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Estimating probability of fatigue failure of steel
structures

Z. Kala

Abstract. The article deals with the analysis of failure probability of
the effect of random factors influencing fatigue crack propagation in a
steel element under bending moment. The theoretical model of fatigue
crack progression is based on linear fracture mechanics. When determin-
ing the required degree of failure probability, it is possible to specify the
time of the first inspection of the construction, which will focus on the
fatigue damage. Using a conditional probability, subsequent inspection
times are specified. The failure probability is examined using a fairly new
sensitivity analysis subordinated to a contrast. The importance ranking
of the input random variables to the failure probability is investigated.
Fatigue properties of steel are taken from recent experimental research.
Numerical results are obtained using the Monte Carlo simulation.

1. Introduction

Globally, there are a number of steel bridges, which are subjected to re-
peated and increasing load from vehicle axles. One of the main factors
affecting the life of steel bridges is the fatigue phenomenon, which results
from the accumulation of live load stress over a long time period. Con-
siderable increase in the total weight load from vehicle axles and crossing
frequencies results in higher fatigue damage of load bearing structures than
was presumed during the design of bridges.

State-of-the-art reviews on methods for predicting the fatigue life of metal
structures have been performed in [5, 23, 37]. A number of methods have
been developed for the estimation of the remaining fatigue life of steel bridges
and load bearing steel structures [7, 8], some of which are based on proba-
bilistic methods [4, 9, 21, 27, 28]. Articles [22, 34] present an overview of the
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current state-of-the-art of life cycle analysis of steel bridges including fatigue
reliability assessment.

The subject of this article is time-dependent analysis of the reliability of
existing steel bridges and global sensitivity analysis (GSA) of failure prob-
ability. The application of a fairly new type of global probability-oriented
sensitivity analysis (called PSA in the article) is investigated. PSA mea-
sures sensitivity using contrast functions, which are useful objects in Statis-
tical Learning Theory [29]. PSA is part of Goal oriented sensitivity analysis
methods, which estimate the importance ranking of input variables to the
failure probability [25, 30, 31, 32, 33].

The limit state of a load bearing steel member is described using linear
fracture mechanics, see for, e.g., [1, 36]. The article builds on earlier studies
of the reliability of steel structures focused on statistical [14, 15, 26] and
global sensitivity analysis [12, 13] of ultimate limit states, probabilistic anal-
ysis of the fatigue limit state [11, 17, 18] and decision problems added to
probabilistic structural analysis [2, 35].

2. Fatigue life assessment of steel bridges

Linear elastic fracture mechanics analyses the propagation of a crack of
magnitude a in dependence on the number of fatigue cycles N . Fatigue crack
growth is generally described by Paris’s rule, which is expressed by Paris and
Erdogan [19]:

da

dN
= (∆K)m ·B , (1)

where m and B are Paris constant and exponent. Parameter B can be
expressed as

log(B) = b1 +m · b2 ,

where b1, b2 can be considered for steel of grade S235 as b1 = −11.141,
b2 = −0.507 [16]. The range of stress intensity factor ∆K can be determined
by (see [3])

∆K = ∆σE ·
√
πa · f(a) ,

where ∆σE is the quasi-constant stress range and f(a) is the calibration
function obtained from experimental research [24] for pure bending in the
form

f(a) = 1.114

[
1− 0.806

( a
W

)
+ 2.4704

( a
W

)2
+ 1.01643

( a
W

)3
]
, (2)

where W is the specimen width in the direction of crack propagation. The
domain of (2) is [0.01, 0.5]. Rearrangement and integration of the Paris–
Erdogan equation (1) and consideration of crack propagation from a0 (initial
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crack size) to acr (critical crack size), and corresponding number of cycles
N1 = 0 (at the time of a0) and N (at the time of acr) provides the relation∫ acr

a0

da[
f(a) ·

√
π · a

]m =

∫ N

0
∆σmE ·BdN . (3)

The accumulation of damage related to crack propagation from a0 into acr
is the resistance

Rcr =

∫ acr

a0

da[
f(a) ·

√
π · a

]m .

The calculation of the conditional failure probability is based on the resis-
tance calculated for the detectable crack size ad. Resistance for crack prop-
agation from initial crack a0 into a detectable crack size ad can be written
analogously as

Rd =

∫ ad

a0

da[
f(a)
√
π · a

]m .

The failure (fatigue limit state) occurs when Rcr ≤ A(t), where A(t) (action)
is the right part of (3),

A(t) = ∆σmE ·N ·B .

A(t) is a function of time, because the number of cycles N is a function in
time. The reliability function can be expressed as

Y = Rcr −A(t) . (4)

In the relations listed above, variables a0, W , m, ∆σE , N , and ad can be
introduced as random variables [10, 11, 17, 18]. Probabilistic analysis of
reliability is based on the probabilistic approach to the reliability condition
(4):

Pf = P (Y ≤ 0) . (5)

Equation (5) expresses the probability of failure due to brittle fracture. This
is the probability with which the crack reaches size acr after N load cycles.
The reliability function (4) is a function of the random variables listed in
Table 1.

Table 1. Input random variables.

Symbol Characteristic Density Mean Stand. deviation
a0 Initial crack size lognormal 0.2 mm 0.06 mm
W Specimen width W Gauss 326 mm 15 mm
m Parameter m Gauss 3 0.03

∆σE Stress peaks range Gauss 31 MPa 3 MPa
N Stress peaks per year Gauss 1E6 1E5
ad Detectable crack size Gauss 6 mm 0.6 mm
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Figure 1. The failure probability analysis for inputs from
Table 1.

Pf is calculated with a time step of one tenth of the year, see full line in
Figure 1. Pf was evaluated at each time step using one million runs of the
Monte Carlo method (MC). The red line represents the required reliability
Pd = 0.02277, which corresponds to target reliability index βd = 2 (see
[11, 17, 18]) or standard EN1990. Inspection of the bridge aimed at the
detection of cracks is performed at time tα = 47, Pf = Pd years. If no crack
is detected, this information can be used to update the probability of failure.
Pfα, Pfβ , Pfχ, Pfδ are conditional probabilities of failure, see dashed lines

in Figure 1. Pfα is the probability of failure calculated under the assumption
that no failure (detectable crack) was detected during previous inspection
at time tα. Let us denote Pf from (5) as the probability of phenomenon C
(probability that a ≥ acr). Then Pfα can be written as

Pfα = P (C|α) =
P (C ∩ α)

P (α)
,

where α is the random phenomenon where no crack of detectable size was
detected at time tα. Pfα represents the random phenomenon of the oc-
currence of failure (phenomenon C), provided that no failure was detected
during previous inspection at time tα (phenomenon α). P (C ∩ α) is the
intersection of phenomena C and α. Conditional probabilities Pfβ , Pfχ, Pfδ
are calculated analogously.

Important output from Figure 1 are the intervals of bridge inspections
determined by times tα, tβ, tχ, tδ, tε. It is interesting that the inspection
intervals are constant (tβ − tα) ≈ (tχ − tβ) ≈ (tδ − tχ) ≈ (tε − tδ), which is
in contrast with the conclusions of [17, 18].
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Figure 2. The failure probability analysis for inputs from
Table 1, but ∆σE is deterministic.

The results of the probabilistic analysis in Figure 1 are decisively influ-
enced by the probabilistic models of input random variables a0, ad, m, ∆σE ,
W , N . All input variables in Table 1 can be considered with aleatoric un-
certainties, with the exception of the equivalent stress range ∆σE , where
epistemic uncertainties can also be discussed. If the histogram of stress
range ∆σ is known, then the equivalent stress range ∆σE is a deterministic
variable (constant value) [10, 11]. The introduction of standard deviation
∆σE is an admission that knowledge of the histogram of stress range ∆σE is
incomplete. Eliminating stochastic uncertainty ∆σE from the probabilistic
analysis by introducing ∆σE as a deterministic variable may significantly in-
fluence the results of reliability analysis, see Figure 2. Introduction of ∆σE
as a fuzzy-random variable has been studied in [10], however, the validity of
aleatoric and epistemic uncertainties in real life applications is still open to
debate.

Figure 2 shows approximately constant inspection intervals and the in-
spection times occur later tα < t̄α, tβ < t̄β, tχ < t̄χ, tδ < t̄δ (compared
to Figure 1). The question is which other input random variables can sig-
nificantly influence the results of probabilistic analysis. The answer to this
question can be obtained using sensitivity analysis.

3. Goal oriented sensitivity analysis

Sobol sensitivity analysis (SSA) is often applied in sensitivity measure-
ments [20]. Sobol sensitivity indices are based on variance [20]. The vari-
ance is the expectation of the squared deviation of a random variable from
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its mean. However, measuring the distance from the mean (central parame-
ter) is not suitable for measuring the effect of input random variables on the
probability of failure. A more general approach is offered by GSA based on
contrast functions [6].

Let us consider a model in the form Y = f(X1, X2, . . . , XM ), with Y a
scalar. The input factors (X1, X2, . . . , XM ) are supposed to be random
variables described using identified probability distributions, which reflect
the uncertain knowledge of the system under analysis.

Let Θ be some generic set and let Q be some probability measure on a
space Y. A (Θ, Q) contrast function, is defined as any function ψ.

ψ : Θ −→ L1(Q)

θ 7−→ ψ(·, θ) : y ∈ Y 7−→ Ψ(ρ, y) ,

such that

θ∗ = Argmin
θ∈Θ

EY∼Qψ(Y ; θ) (6)

is unique. The function Ψ : θ 7→ EY∼Qψ(Y ; θ) is the average contrast
function, or abusively contrast function if there is no ambiguity [6].

Contrast functions permit the estimation of various inferences associated
to probability distributions of random parameters in (4). Basic examples
of contrast functions [6] used in the analysis of structural reliability are as
follows.

Central parameters:

– The mean : Ψ(θ) = E(Y − θ)2 . (7)

– The median (in R) : Ψ(θ) = 1
2E|Y − θ| . (8)

An excess probability : Ψ(θ) = E|1Y≥t − θ|2 . (9)

All the probability tail : Ψ(θ) =
∫∞
t0

E|1Y≥t − θ(t)|2dt . (10)

The α-quantile : Ψ(θ) = E(Y − θ)(α− 1Y≤θ) . (11)

All the quantile “tail” : Ψ(θ) =
∫ 1
α0

E(Y − θ(α))(α− 1Y≤θ(α))dα . (12)

Formula (6) gives a characterization of a feature θ∗ of Y by a contrast.
For example, (7) gives a minimum value of ψ(θ) if θ is the mean value of
random variable Y :

θ∗ = Argmin
θ

Ψ(θ) = Argmin
θ

E(Y − θ)2 = EY

The global probability-oriented sensitivity analysis (PSA) can be defined,
using (4) and contrast function (9), by

ψ(θ) = E(ψ(Y, θ)) = E(1Y <0 − θ)2.
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Figure 3. The results of sensitivity analysis PSA.

The main or the first order probability contrast index Pi (sensitivity index)
can be written as

Pi =
Ψ(θ∗)− E(minθ E(ψ(Y, θ)|Xi))

Ψ(θ∗)
.

The contrast function Ψ(θ∗) is calculated based on (5) using five million
MC runs. E(minθ E(ψ(Y, θ)|Xi)) is calculated using one thousand MC runs,
where minθ E(ψ(Y, θ)|Xi) is calculated using three million MC runs. The
second order sensitivity index Pij is defined as

Pij =
Ψ(θ∗)− E(minθ E(ψ(Y, θ)|Xi, Xj))

Ψ(θ∗)
− Pi − Pj .

The higher order sensitivity indices can be expressed analogously. The
sum of all sensitivity indices must be equal to one,∑

i

Pi +
∑
i

∑
j>i

Pij +
∑
i

∑
j>i

∑
k>j

Pijk + · · ·+ P123...M = 1 . (13)

The sensitivity analysis results measure the effect of the variability of
input random variables a0, W , m, ∆σE , N (Table 1) on the unconditional
probability of failure Pf (5). All input variables in Table 1 are considered
as statistically independent, which is a necessary condition for evaluating
the sensitivity indices in (13). A total of 25 − 1 = 31 sensitivity indices
were evaluated. Results are shown for times t1 = 47 years, t2 = 76 years
(Pf = 0.3), t3 = 109 years (Pf = 0.7), see Figure 3.

The PSA results depicted in Figure 3 show that the influence of ∆σE
increases with increasing operation time of the bridge with dominance for t3.
The crucial interaction effect for t1 is the pair (a0,∆σE) (28%). Significant
difference is between PSA for t1 in comparison with times t2, t3. The sum
of interaction effects for t1 is given as the difference 1−

∑
i Pi = 0.69, which

is in contrast with t2 where 1−
∑

i Pi ≈ 0.34 and t3 where 1−
∑

i Pi ≈ 0.33.
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It can be noted that PSA in the presented concept cannot be applied for
the conditional probability of failure, because by excluding samples a > ad
the remaining (non-excluded) samples used in the calculation of Pfα, Pfβ ,
Pfχ, Pfδ have non-zero statistical correlation.

4. Conclusion

The paper presents the mathematical analysis of unconditional and con-
ditional probability of failure, which can be used to plan bridge inspections.
Bridges may remain in operation provided that a crack of detectable size is
not detected during inspection. Otherwise, repairs are required.

PSA of the unconditional probability of failure showed that Pf is most
influenced by the stress peaks range ∆σE , initial crack size a0, parameter
m and the interaction effects of these random variables. The main effect
of parameter m is relatively small, but m is significantly involved in inter-
actions with other variables. The stress peaks range ∆σE is a dominant
input variable and the modelling of its uncertainty should therefore be paid
a great deal of attention. It is shown in the article that the introduction
of zero values of standard deviations of ∆σE leads to significantly later in-
spections. The contributions of aleatoric and epistemic uncertainty and the
size of standard deviation of ∆σE in real life applications are still under
discussion.
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