0

∣∣∣f ′(ρeiθ)∣∣∣ dρ ≤ 2pr < 2p,

z = reiθ ∈ U, θ ∈ [0, 2π).

Consequently, f is bounded in U. �

For the special case γ = 1, Theorem 2.1 reduces to the next result.

Corollary 2.1. If f ∈ A(p) satisfies∣∣∣∣ f ′′(z)pzp−2
− (p− 1)

∣∣∣∣ < p, z ∈ U,

then the inequality (1.3) holds, i.e., f ∈ C(p) and it is a bounded function
in U.

Theorem 2.2. Let f ∈ A(p), and suppose that f satisfies, for γ ≥ 0, the
inequality ∣∣∣∣ f ′(z)pzp−1

− 1

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣γ < (1

2

)γ
, z ∈ U. (2.5)

Then the inequality (1.3) holds, i.e., f ∈ C(p) and it is a bounded function
in U.

Proof. For a function f ∈ A(p) satisfying the assumption (2.5), we de-
fine a function ω by (2.2). Then, ω is analytic in U with ω(0) = 0, and
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differentiating (2.2), we get

1 +
zf ′′(z)

f ′(z)
− p =

zω′(z)

1 + ω(z)
, z ∈ U. (2.6)

From the assumption (2.5), it follows that the left-hand side of (2.6) is an
analytic function in U, hence ω(z) 6= −1 for all z ∈ U. From (2.2) and (2.6)
we have∣∣∣∣ f ′(z)pzp−1

− 1

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣γ = |ω(z)|1−γ

∣∣∣∣ zω′(z)1 + ω(z)

∣∣∣∣γ , z ∈ U. (2.7)

If we suppose that there exists a point z0 ∈ U such that max
|z|≤|z0|

|ω(z)| =

|ω(z0)| = 1, from Lemma 1.1 we obtain that z0ω
′(z0) = kω(z0) with k ≥ 1.

Hence, from (2.7) we obtain∣∣∣∣∣f ′(z0)

pzp−1
0

− 1

∣∣∣∣∣
1−γ ∣∣∣∣1 +

z0f
′′
0 (z)

f ′0(z)
− p
∣∣∣∣γ = |ω(z0)|1−γ

∣∣∣∣ zω′(z0)

1 + ω(z0)

∣∣∣∣γ
= |ω(z0)|

∣∣∣∣ k

1 + ω(z0)

∣∣∣∣γ ≥ (1

2

)γ
,

which contradicts (2.5). Therefore, |ω(z)| < 1 for all z ∈ U, and our conclu-
sion has been proved.

Since under the assumption (2.5) the inequality (1.3) holds, as in the proof
of the previous theorem it follows that f is bounded in U. �

Putting γ = 1 in Theorem 2.2, we obtain the next special case.

Corollary 2.2. If f ∈ A(p) satisfies∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣ < 1

2
, z ∈ U,

then the inequality (1.3) holds, i.e., f ∈ C(p) and it is a bounded function
in U.

Remark 2.1. For the special case p = 1, the above corollary gives us the
following criteria for close-to-convexity. If f ∈ A, then∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < 1

2
, z ∈ U⇒

∣∣f ′(z)− 1
∣∣ < 1, z ∈ U,

i.e., f lies in C(1) and is a bounded function in U.

Theorem 2.3. Let f ∈ A(p), and suppose that it satisfies, for γ ≥ 0, the
inequality∣∣∣∣zf ′(z)f(z)

− p
∣∣∣∣1−γ ∣∣∣∣1 +

zf ′′(z)

f ′(z)
− p
∣∣∣∣γ < (p− α)

(
1 +

1

p+ |p− 2α|

)γ
, z ∈ U.

(2.8)
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Moreover, for γ = 1, assume that f(z) 6= 0 for all z ∈ U̇. Then f ∈ S∗p(α).

Proof. We have to prove that the assumption (2.8) implies the inequality
(1.1). For a function f ∈ A(p) satisfying the assumption (2.8), we define a
function ω by

zf ′(z)

f(z)
=
p+ (p− 2α)ω(z)

1− ω(z)
, z ∈ U (0 ≤ α < p) . (2.9)

We have that ω is analytic in U with ω(0) = 0, and from the assumption
(2.8) it follows that the left-hand side of (2.9) is an analytic function in U,
hence ω(z) 6= 1 for all z ∈ U.

Differentiating (2.9), we obtain

1 +
zf ′′(z)

f ′(z)
− p =

2(p− α)ω(z)

1− ω(z)

1 +

zω′(z)

ω(z)

p+ (p− 2α)ω(z)

 , z ∈ U. (2.10)

Then from (2.9) and (2.10) we have∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣1−γ ∣∣∣∣1 +

zf ′′(z)

f ′(z)
− p
∣∣∣∣γ

= 2(p− α)

∣∣∣∣ ω(z)

1− ω(z)

∣∣∣∣
∣∣∣∣∣∣∣∣1 +

zω′(z)

ω(z)

p+ (p− 2α)ω(z)

∣∣∣∣∣∣∣∣
γ

, z ∈ U.
(2.11)

If we suppose that there exists a point z0 ∈ U such that max
|z|≤|z0|

|ω(z)| =

|ω(z0)| = 1, from Lemma 1.1 we obtain that z0ω
′(z0) = kω(z0) with k ≥ 1.

Therefore, from (2.11) we get∣∣∣∣z0f
′(z0)

f(z0)
− p
∣∣∣∣1−γ ∣∣∣∣1 +

z0f
′′(z0)

f ′(z0)
− p
∣∣∣∣γ

= 2(p− α)

∣∣∣∣ ω(z0)

1− ω(z0)

∣∣∣∣
∣∣∣∣∣∣∣∣1 +

z0ω
′(z0)

ω(z0)

p+ (p− 2α)ω(z0)

∣∣∣∣∣∣∣∣
γ

≥ (p− α)

∣∣∣∣∣∣∣∣1 +
k

p

1

1 +

(
1− 2α

p

)
w(z0)

∣∣∣∣∣∣∣∣
γ

.

(2.12)
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Considering the function ϕ defined by

ϕ(z) :=
1

1 +

(
1− 2α

p

)
z

, z ∈ U,

it is easy to check that |ϕ(z)| > p

p+ |p− 2α|
for all z ∈ U. Hence, using the

fact that γ ≥ 0, from (2.12) we obtain∣∣∣∣z0f
′(z0)

f(z0)
− p
∣∣∣∣1−γ ∣∣∣∣1 +

z0f
′′(z0)

f ′(z0)
− p
∣∣∣∣γ ≥ (p− α)

(
1 +

k

p

p

p+ |p− 2α|

)γ
≥ (p− α)

(
1 +

1

p+ |p− 2α|

)γ
which contradicts (2.8). This proves that |ω(z)| < 1 for all z ∈ U, and hence
f ∈ S∗p(α). �

If we take α = 0 in Theorem 2.3, then we obtain the next corollary.

Corollary 2.3. Let f ∈ A(p), and suppose that f satisfies, for γ ≥ 0, the
inequality∣∣∣∣zf ′(z)f(z)

− p
∣∣∣∣1−γ ∣∣∣∣1 +

zf ′′(z)

f ′(z)
− p
∣∣∣∣γ < p

(
2p+ 1

2p

)γ
, z ∈ U.

Moreover, for γ = 1 assume that f(z) 6= 0 for all z ∈ U̇ := U \ {0}. Then
f ∈ S∗p.

For γ = 1, Corollary 2.3 reduces to the next result.

Corollary 2.4. If f ∈ A(p) satisfies the inequality∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣ < p+

1

2
, z ∈ U,

and f(z) 6= 0 for all z ∈ U̇, then f ∈ S∗p.

Taking p = 1 in Corollaries 2.3 and 2.4, we get the results obtained by
Singh and Singh [11, Theorem 3 and Corollary 3].

Putting p = 1 in Theorem 2.3, we have the following corollary.

Corollary 2.5. If f ∈ A satisfies, for some γ ≥ 0, the inequality∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣1−γ ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣γ < (1− α)

(
1 +

1

1 + |1− 2α|

)γ
, z ∈ U,

and, for γ = 1 we have f(z) 6= 0 for all z ∈ U̇, then f ∈ S∗(α).

The above corollary is an improvement of the result obtained by Owa and
Srivastava [10, Lemma 3].
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Theorem 2.4. Let f ∈ A(p) be such that f(z) 6= 0 for all z ∈ U̇, and
suppose that, for 0 ≤ α < p, the inequality∣∣∣∣1 +

zf ′′(z)

f ′(z)
− p
∣∣∣∣ < (p− α)(2p+ 1− α)

2p− α
, z ∈ U, (2.13)

is satisfied. Then, ∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣ < p− α, z ∈ U, (2.14)

i.e., f ∈ S∗p(α).

Proof. Assume that f ∈ A(p), with f(z) 6= 0 for all z ∈ U̇, satisfies the
inequality (2.13). Define a function ω by

zf ′(z)

f(z)
= p+ (p− α)ω(z), z ∈ U. (2.15)

It follows that ω is analytic in U with ω(0) = 0. Differentiating (2.15), we
have

1 +
zf ′′(z)

f ′(z)
− p = (p− α)

[
ω(z) +

zω′(z)

p+ (p− α)ω(z)

]
, z ∈ U. (2.16)

Suppose that there exists a point z0 ∈ U such that max
|z|≤|z0|

|ω(z)| = |ω(z0)| =

1. From Lemma 1.1 we obtain that z0ω
′(z0) = kω(z0) with k ≥ 1, and from

(2.16) we obtain that∣∣∣∣1 +
z0f
′′(z0)

f ′(z0)
− p
∣∣∣∣ = (p− α) |ω(z0)|

∣∣∣∣1 +
k

p+ (p− α)ω(z0)

∣∣∣∣
= (p− α)

∣∣∣∣∣∣∣∣1 +
k

p

1

1 +

(
1− α

p

)
ω(z0)

∣∣∣∣∣∣∣∣ .
(2.17)

If we define a function ψ by

ψ(z) :=
1

1 +

(
1− α

p

)
z

, z ∈ U,

it is easy to check that |ψ(z)| > p

2p− α
for all z ∈ U. Hence, from (2.17) we

obtain that∣∣∣∣1 +
z0f
′′(z0)

f ′(z0)
− p
∣∣∣∣ ≥ (p− α)

∣∣∣∣1 +
k

p

p

2p− α

∣∣∣∣ ≥ (p− α)(2p+ 1− α)

2p− α
,

which contradicts (2.13). Thus, we conclude that |ω(z)| < 1 for all z ∈ U,
which proves that (2.14) holds. �
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Remarks 2.1. (i) For the special case γ = 1, Theorem 2.3 reduces to the

next implication. Let f ∈ A(p) be such that f(z) 6= 0 for all z ∈ U̇. Then∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣ < (p− α)

(
1 +

1

p+ |p− 2α|

)
, z ∈ U,

(2.18)

implies (1.1).
(ii) Comparing this result with Theorem 2.4, since α ∈ [0, p), and using

the fact that

(p− α)(2p+ 1− α)

2p− α
≥ (p− α)

(
1 +

1

p+ |p− 2α|

)
⇔ α ∈

[
2p

3
, p

)
,

we deduce that Theorem 2.4 gives, for the case α ∈ [2p/3, p), a better result
than the implication (i).

Theorem 2.5. Suppose that f ∈ A(p) satisfies, for 0 ≤ α ≤ 1, the
inequality∣∣∣∣α(zf ′(z)f(z)

− p
)

+ (1− α)

(
z2f ′′(z)

f(z)
− p(p− 1)

)∣∣∣∣ < p[α+ (1−α)p], z ∈ U.

(2.19)
Then the inequality (1.3) holds, i.e., f ∈ S∗p.

Proof. Let f ∈ A(p) satisfy the inequality (2.19). Define a function ω by

zf ′(z)

f(z)
= p(1 + ω(z)), z ∈ U. (2.20)

The function ω is analytic in U with ω(0) = 0. Differentiating (2.20), we
have

zf ′′(z)

f ′(z)
=
zf ′(z)

f(z)
− 1 +

zω′(z)

1 + ω(z)
, z ∈ U.

Therefore,

z2f ′′(z)

f(z)
− p(p− 1) = 2p2ω(z) + p2ω2(z)− pω(z) + pzω′(z), z ∈ U. (2.21)

From (2.20) and (2.21) we have

α

(
zf ′(z)

f(z)
− p
)

+ (1− α)

(
z2f ′′(z)

f(z)
− p(p− 1)

)
= pω(z)

{
α+ (1− α)

[
2p− 1 +

zω′(z)

ω(z)
+ pω(z)

]}
, z ∈ U,
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and hence∣∣∣∣α(zf ′(z)f(z)
− p
)

+ (1− α)

(
z2f ′′(z)

f(z)
− p(p− 1)

)∣∣∣∣
= p |ω(z)|

∣∣∣∣α+ (1− α)

[
2p− 1 +

zω′(z)

ω(z)

]
+ (1− α)pω(z)

∣∣∣∣ , z ∈ U.
(2.22)

We will prove that that |ω(z)| < 1, z ∈ U. If we suppose that there exists
a point z0 ∈ U such that max

|z|≤|z0|
|ω(z)| = |ω(z0)| = 1, from Lemma 1.1 we get

that z0ω
′(z0) = kω(z0) with k ≥ 1. Therefore, from (2.22) we obtain∣∣∣∣α(zf ′0(z0)

f(z0)
− p
)

+ (1− α)

(
z2

0f
′′(z0)

f(z0)
− p(p− 1)

)∣∣∣∣
= p |ω(z0)|

∣∣∣∣α+ (1− α)

[
2p− 1 +

z0ω
′(z0)

ω(z0)

]
+ (1− α)pω(z0)

∣∣∣∣
≥ p [α+ (1− α)(2p− 1 + k)− (1− α)p] ≥ p[α+ (1− α)p],

which contradicts (2.19). Concluding, we have |ω(z)| < 1 for all z ∈ U, and
hence (1.3) holds. �

Putting α = 0 and α = 1/2 in Theorem 2.5, we obtain, respectively, the
following results.

Corollary 2.6. If f ∈ A(p) satisfies∣∣∣∣z2f ′′(z)

f(z)
− p(p− 1)

∣∣∣∣ < p2, z ∈ U,

then (1.3) holds, i.e., f ∈ S∗p.

Corollary 2.7. If f ∈ A(p) satisfies∣∣∣∣zf ′(z)f(z)
+
z2f ′′(z)

f(z)
− p2

∣∣∣∣ < p(p+ 1), z ∈ U,

then (1.3) holds, i.e., f ∈ S∗p.

Remarks 2.2. (i) Putting p = 1 in Theorem 2.4, we obtain the result due
to Owa [9, Theorem 1].

(ii) Putting p = γ = 1 and α = 0 in Theorem 2.4, we obtain the result of
Singh and Singh [11, Corollary 3].

(iii) Putting p = 1 in Theorem 2.5 and Corollary 2.6, we get the results
due to Singh and Singh [11, Theorem 4 and Corollary 4].

Acknowledgement. The authors are grateful to the reviewer of this article,
that gave valuable advices in order to revise the results of the paper.
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