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Multi-objective global optimization of
grillage-type engineering structures using

advanced metaheuristics

Rimantas Belevičius, Darius Mačiūnas, and Dmitrij Šešok

Abstract. The purpose of the paper is to present the method imple-
mented for a global optimization of grillage-type pile foundations in-
troducing two advanced metaheuristics: AAGA and AGADS. The sug-
gested new optimization algorithm including the synergy of AAGA and
AGADS demonstrates improved results comparing with former AGA
and GADS. Compromise objective function to be minimized involves
the maximum reactive force in piles and maximum bending moment in
the connecting beams. The feasibility of a simple weighting technique for
the objective function is proved by numerical investigation of objective
function domain for several different topologies of foundations. Sizing
problem of connecting beams is solved together with the optimization
problem. The original finite element program was employed for solution
of direct problem.

1. Introduction

There are many progressive metaheuristic algorithms developed in the
world to overcome a wide range of optimization challenges. Usually these
algorithms are inspired by a different phenomena in the nature [18]. However
not a single optimization algorithm can guarantee the best solution to the
entire range of optimization problems [22]. Thus, a development of advanced
metaheuristic algorithms, including a modification of existing ones, is an
open research problem.

Metaheuristic algorithms are used to solve complex optimization prob-
lems in a wide range of fields including engineering, economics, information
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technology, etc. [1]. Many metaheuristic algorithms have been proposed:
Artificial Bee Colony [8], Grasshopper Optimization Algorithm [17], Ge-
netic Algorithm [2], Simulated Annealing Algorithm [2], Lion Optimization
Algorithm [23], etc. Metaheuristic algorithms usually include: 1) a selection
of an appropriate simulation of the problem; 2) evaluation of a quality of the
solution applying a fitness function; 3) determination of operators in such a
manner as to gain a new range of solutions.

The main goal of structural optimization is to obtain the best feasible
layout of the structure securing minimum cost or minimum material con-
sumption while satisfying appropriate requirements and constraints. Topol-
ogy optimization seeks to secure the optimal scheme of a structure within a
defined layout domain.

Engineering practice is one of the most important areas where optimiza-
tion comes as a vital step in the optimal design of all structural parts of
buildings. The optimal design of any structure should satisfy all require-
ments including the safety, comfort and reasonable price. Hereinafter the
paper is focused on the optimal design of a particular type of foundations
known as grillage-type foundations (further grillages).

Grillages are proven to be the most efficient structures in civil engineer-
ing and therefore broadly employed in the construction. The efficiency of
grillages is extremely significant in the case of weak grounds. Any grillage is
composed of inter-linked beams and supporting piles beneath. Piles are the
ultimate structural elements of any building, distributing the loads rising
from the building through the inter-linked beams. The inter-linked beams
are built in situ, whilst reinforced concrete piles are normally produced at
the factory, and therefore their dimensions are set during the design phase.

The optimal grillage should satisfy double-dealing criteria: 1) the amount
of piles should be the least; 2) inter-linked beams should take on mini-
mal feasible bending moments. Practically, these two separate optimization
problems are competing rivals: 1) the search of the minimal amount of piles;
2) the search of the minimal volume of inter-linked beams.

Whilst the carrying strength of a separate pile is known, the first optimiza-
tion problem might be introduced as a minimization of the maximum reactive
force in piles within the entire set of piles. The second problem is adequate
to the minimization of the maximum bending moment in the inter-linked
beams. Moreover bending moments depend on the stiffness of the inter-
linked beams, hence the dimensions of a cross-section of the inter-linked
beams have to be established simultaneously. Both optimization problems
might be combined into one introducing a compromise objective function.

A comprehensive technical data on grillages can be found in [6, 15, 3].
The data regarding the idealizations on real grillages applied in the present
mathematical model can be found in [3, 4]. The corresponding initial data
for the grillage optimization problem is listed as follows: 1) the loading data:
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active forces might be established as distributed trapezoidal loadings at any
part of the beam, or as moments and concentrated loads at any point on
the beam; 2) the material data of all beams (the material in one beam is
considered to be isotropic); 3) the cross-sectional data of all beams (moments
of inertia, the area); 4) the geometrical scheme of inter-linked beams; 5)
stiffness of a pile (rotational, vertical); 6) locations of fixed piles (if any);
7) the minimum feasible distance between adjacent piles; 8) the maximum
allowable reactive force at any pile. The outcome of the optimization is
the number of required piles and their location as well as cross-sectional
dimensions of inter-linked beams.

The solution of this particular problem – specific placement of the given
number of piles securing that reactive forces do not violate carrying capac-
ities of the piles. If providing such a placement is not feasible, then the
number of piles should be augmented. Hence the problem of the placement
of piles might be formulated as the search for suitable pile positions be-
neath inter-linked beams. In a perfect grillage reactive forces are identical
at all piles. In fact this is barely feasible, particularly in the case where a
designer imposes the so-called “fixed supports” (normally in the corners of
inter-linked beams) that must preserve their locations and are not permitted
to switch locations during the optimization procedure.

Several technological restrictions might also make the perfect scheme of
piles placement non obtainable, for instance the distance between adjacent
piles should not be too short due to the particular capacities of a pile-driver.
In the current paper fixed supports are not considered and a pile is per-
mitted to take whatever location in the grillage, though normally piles are
not placed at the joints of the grillage. This fact limits the pile placement
problem coverage for a low-rise buildings excluding significant overturning
moments due to a horizontal thrust, as for instance due to wind loads or
the earthquake loading. An equivalent distribution of bending moments in
inter-linked beams and an equivalent distribution of reactive forces among
all piles specify the perfect grillage. Our know-how concerning the separate
problems of the minimization of bending moments and reactive forces re-
veals that objective functions for a practical grillage optimization problems
obtain many local minimum points. Another complex attribute of the prob-
lem is that normally objective functions are very sensitive to the location
of piles: occasionally even a minor change of one position leads to a com-
plete alteration of the value of the objective function. All together it makes
the placement of piles in practical grillage a complex global optimization
problem.
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2. Previous works

Since the beam optimization problems in the elaboration of optimal di-
mensioning of beams in grillage-type structures under a specified loading
and boundary conditions (for instance [7] and references thereto) or optimal
scheme of grillages (as per [16]) concentrated certain consideration, there-
fore the casual papers investigate the optimization problem of pile location
schemes. The optimal pile location scheme beneath the raft is proposed [9]
for minimization of the differential solution of the raft applying the genetic
algorithm. In addition a three-dimensional finite element method program
Plaxis 3D Foundation was utilized to establish the optimal pile spacing of
Short Piled Raft foundation [19]. In [5] local search algorithms are uti-
lized for optimal location of piles underneath an individual beam of the
grillage and beneath the complete grillage employing the iterative algorithm
[4]. Whilst the objective function obtains multiple local minimum points,
the local search apparently is not a suitable alternative; consequently global
optimization algorithms are on demand.

Since the deterministic global optimization exhibited practically incon-
ceivable demand of computer resources for optimization of even small-scale
practical grillages, the alternatives were explored. Encouraging outcome is
demonstrated for typical grillages employing stochastic algorithms, among
which the genetic algorithm and the simulated annealing algorithm out-
performed other algorithms [2]. The modified genetic algorithm including
special phenotypes’ selection and crossover operators involving default elab-
orated principles is introduced [14] hereby rejecting the random crossover.
In [2, 14] the routine – for verification of constraints and for computation
of the objective function – is linked to the optimization algorithm as the
“black-box” program.

Furthermore, the problem of optimal piles placement scheme was re-
solved utilizing the several dimension optimization method Bacoor [13]. The
method demonstrated much better results compared to all other algorithms
concerning grillage optimization, especially when piles must be positioned
at very irregular intervals. Classical stochastic algorithms outperformed the
other algorithms in the case when more regular allocation of piles is expected.

In every single occasion the genetic algorithm (GA) in tandem with at-
tentively combined genetic parameters secured significantly better results
compared to other algorithms. Amongst such parameters, the mutation
operator has a significant contribution [24, 20] to introduce potentially ben-
eficial changes to the upcoming generation. Hence, in this study, the main
attention is focused to the mutation operator. The mutation was analysed,
e.g., in [21] where random-mutation-based search technique was incorporated
and mutation vector was generated by fusion of host design variables and
randomly generated variables. In addition the present study extends our
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previous works with two main aspects. First, we introduce two advanced
metaheuristics: advanced genetic algorithm with parallel strategy and ad-
vanced adaptive genetic algorithm. Second, we propose the synergy of two
newly introduced advanced metaheuristics.

Hereinafter we define the optimization problem formulation, the algo-
rithm, and present numerical results of optimization of several practical gril-
lages which were optimized earlier [2, 11, 13]. The results demonstrate the
advantages of newly introduced advanced metaheuristics.

3. Problem formulation and optimization algorithm

Hence, problem formulation – layout scheme of piles searching for an ap-
propriate pile placement underneath the inter-linked beams. A uniform dis-
tribution of bending moments in beams and uniform distribution of reactive
forces among all piles would represent the case of an ideal grillage.

The solution of such problems is normally not a single optimal objective
function value but an array of compromise solutions, the so-called Pareto-
optimal solutions. Every Pareto solution is optimal, i.e., no improvement
might be attained in one objective component without degrading at least one
of the rest of objective components. Hence, the primary aim of the multi-
objective optimization is to detect several Pareto-optimal solutions in order
to show the compromise information amongst the competing objectives.

The simplest multi-objective optimization approach is the weighting met-
hod. The method has a potentiality in such a situation when the projection
of the possible design space into the objective space is convex. Deliberat-
ing an optimization problem including two objectives T1(x) and T2(x) with
weighting coefficients z1 and z2 respectively, the multi-objective problem can
be treated as the following single objective optimization problem:

T ∗ = min
x∈D

T (x) = T1(x) · z1 + T2(x) · z2. (1)

Here T (x) is a non-linear objective function of continuous variables T : <n →
<, n is the number of design parameters x defining positions of piles and
dimensions of a cross-section of inter-linked beams, D ⊂ <n is a feasible
region of design parameters. Besides the global minimum T ∗ one or all
global minimizers x∗ : T (x∗) = T ∗ should be found. No assumptions on
unimodality are involved into the formulation of the problem – many local
minima might exist. If D is convex, then the solution of (1) is optimal for
the indicated values of z1 and z2. For distinct values of coefficients z1 and
z2 many optimal solutions might be generated. The best trade-off solution
might be chosen on the basis of compromise considerations.

In this study the maximum vertical reactive force at a pile (2) and the
maximal bending moment in the inter-connected beams (3) are introduced
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as the first and the second elements of the objective function (1) correspond-
ingly:

T1(x) = max
i=1,...,Np

Ri(x), (2)

T2(x) = max
i=1,...,Nb·s

Mi(x). (3)

Here Np – the number of piles, Ri(x) – the reactive force at the i-th pile, Nb

– the number of beams, s – the number of segments in one beam, where the
calculation of bending moments Mi(x) is executed; normally three points are
enough to “capture” the near-maximal value of bending moment lengthwise
the beam [11]. The set of design parameters are established of positions of
all piles xi, i = 1, . . . , Np including the cross-sectional dimensions of beams:
height hcs and width bcs. Dimensions hcs and bcs are presumed to be equiv-
alent among all beams in the grillage.

3.1. Constraints. Whilst supporting piles may be located only beneath
inter-linked beams, consequently, the following constraint has to be applied:
the piles can change their position entirely along inter-linked beams during
the optimization routine. Hence, a two-dimensional beam structure of the
grillage is “unfolded” to a one-dimensional composition, and piles are per-
mitted to move through this space freely. The optimization routine yields
the distribution of piles in the space and the backward transformation re-
stores the locations of piles into the two-dimensional beam composition of
the grillage. The constraints for the design parameters are established as

0 ≤ xi ≤ Ltot, i = 1, . . . , Np, (4)

where xi is a design parameter indicating the position of the i-th pile, and
Ltot is the entire length of all beams in the grillage.

Provided the minimal feasible distance between adjacent piles is defined,
there are supplementary constraints introduced:

‖ xi − xk ‖≥ β, i 6= k, (5)

where xi and xk are one-dimensional coordinates of piles and ‖ xi − xk ‖
indicates the distance between the closest piles; β depends on the techni-
cal characteristics of a pile-driver machine, k = 1, . . . , Np. For the imple-
mentation of this constraint a penalty is included in the objective function.
Normally strength constraints must be verified for all beams in the gril-
lage. While the maximal bending moment Mmax is calculated during the
optimization routine and the dimensions of cross-section of all inter-linked
beams are equivalent, the sole verification is enough:

Mmax ≤Mallow, (6)

where Mallow is dependent on allowable stresses in a concrete and a rein-
forcement, dimensions of the beam cross-section and a reinforcement area.
Consequently, the constraint enlarges the height hcs and reduces the width
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bcs of the beam cross-section. Hence, a complementary constraint must be
included in the dimensions of the beam cross-section:

hcs
bcs
≤
(
hcs
bcs

)
max

, (7)

where height hcs and width bcs are ranging in the given intervals:

hcs ∈ [hcsMIN ;hcsMAX ], bcs ∈ [bcsMIN ; bcsMAX ], hcs ≥ bcs.

The allowable ratio of cross-sectional dimensions (i.e., (hcs/bcs)max = 3)
and limitations for cross-sectional beam dimensions (bcs ∈ [0.1; 0.9], hcs ∈
[0.1; 0.9]) ensure that the local buckling conditions of a beam are satisfied
[5, 12]. The lateral-torsional buckling for the grillages is not relevant.

3.2. Direct problem. A direct problem is interpreted as the computation
of bending moments and reactive forces in the grillage. The direct problem is
solved employing a finite element (FE) program. The FE program is incor-
porated into the optimization program as a ”black-box” routine. The succes-
sive idealizations are included for the grillage in the direct problem: piles are
interpreted as supports, i.e., as finite element mesh nodes with specified elas-
tic boundary conditions, whilst inter-linked beams – as bending beam finite
elements. The optimization speed significantly depends on the time of the
solution of the direct problem. Hence, originally, problem-oriented and fast
FORTRAN programs including a particular mesh pre-processor have been
built and utilized. Beam elements have two nodes including six degrees of
freedom at each node (three displacements along the local coordinate axes
and three rotations about these axes). The stiffness matrix [K] of an element
is available in plenty of textbooks, as for instance [25]. Stability constraints
of the structure are ensured introducing the main equation of statics:

[K]a {u}a = {F}a ,

here {u} – nodal displacements, {F} – active forces, a – an ensemble of
elements (not specified further in equations). Whereas nodal displacements
uj and ui are obtained, reactive forces Ri at piles and bending moments M
in beams may be computed as follows:

Ri =
∑

[Kij ]uj , M = EIzκ, κ = − d2

dx2

(∑
i

Niui

)
,

where Iz – the second moment of inertia, κ – the beam curvature, E –
Young‘s modulus, Ni – the second-order Hermitian interpolation functions,
ui – nodal displacements of the finite element.
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3.3. Optimization algorithm. GA – a stochastic global optimization al-
gorithm simulating laws of the evolution of the nature involving selection,
crossover and mutation steps. Every individual of the initial population
is the entire finite element model of a grillage and fulfils the requirements
of constraints (4), (5), and (7). Hereinafter population size (PS) individu-
als of the initial population are generated applying modified random search
routine. Thus, design parameters are generated randomly with uniform scat-
tering, though complementary constraint is introduced for the parameters
specifying the pile location x: the difference between two decision variables
xi and xk must be larger than or equivalent to V :{

|xi − xk| ≥ V, i 6= k,

V = Ltot
2Np

,
(8)

where V is obtained dividing the half of the total length Ltot of all beams
by the number of piles Np.

Provided the constraints (4), (5), (7), (8) are violated, the structure is
assumed to be non-feasible. The suggested heuristic alteration is reasoned by
the circumstance that due to the normal distribution of loading over grillage
beams, piles should be allocated over the entire space of the grillage as
well. Thus the quality of the initial population is significantly improved and
eventually it secures a remarkably better outcome of evolution [2]. Bending
moments in beams and reactive forces at piles are computed for generating
feasible individuals. The individual with the minimal value of the objective
function (1) is assumed to be the best solution available. Hence, real numbers
are utilized for coding of individuals. Thus, the individual is encoded as a line
of a sequence of real numbers, i.e. the position of piles in a one-dimensional
construct and cross-sectional dimensions of the beam. Several examples of
individuals can be found in our prior papers [12, 11].

The roulette principle is utilized for the selection of individuals: half pairs
of individuals are selected for breeding. The smaller objective function value
of individuals is secured, the higher probability those individuals possess to
be selected. The selection probability P of the i-th individual with the
objective function value Ti can be defined as

Pi =

Ti∑
j

1

Tj

−1

,

where the sum operator
∑

includes the whole population.
The crossover routine between two individuals (selected for breeding) is

executed with a probability p crossover and the location of the crossover is
derived randomly from the interval [1, Np+1].

Some examples of the crossover of two individuals can be found in our
prior works [12, 11].
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The mutation routine is executed with probability p mutation for ev-
ery decision variable separately. Every single value is altered by a random
number evenly distributed over [−x1;x1] (here x1 ≈ Ltot/100 for design pa-
rameters specifying the pile location), and by a random number evenly dis-
tributed over [−x2;x2] (here x2 ≈ hcsMIN /10 for the height hcs of the beam
cross-section, or x2 ≈ bcsMIN /10 for the width bcs of the beam cross-section;
hcsMIN = bcsMIN = 0.1).

Values of p crossover and p mutation are carefully tuned on the basis of
numerical experiments. In the course of the crossover and mutation routines
the individuals, contravening constraints (5) and (6), might be generated.
Such non-feasible individuals are penalized and consequently rejected. The
algorithm proceeds for the specified number of generations; normally several
hundreds of populations secure the converged solution.

Though, normally the genetic algorithm (GA) exhibits fast convergence
at the beginning of the solution and slow convergence after a specific num-
ber of generated populations. Thus, modifications of the classical GA have
been proposed: genetic algorithm with distributed strategy (GADS) [12] and
adaptive genetic algorithm (AGA) [11]. GADS and AGA were introduced
to avoid a local solution point and to get an opportunity for searching a
broader territory of the design space. GADS has yielded in average 5% bet-
ter results (i.e., lower values of the objective function (1)) than the classical
GA; meanwhile AGA has yielded in average 3% better results (i.e., lower
values of the objective function (1)) than the classical GA [10].

The current paper proposes the synergy of two advanced metaheuristics:
1) advanced genetic algorithm with distributed strategy (AGADS), 2) ad-
vanced adaptive genetic algorithm (AAGA). AGADS includes the genetic
algorithm with distributed strategy (GADS) [12] introducing a modified
selection procedure, while AAGA involves the adaptive genetic algorithm
(AGA) [11] introducing a modified adaptation procedure.

The suggested new optimization algorithm operates AGADS and AAGA
in the following sequence of two stages: 1) AGADS STAGE. Three au-
tonomous and separate optimization routines are initiated simultaneously
and proceed until the point, where slowing of convergence prevails. At this
particular moment the predefined number of individuals (with the highest
objective function values) is selected from each of the three initiated op-
timization routines and the new population is established. Novelty: the
predefined number of individuals is not randomly selected and rather is se-
lected based on the score of the objective function. 2) AAGA STAGE.
Further optimization of the new population (obtained in AGADS STAGE)
is launched implementing AAGA. AAGA has two main points. First of all,
the moment of time when the advanced adaptation of an algorithm is needed
must be determined. Secondly, the advanced adaptive population size op-
erator (AAPSO) and the advanced adaptive mutation operator (AAMO),
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depending on the obtained convergence level, should be introduced. The
moment of time for the launching of adaptation is determined by measuring
the convergence rate of the best solution in the population.

4. Numerical application: experiments and results

The previously described new optimization algorithm (involving the syn-
ergy of AGADS and AAGA) has been applied to optimize the pile placement
schemes and dimensions of beams’ cross-section of several practical grillages.
Data for the solution of such problems, including from 10 to 55 design pa-
rameters, are received from several Dutch design bureaus (courtesy of Con-
sultancy W. F. O. B.V., Paauw B.V. Aannemingsbedrijf and others) – they
use the professional software package for structural engineering MatrixFrame
( http://www.matrix-software.com/uk/structuralengineering/matrixframe/
index.html). It is intended for analysis of steel and concrete erections.

Our original software, for the single-objective optimization of pile place-
ment schemes applying local search methods, is realized in MatrixFrame
software package [5]. First of all this paper presents solution approach of
two simplest grillages with different topologies (Appendix, Figures 1 and 2).
With reference to the loading cases minimum 10 and 15 piles are required
for such grillages, respectively. The described grillages were analysed in our
prior studies [12, 2, 11] utilizing classical GA, AGA and GADS. Secondly,
the optimization results of 17-pile and 18-pile grillages (Appendix, Figures
6, 7, and 8) are provided. These grillages also were the object of our prior
research [14, 13], though only pile placement optimization problem was im-
plemented.

4.1. Benchmark: optimization of 10-pile and 15-pile grillages. The
results of optimization of the two simplest grillages (10-pile grillage and
15-pile grillage) (Appendix, Figures 1 and 2) applying a new optimization
algorithm are demonstrated as a benchmark.

The simple method of weighting coefficients [6] for multi-objective opti-
mization is valid ultimately in the case of the convexity of the feasible design
space. Therefore the shape of the objective function domain has been ex-
plored and verified that the feasible design space is convex by the side where
the optimal solution is expected and as a result all possible Pareto solutions
might be discovered [12, 11].

Numerical experiments on optimization of 10-pile and 15-pile grillages
were executed to determine optimum pile placement scheme and cross-sectio-
nal dimensions of beams applying the new optimization algorithm. Based on
numerical experiments in genetic parameters were carefully tuned to obtain
the relevant values of GA parameters for: 1) AGA [11], 2) GADS [12], 3)
AAGA and AGADS (Table 1).



OPTIMIZATION OF GRILLAGE-TYPE ENGINEERING STRUCTURES 235

Name Value Value
Grillage type 10-pile 15-pile

Probability of crossover 60% 60%
Probability of mutation 10% 10%

Population size 48 individuals 48 individuals

Table 1. Values of genetic parameters for 10-pile and 15-pile
grillages for AAGA and AGADS.

The most acceptable ratio of cross-sectional dimensions ((hcs/bcs)max = 3)
and limitations for cross-sectional beam dimensions (bcs ∈ [0.1; 0.9], hcs ∈
[0.1; 0.9]) were described in [5, 12].

The advanced metaheuristic operates AGADS and AAGA in the follow-
ing sequence of two stages: 1) AGADS STAGE. Three autonomous and
separate optimization routines are initiated simultaneously and proceed to
the point, where slowing of convergence prevails (in our consideration when
the gain in the objective function magnitude among 10 generations in a
row is below 10%; though in our prior study [12] it was set to below 5%
and now, in our opinion, this 10% increase should give the impulse for a
faster convergence). At this particular moment of time 16 individuals (with
the highest objective function values) are selected from each of three initi-
ated optimization routines and the new population, containing 48 selected
individuals, is established; Novelty: 16 individuals from each optimization
routine are not randomly selected and rather are selected based on the score
of the objective function. 2) AAGA STAGE. Further optimization (with 48
individuals obtained in AGADS STAGE) is launched implementing AAGA.
AAGA has two main points. First of all, the moment of the time when the
advanced adaptation of an algorithm is needed must be determined. Sec-
ondly, the advanced adaptive population size operator (AAPSO) and the
advanced adaptive mutation operator (AAMO), depending on the obtained
convergence level, should be introduced. The moment of the time for the
launching of the adaptation is determined by measuring the convergence
rate of the best solution in the population. It is suggested to launch the
adaptation when the gain in the objective function value (GOFV) between
10 generations in a row is less than 10%. Since convergence of AAGA has
tendency to slow down over the certain number of generations, a range of
GOFV is introduced (Table 2). Depending on the range of GOFV the fol-
lowing advanced adaptive population size operator (AAPSO) (9) and the
advanced adaptive mutation operator (AAMO) (11) are suggested:

AAPSO = PS ·MULTIPLIER 1 (9)
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with a constraint

AAPSO ≥ 10, (10)

and

AAMO = PM ·MULTIPLIER 2 (11)

with a constraint

AAMO ≤ 100, (12)

here PS – population size, PM – probability of mutation, value of MULTI-
PLIER 1 and MULTIPLIER 2 depend on the corresponding value of
GOFV (Table 2).

Range of GOFV , % MULTIPLIER 1 MULTIPLIER 2
9.99 – 9.00 0.95 1.95
8.99 – 8.00 0.90 1.90
7.99 – 7.00 0.85 1.85
6.99 – 6.00 0.80 1.80
5.99 – 5.00 0.75 1.75
4.99 – 4.00 0.70 1.70
3.99 – 3.00 0.65 1.65

Less than 3.00 0.60 1.60

Table 2. Values of GOFV , MULTIPLIER 1, and MULTIPLIER 2.

Termination condition of AAGA STAGE: when at least one of the con-
straints (10) and (12) is violated. Since genetic algorithms are stochastic
algorithms, both grillages were optimized 30 times employing obtained ge-
netic parameters in order to obtain acceptable scatter of results (Table 3).

The results show the algorithm with integrated AGADS and AAGA out-
performed: 1) the AGA by 6.89% and 6.24% for 10-pile and 15-pile grillages
correspondingly; and 2) GADS by 11.30% and 15.97% for 10-pile and 15-
pile grillages correspondingly. Such results indicate that the suggested new
optimization algorithm (with integrated AGADS and AAGA) might be suc-
cessfully applied for optimization not only for 10-pile and 15-pile grillages,
but also for more complex grillages.

4.2. Optimization of complex grillages. The same optimization rou-
tines (AGA, GADS, integrated AAGA and AGADS) have been applied to
solve the problem with several complex grillages (17-pile grillage and 18-pile
grillage) (Appendix, Figures 6, 7 and 8). Based on numerical experiments
genetic parameters were carefully tuned to obtain the relevant values of GA
parameters for both of these two complex grillages: 1) AGA, 2) GADS, 3)
AAGA and AGADS (Table 4).
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Algorithm/
Name

AGA [11] GADS [12]
Integrated AGADS

and AAGA
Grillage type 10-pile 15-pile 10-pile 15-pile 10-pile 15-pile
Generation 100 100 100 100 100 100
Runs of
algorithm

30 30 30 30 30 30

The best
value of
the objective
function

96.07 78.68 100.04 85.84 89.88 74.02

Relative
standard
deviation
of results, %

1.07 1.88 3.87 4.02 2.11 2.83

Optimal
cross-sectional
dimensions of

beam:
hcs
×
bcs

0.58
×

0.20

0.69
×

0.24

0.63
×

0.22

0.38
×

0.13

0.72
×

0.25

0.78
×

0.27

Value of actual
ratio: hcs/bcs

2.90 ∼2.86 ∼2.86 ∼2.92 ∼2.94 ∼2.91

Table 3. Comparison of optimization results for 10-pile and
15-pile grillages.

Name Value Value
Grillage type 17-pile 18-pile

Probability of crossover 55% 55%
Probability of mutation 10% 10%

Population size 48 individuals 48 individuals

Table 4. Values of genetic parameters for 17-pile and 18-pile
grillages for AGA, AAGA, GADS, and AGADS.

Both 17-pile and 18-pile grillages were optimized 30 times employing ob-
tained genetic parameters in order to obtain the acceptable scatter of results
(Table 5).

The results show that the algorithm with integrated AGADS and AAGA
outperformed: 1) the AGA by 6.70% and 4.86% for 17-pile and 18-pile gril-
lages correspondingly; and 2) GADS by 10.32% and 12.73% for 17-pile and
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Algorithm/
Name

AGA [11] GADS [12]
Integrated AGADS

and AAGA
Grillage type 17-pile 18-pile 17-pile 18-pile 17-pile 18-pile
Generation 100 100 100 100 100 100
Runs of
algorithm

30 30 30 30 30 30

The best
value of
the objective
function

201.21 97.35 208.04 104.66 188.57 92.84

Relative
standard
deviation
of results, %

1.68 1.97 3.11 4.26 1.89 2.54

Optimal
cross-sectional
dimensions of

beam:
hcs
×
bcs

0.81
×

0.30

0.57
×

0.22

0.73
×

0.26

0.69
×

0.24

0.78
×

0.27

0.44
×

0.16

Value of actual
ratio: hcs/bcs

2.75 ∼2.62 ∼2.81 ∼2.88 ∼2.91 ∼2.83

Table 5. Comparison of optimization results for 17-pile and
18-pile grillages.

18-pile grillages correspondingly. Such results indicate that the suggested
new optimization algorithm (with integrated AGADS and AAGA) might
demonstrate successful solutions for optimization complex grillages includ-
ing 17-pile and 18-pile grillages.

Numerical results have revealed the reasonable capabilities of the intro-
duced new optimization algorithm: the integrated AGADS and AAGA. The
corresponding pile placement schemes are available in the Appendix.

5. Conclusions

(1) The proposed two advanced metaheuritics – AAGA and AGADS
– were introduced with certain modifications comparing to former
AGA and GADS. AGA was introduced with superior cross-over and
mutation operators, while GADS has experienced a certain improve-
ment in selection routine. In addition, the integration of AAGA and
AGADS was suggested and implemented.
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(2) The calculation method for simultaneous topology and size optimiza-
tion of grillages applying the synergy of introduced metaheuristics
AAGA and AGADS is proposed and realized.

(3) Algorithm with integrated AAGA and AGADS has yielded on aver-
age 6.17% better results (i.e., lower values of the objective function)
than former AGA.

(4) Algorithm with integrated AAGA and AGADS has yielded on aver-
age 12.58% better results (i.e., lower values of the objective function)
than former GADS.

(5) Hence, the introduced method – algorithm with integrated AAGA
and AGADS – might be assumed as a new global optimization algo-
rithm securing better results.

Appendix

Figure 1. 10-pile grillage: topology.

Figure 2. 15-pile grillage: topology.
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10-pile grillage 15-pile grillage

Figure 3. Optimal pile placement scheme utilizing AGA.

10-pile grillage 15-pile grillage

Figure 4. Optimal pile placement scheme utilizing GADS.

10-pile grillage 15-pile grillage

Figure 5. Optimal pile placement scheme utilizing synergy
of AAGA and AGADS.
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18-pile grillage 17-pile grillage

Figure 6. Optimal pile placement scheme utilizing AGA.

18-pile grillage 17-pile grillage

Figure 7. Optimal pile placement scheme utilizing GADS.
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18-pile grillage 17-pile grillage

Figure 8. Optimal pile placement scheme utilizing synergy
of AAGA and AGADS.
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