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Some competing nonresponse adjustment

estimators

Imbi Traat

Abstract. The nonresponse adjustment estimator, derived in this pa-
per by standard regression tools, is surprising by its form. The weights
of the new estimator, called the f-estimator, are (general) inverses of
the respective weights in the classical linear calibration estimator and
propensity adjusted estimator. In a simulation experiment on real data,
the new estimator is the best for several study variables.

1. Introduction

Nowadays, response rates are low in many sample surveys. It is di�cult
to estimate population parameters from the response set since the response
mechanism is unknown. In the full-sample design-based theory, there are
universial results holding for any study variable (y-variable) and any sam-
pling design. Examples of these important properties are unbiasedness of
the Horvitz�Thompson estimator [5], or nearly unbiasedness of the calibra-
tion estimator [3]. Such universal results are not available for the estimators
under nonresponse. Estimators are usually biased, and the situation is even
more complicated − the bias is di�erent for di�erent variables in the same
sample survey.

There is a long history and large literature on the estimation under non-
response [10]. The extensive development of new methods took place after
auxiliary information (from various registers) became available. Auxiliary
variables (x-variables) are used to construct nonresponse adjusted estima-
tors. A review on nonresponse weighting adjustments is given in [2]. Clas-
sical adjustment estimators are the calibration and the response propensity
(called also double expansion) estimators. Their task is to reduce bias. The
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arguments here are: (1) calibration estimator is exact for auxiliary variables,
therefore, perhaps, is less biased for study variables, (2) response propensi-
ties estimate response probabilities, the latter, if known, produce unbiased
estimator by double expansion.

Additional requirements are postulated for auxiliary variables. For esti-
mating response probabilities they have to be related to both, the response
indicator and the y-variable ([6], [1]). In calibration, the x-variables have to
be related to the y-variable.

Theory concentrates on one �xed y-variable and seeks the best possible,
least biased estimator for this variable. The received estimator involves
weights computed with auxiliary variables. In practice, these weights are
uniformly applied for all study variables in the survey at hand. The problem
occurs when the response is poorly explained by available auxiliary variables;
usually response also depends on study variables. More important, study
variables (there are many in a survey) have di�erent relationships with aux-
iliary variables, and therefore the weights computed with the same auxiliary
variables cannot work well for all study variables. There are even cases where
adjustment increases bias compared with simple unadjusted estimator [4].

It is important to evaluate goodness of the estimator not just for one study
variable, but rather over all study variables of the survey. Here we use the
average absolute relative bias. We call the estimator best if its absolute
relative bias is smallest on the average (average over all study variables in
the current survey).

We derive a new estimator by regressing the study variable y on the aux-
iliary vector x. The estimation of the regression slope can go in two di�erent
ways. One of these gives well-known classical linear calibration estimator,
another gives the new f-estimator. Basically, the f-estimator is the mean of
�tted values in the response set r. The received mean uses auxiliary infor-
mation outside r, which may decrease bias for some study variables.

The f-estimator is theoretically compared with well-known estimators,
such as the simple unweighted, propensity adjusted and calibration estima-
tors. The weights of the f-estimator and of the calibration estimator are each
other's inverses in a general sense. Two modi�cations are de�ned: the scaled
f-estimator and the mixture estimator. The scaled f-estimator uses rescaled
weights that have mean 1 in the response set, similarly to the weights of
the calibration estimator. The mixture estimator chooses for each y-variable
either calibration or f-estimator. The decision is made using upper bounds
for the di�erences from the target sample mean of both estimators.

2. Preliminaries

The sample s is drawn from the population U = {1, . . . , k, . . . , N} so
that unit k has the known inclusion probability πk > 0 and the sampling
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weight dk = 1/πk. The response r is the set of units k having delivered
their values of study variables. The mechanism that generates r from s
is unknown, r ⊂ s ⊂ U . The (sample-weighted) survey response rate is
P =

∑
k∈r dk/

∑
k∈s dk, where 0 < P < 1 is assumed.

In the nonresponse context, three types of variables play a role. The study
variable (continuous or categorical) y has values yk observed for k ∈ r only,
and is used to estimate the population total Y =

∑
k∈U yk, or the mean

Ȳ =
∑

k∈U yk/N . The response indicator I has value Ik = 1 for k ∈ r and
Ik = 0 for k ∈ s − r. The auxiliary vector x with value xk is available at
least for k ∈ s, possibly for k ∈ U . The J ≥ 1 variables in the vector x can
be continuous or categorical. They are recorded from registers or available
as paradata from the data collection process. More particularly, x can be a
group vector, that is, of the form xk = (0, . . . , 1, . . . , 0)′ with a single entry
1 to indicate the group membership of k.

We assume that all x-vectors used here have the following feature: there
exists a constant vector µ (not depending on k) such that

µ′xk = 1 for all k. (1)

Most vectors of interest satisfy this requirement. When the vector xk has one
constant element, e.g., 1 in the �rst position for all k, then µ = (1, 0, . . . , 0)′

satis�es (1). When x is a group vector, the vector µ = (1, 1, . . . , 1)′ satis�es
(1). The reason for the requirement is convenience in many derivations and
simple forms of the results.

In the following, the design-weighted means and the second moments of
the x-vector are needed, both in r and in s:

x̄r =

∑
k∈r dkxk∑
k∈r dk

, x̄s =

∑
k∈s dkxk∑
k∈s dk

, (2)

Σr =

∑
k∈r dkxkx

′
k∑

k∈r dk
, Σs =

∑
k∈s dkxkx

′
k∑

k∈s dk
, (3)

where the matrices Σr and Σs are assumed to be nonsingular. Also, the
following quadratic forms are used:

Qs = (x̄r − x̄s)
′Σ−1s (x̄r − x̄s), Qr = (x̄r − x̄s)

′Σ−1r (x̄r − x̄s). (4)

Both Qs and Qr express the balance of auxiliary variables in the response
set with respect to the full sample s. Särndal [8] has de�ned the imbalance
measure as IMB = P 2Qs. There are limits for Qs, 0 ≤ Qs ≤ (1− P )/P .

3. Estimators based on regression

Our target is the sample mean of the study variable,

ȳs =

∑
k∈s dkyk∑
k∈s dk

.
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The sample mean ȳs is unbiased for the population mean but, regrettably,
not computable under nonresponse. Estimators can be constructed from
the response set r, with the aim to be unbiased or close to ȳs. Note that
speaking about the bias with respect to ȳs, we mean the conditional bias
over the response mechanism (over realizations of the response r, given a
sample s). Below we consider estimators derived by the linear regression −
two well-known estimators and one new estimator.

Under nonresponse, the classical two-phase approach [10] leads to the es-
timator

ȳ2ph =

∑
k∈r dkyk/θk∑

k∈s dk
, (5)

where θk = P (Ik = 1|k ∈ s) is the response probability. For �xed s, the
resulting ȳ2ph is unbiased for ȳs. Since θk is rarely known, the natural move is
to estimate it. Under available auxiliary information, it is possible to estimate
the response propensity P (Ik = 1|xk, k ∈ s) and use it as an estimator for
θk. The propensity adjusted or double expansion estimator is received. For
estimating response propensities, and also θk, we regress Ik on xk in s, and
�nd coe�cient-vector b in b′xk by weighted least square method (WLS).
We get b′ = P x̄′rΣ

−1
s , and use the respective linear combination, the �tted

value, as an estimator for θk,

θ̂k = b′xk = P x̄′rΣ
−1
s xk = Pfk, (6)

where

fk = x̄′rΣ
−1
s xk. (7)

The propensity adjusted estimator follows from (5) to (7) and from the ex-
pression for P ,

ȳpro =

∑
k∈r dkyk/θ̂k∑

k∈s dk
=

∑
k∈r dkyk/fk∑

k∈r dk
. (8)

For the linear calibration estimator and for the new f-estimator we regress
yk on xk in s. The WLS method gives the coe�cient-vector

b′s =

∑
k∈s dkykx

′
k∑

k∈s dk
Σ−1s . (9)

The problem with (9) is missing yk in s, they are only known in r, r ⊂ s. We
consider two ways for estimating b′s. First, estimating both factors in (9) by
the respective means in r, we get the coe�cient-vector

b′r =

∑
k∈r dkykx

′
k∑

k∈r dk
Σ−1r . (10)
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The respective �tted values are b′rxk. It appears that the mean of the �tted
values in s is the classical linear calibration estimator,∑

k∈s dkb
′
rxk∑

k∈s dk
= b′rx̄s =

∑
k∈r dkykx

′
k∑

k∈r dk
Σ−1r x̄s,

from which we get

ȳcal =

∑
k∈r dkykgk∑

k∈r dk
, (11)

where gk is the calibration weight,

gk = x′kΣ
−1
r x̄s. (12)

It is easy to check that calibration property holds, i.e., applying gk on the
auxiliary vector xk results with the exact sample mean in s,∑

k∈r dkxkgk∑
k∈r dk

=

∑
k∈r dkxkx

′
k∑

k∈r dk
Σ−1r x̄s = ΣrΣ

−1
r x̄s = x̄s.

The second way for estimating (9) avoids estimating Σs. It can be computed
if auxiliary variables are known for each k ∈ s (standard situation). Thus,
estimating only the �rst factor in (9) gives

b′sr =

∑
k∈r dkykx

′
k∑

k∈r dk
Σ−1s . (13)

Taking the mean of the respective �tted values b′srxk in r gives the new
estimator ȳf which we call f-estimator,∑

k∈r dkb
′
srxk∑

k∈r dk
= b′srx̄r =

∑
k∈r dkykx

′
k∑

k∈r dk
Σ−1s x̄r,

from which

ȳf =

∑
k∈r dkykfk∑

k∈r dk
, (14)

where fk is given in (7). Comparing ȳf and the well-known propensity ad-
justed estimator ȳpro in (8), we notice the surprising opposite role of the
factor fk: in one case it divides yk, in the other case it multiplies it. The
estimators ȳf and ȳcal are also opposite in a certain sense. They both have
their weights, respectively fk and gk, in the numerator, but these weights are
inverses of each other in a general sense, namely the means of their product
are equal to 1 both in s and in r,∑

k∈r dkgkfk∑
k∈r dk

=

∑
k∈s dkgkfk∑

k∈s dk
= 1.

The above property and many others of the factors fk and gk are proved
in [11]. The relationship (1) for the auxiliary vector is important in deriva-
tions. Inserting µ′xk = x′kµ = 1 in suitable places helps to simplify matrix
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expressions. If the auxiliary vector is a group vector, then gk = 1/fk, and
ȳcal = ȳpro, i.e., ȳcal and ȳf have opposite use of the weight fk.

In [11] the means of weights fk and gk in r are given as

ḡr =

∑
k∈r dkgk∑
k∈r dk

= 1, f̄r =

∑
k∈r dkfk∑
k∈r dk

= 1 +Qs,

where Qs is in (4). Here comes the motivation to rescale the weights fk to
have average 1. One more comparable estimator, the scaled f-estimator is
given by

ȳscf =

∑
k∈r dkykfk

(1 +Qs)
∑

k∈r dk
. (15)

When deriving ȳf , we have taken the mean of the �tted values over r. How-
ever, it uses auxiliary information outside r; through Σs. On the contrary,
taking the mean over s and using property (1) results in the simple un-
weighted mean,∑

k∈s dkb
′
srxk∑

k∈s dk
= b′srx̄s =

∑
k∈r dkykx

′
k∑

k∈r dk
Σ−1s x̄s =

∑
k∈r dkyk∑
k∈r dk

= ȳunw.

The estimators ȳunw, ȳf , ȳpro, ȳcal are related, as studied below.

4. Relationships between estimators

The Cauchy�Schwarz inequality gives for nonnegative yk and fk

ȳf · ȳpro = (
∑
k∈r

wkykfk) · (
∑
k∈r

wkyk/fk) ≥ (
∑
k∈r

wkyk)2 = ȳ2unw,

where wk = dk/
∑

k∈r dk. In another way,

ȳf
ȳunw

· ȳpro
ȳunw

≥ 1. (16)

We see from (16) that if ȳf ≤ ȳunw, then ȳpro ≥ ȳunw, i.e., in each response
set r the propensity weighted and the f-estimator are on either sides of the
unweighted ȳunw. Suppose that we know that ȳunw is biased and, e.g., under-
estimates ȳs. Most probably, for a given r, one has ȳunw < ȳs. We want to
make nonresponse adjustment with estimators using auxiliary information.
Suppose that ȳpro < ȳunw. Clearly, it is not wise to use ȳpro, but rather
stay with ȳunw, or perhaps choose instead ȳf . Similar arguments hold for the
calibration estimator, at least for the group-vector x case, then ȳpro = ȳcal.

The important question is, which is closer to ȳs? Is it ȳpro, ȳcal, or is it
ȳf or ȳscf? A drawback of ȳpro is that fk placed in the denominator may be
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near zero for some k. Below we compare ȳcal and ȳf to ȳs. We get the upper
bounds,

|ȳs − ȳf | ≤ |ȳs − ȳunw|+ |ȳunw − ȳf |,
|ȳs − ȳcal| ≤ |ȳs − ȳunw|+ |ȳunw − ȳcal|.

The above inequalities suggest to choose ȳf for estimating ȳs if it is closer to
ȳunw than ȳcal, and otherwise to choose ȳcal. We call the respective estimator
mixture estimator, and denote it by ȳmix.

Di�erent y-variables of the same survey may require di�erent estimators.
Correlations between y and the response indicator, y and x-variables af-
fect behavior of the estimators. Since x is a vector, we rather observe one-
dimensional summaries of it, the f - and g-factors. The covariance in s of two
variables a and b is de�ned by the formula

covs(a, b) =

∑
k∈s dkakbk∑

k∈s dk
− ās b̄s, (17)

where ās, b̄s are the weighted means in s, similarly to (2). The covariance in
r is de�ned analogously. We get:

covs(I, y) = P (ȳunw − ȳs), (18)

covr(f, y) = ȳf − (1 +Qs) ȳunw, (19)

covr(g, y) = ȳcal − ȳunw, (20)

covr(f, g) = −Qs, covs(f, g) = −Qr. (21)

We see from (18) that if response is negatively correlated with the study
variable y, the simple unweighted estimator underestimates ȳs. We know
that the factors fk and gk are (general) inverses of each others. Negative
covariances in (21) con�rm their opposite behavior. In fact, their correlation
is nearly −1, cors(f, g) ≈ −1, [11]. Inverse relationship between f and g
causes opposite signs to their covariances with y in (19)�(20). Consequently,
if ȳcal is smaller than ȳunw, then ȳf is bigger than ȳunw, more bigger for
unbalance response sets where Qs > 0.

The response r is called perfectly balanced with respect to the vector x
if x̄r = x̄s, [8]. For a balanced response set, fk = 1 and gk = 1 for all
k. This follows from their expressions and the property (1). For example,
fk = x̄′rΣ

−1
s xk = x̄′sΣ

−1
s xk = 1. All the estimators ȳpro, ȳcal, ȳf , and ȳscf

reduce to ȳunw for a balanced response set. Nevertheless, since balancing
means conditions on x-variables, the resulting ȳunw may still be biased for
ȳs. Särndal and Lundquist [9] have con�rmed that deviation of ȳcal from ȳs
decreases, but not to zero, if balance of the response set increases.

Strong relationship between y and x-variables is expected to reduce bias.
Suppose, we have the exact linear relationship yk = b′xk. In this extreme
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case, the calibration estimator is exact,

ȳcal =

∑
k∈r dkykgk∑

k∈r dk
=

∑
k∈r dkb

′xkx
′
kΣ
−1
r x̄s∑

k∈r dk
= b′x̄s = ȳs.

The estimator ȳf does not have this property. It needs additional condition
− balanced response, or even a stronger condition, Σr = Σs. Exact linear
relationship does not exist in real life for variables under interest. Even if, for
some y-variable the relationship with the x-variables is strong, and calibra-
tion reduces bias, then for other y-variables the same calibration estimator
may increase bias. As simulation shows, in this case one of ȳunw, ȳf , ȳscf , or
ȳmix may be better.

5. Simulation set-up

Real data from the Estonian household surveys in 2004�2007 were used.
The data set for our use consisted of 1000 households (considered as a simple
random sample s), and of the following variables, where H denotes Household
and HD the Household Head:

HD_sex (binary; 1 for woman),
HD_active (binary; 1 for employed),
HD_educ (discrete; 1, 2, 3 coding education levels "low", "medium", "high"),
H_size (discrete; 1,2, . . .,12),
H_No_of_Children (discrete; 0, 1, . . .,9),
HD_educ1 (binary; 1 for education level "low"),
HD_educ2 (binary; 1 for education level "medium"),
HD_educ3 (binary; 1 for education level "high"),
H_With_Children (binary; 1 if yes),
H_big (binary; 1 for H_size bigger than 1),
H_income (min=0, median=7233, mean=9392, max=57163),
H_transfer (social bene�ts; min=0, median=2442, mean=2827, max=47284),
H_expenditure (min=577, median=6020, mean=7812, max=54723).

The values of variables H_income, H_transfer, H_expenditure are month-
ly values in Estonian Kroons (EEK).

Response probabilities θk (where k designates a household) were computed
for k ∈ s by the model

logit(θ) = 5− 4×HD_sex + 2×HD_active− 0.0003×H_income. (22)

The model deliberately assigns lower response probability to high income
households where the head is an unemployed female.

The auxiliary vector used in calibration and f-estimator is a four-dimensio-
nal group vector formed by crossing 2 binary variables,

x = (HD_sex×HD_active). (23)
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We see that the x-vector is related to the response probabilities by its 2 vari-
ables, but x does not involve information about income. This choice aspires
to mimic the real life situation, where auxiliary variables are various demo-
graphic and other variables obtainable from registers, but response, however,
depends on study variables, such as income. We also consider another choice
of the x-vector, the 5-dimensional

x = (HD_sex×HD_active,H_expenditure). (24)

The x-vector in (24) is unrealistic in practice since it is very hard to �nd
out H_expenditure for nonrespondents. Here, it helps to see the behavior of
estimators under stronger auxiliary information.

The response r of m = 600 households was generated according to the
response probabilities θk. The order-sampling scheme was used. Accordingly,
the value uk = U(0, 1)/θk was generated for each household k ∈ s, where
U(0, 1) denotes a random outcome from the uniform distribution. Then the
600 households with the smallest values of uk were selected as respondents
r. As a result, the household k responds with probability θ0k, very close to
θk. As shown in [7], limm→∞ θk/θ

0
k = 1.

The response set was generated 1000 times. From each response set the
estimators ȳunw, ȳcal, ȳpro, ȳf , ȳscf , ȳmix were computed. They are also re-
ferred to as UNW, CAL, PRO, f, SCf, and MIX. One by one, all 13 variables
of our data set were taken in the role of the y-variable. The arrangement
where x-variables can also serve as study variables may seem unusual. The
reason to do so was to observe the behavior of estimators under perfect linear
relationship.

The absolute relative bias was computed for each estimator and for each
y-variable according to the formula

ARB =
|Erep ˆ̄y − ȳs|

ȳs
, (25)

where ˆ̄y denotes an estimator and Erep refers to its mean over all 1000 repe-
titions.

The overall absolute relative bias of an estimator is just the average of ARB
in (25) over all y-variables. This is a measure characterizing the behavior of
an estimator for the entire survey.

6. Simulation results

Response probabilities (Table 1) were varying from very small to very high.
Their mean is equal to the response rate 0.6.
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Table 1. Characteristics of the response probabilities.

Min 1st quartile Median Mean 3rd quartile Max
0.6× 10−6 0.415 0.685 0.600 0.846 0.871

Table 2 displays correlations in s. The x-variable HD_active is correlated
with the income related variables. Those households with employed heads get
less transfers, they have higher income and higher expenditures. Income and
expenditure have very high correlation (0.716). Correlations with response
probabilities follow the model (22). The strongest correlation is with the
x-variable HD_sex (−0.655).

Table 2. Correlations between x-variables, income related
variables and response probabilities θ.

HD_sex HD_active H_inc. H_trans. H_exp. θ
HD_sex 1.000 -0.176 -0.190 0.006 -0.174 -0.655
HD_active -0.176 1.000 0.422 -0.329 0.412 0.120
H_inc. -0.190 0.422 1.000 0.189 0.716 -0.453
H_trans. 0.006 -0.329 0.189 1.000 0.097 -0.254
H_exp. -0.174 0.412 0.716 0.097 1.000 -0.288
θ -0.655 0.120 -0.453 -0.254 -0.288 1.000

On Figure 1 we see distributions of our estimators around the true value
ȳs over 1000 repeated response sets. The x-vector is a group vector (23). In
this particular case, ȳpro = ȳcal. Therefore, ȳpro was dropped from Figure 1
and Tables 3�4. Calibration estimator is exact for HD_sex and HD_active,
these variables are used as auxiliary variables in the calibration estimator.
Basically, here is the case where y-variable depends linearly on x-variables.
We see that f- and SCf-estimators still have variability and are biased in this
case, even more than the simple UNW-estimator.

The behavior of the CAL-estimator is surprising. Usually it is expected to
decrease bias compared to the UNW-estimator. But here, it increases bias in
many cases. Especially large bias appears for income related variables − in-
come, transfer, and expenditure. This happens despite the correlations, not
very strong but of order 0.4, that these y-variables have with the calibration
variable HD_active. Quite strong correlation between another calibration
variable HD_sex and response probabilities (≈ −0.7) has not been able to
reduce bias either. Increased bias in calibration with some calibration func-
tions has been also experienced by [4]; this has been in spite of the strong
relationship between the study and auxiliary variables.
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Figure 1. Distributions of estimators over 1000 response
sets for 13 variables, the true ȳs is shown by dashed line,
the mean of each distribution by circle, the median by bold
line. The x-vector of estimators is in (23).
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One notes in Table 5 that CAL is considerably improved when the calibra-
tion is done instead with the x-vector (24) that contains the income related
variable H_expenditure. Nevertheless, in our case, for the income related
variables (excluding due to natural reasons H_expenditure), the f-estimator
is the best.

Compared with unweighted estimator UNW, the f- and the CAL-estimators
tend to be on opposite side of it. Very often, they are even on opposite side
of the true ȳs. The mixture estimator MIX behaves similarly to the CAL-
estimator for almost all study variables.

Absolute relative biases in Table 3 show that for di�erent variables di�erent
estimators are the best. The overall relative bias is smallest for the UNW-
estimator (Table 4). In Table 4, the average is taken over 11 variables, i.e.,
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HD_sex and HD_active were dropped out. These variables are used in the
auxiliary x-vector, they are known in s, and there is no need to estimate
them. They are used here to demonstrate the case where the calibration
estimator is exact.

We have also studied the e�ect of the auxiliary vector (24) on the estima-
tors CAL, PRO, f, SCf, MIX. The vector (24) involves additional auxiliary
variable H_expenditure. Stronger auxiliary vector reduces bias of CAL-
estimator for almost all variables. Note that with auxiliary vector (23),
PRO- and CAL-estimators are equal, but with auxiliary vector (24) they are
di�erent, CAL appeared to be better than PRO. Comparing Tables 4 and 6,
we see that the overall absolute relative bias has strongly decreased for the
CAL-estimator, but increased for f- and SCf-estimators. Comparing abso-
lute relative biases by each of the 13 variables (Tables 3 and 5), we see the
same tendency: ARB of CAL-estimator has decreased, but of f-estimator
increased. Remarkable is the position of the UNW-estimator. In spite of
the stronger calibration, the CAL-estimator has larger ARB than the UNW-
estimator for several study variables. In the overall, these two estimators
have almost equal ARB (Table 6).

Table 3. Absolute relative bias, x-vector in (23).

UNW CAL f SCf MIX
HD_active 0.0385 0.0000 0.1438 0.0518 0.0000
HD_sex 0.2910 0.0000 0.4936 0.5339 0.4936
HD_educ 0.0100 0.0117 0.0752 0.0113 0.0117
H_size 0.0092 0.0592 0.1191 0.0284 0.0592
H_No_of_Children 0.0357 0.1111 0.1066 0.0174 0.1111
HD_educ1 0.0072 0.0280 0.0692 0.0170 0.0237
HD_educ2 0.0436 0.0241 0.1493 0.0567 0.0241
HD_educ3 0.0870 0.0736 0.0278 0.1060 0.0740
H_With_Children 0.0237 0.0788 0.1008 0.0117 0.0788
H_big 0.0059 0.0566 0.1461 0.0541 0.0566
H_income 0.1683 0.2259 0.0485 0.1259 0.2259
H_transfer 0.1144 0.1306 0.0127 0.0926 0.1306
H_expenditure 0.1041 0.1550 0.0140 0.0673 0.1550

Table 4. Overall absolute relative bias, x-vector in (23).

UNW CAL f SCf MIX
0.0505 0.0800 0.0855 0.0521 0.0796
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Table 5. Absolute relative bias, x-vector in (24).

UNW CAL PRO f SCf MIX
HD_active 0.0385 0.0000 0.0443 0.1987 0.0643 0.0000
HD_sex 0.2910 0.0000 0.0282 0.4552 0.5160 0.4552
HD_educ 0.0100 0.0085 0.0227 0.1042 0.0198 0.0085
H_size 0.0092 0.0287 0.0668 0.1408 0.0124 0.0287
H_No_of_Children 0.0357 0.0527 0.0988 0.1138 0.0109 0.0527
HD_educ1 0.0072 0.0431 0.0260 0.1346 0.0072 0.0431
HD_educ2 0.0436 0.0006 0.0008 0.2067 0.0713 0.0006
HD_educ3 0.0870 0.0308 0.1831 0.0475 0.1542 0.0475
H_With_Children 0.0237 0.0392 0.0809 0.1223 0.0041 0.0392
H_big 0.0059 0.0329 0.0382 0.1721 0.0410 0.0329
H_income 0.1683 0.1653 0.2162 0.0510 0.1578 0.1653
H_transfer 0.1144 0.0903 0.1554 0.0100 0.1213 0.0903
H_expenditure 0.1041 0.0000 0.0320 0.0414 0.1487 0.0421

Table 6. Overall absolute relative bias, x-vector in (24).

UNW CAL PRO f SCf MIX
0.0505 0.0492 0.0889 0.1103 0.0600 0.0509

7. Conclusion

This paper studied estimation under nonresponse. We have constructed a
new estimator, the f-estimator, using regression of the study variable y on the
vector of auxiliary variables x. Uncomputable regression slope in sample s is
estimated in two di�erent ways, one of them results in the well-known linear
calibration estimator, the other one in the new f-estimator. The estimators
are compared theoretically and experimentally. The estimators have opposite
behavior: if one of them is smaller than the simple unweighted estimator,
then the other tends to be bigger. Weights of the calibration estimator and
of the f-estimator are general inverses (sometimes exact inverses) of each
other. Based on the opposite nature of these two estimators, we have de�ned
a mixture estimator. It has smaller upper bound for the absolute di�erence
from target sample mean.

In simulation experiment on real data, the f-estimator is better than the
calibration estimator for some study variables. In fact, for di�erent variables
di�erent estimators are the best. Sometimes calibration may even increase
bias compared to the simple unweighted estimator. One can say that in the
overall sense, the UNW-estimator is superior. Its average absolute relative
bias (average over all study variables) is the smallest (Table 4) or nearly the
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smallest (Table 6). In the latter case the winner is the CAL-estimator. The
reader should keep in mind that ranking of estimators is based on simulation
results that depend on choices made in this paper.

In survey practice the same auxiliary vector x and, consequently, the same
set of weights is used for the nonresponse adjustment in the entire survey.
The vector x cannot be strongly related to each survey variable, and therefore
cannot work well for each variable in widely used calibration estimator. Even
if strongly related, it does not remove all the bias in that estimator. Based
on the same vector x, the constructed f-estimator is not perfect either. But it
works well for some variables where calibration does not work. We proposed
here a mixture of the CAL- and the f-estimator, but it appeared to behave
similarly to the CAL-estimator.

The calibration and the f-estimator are both constructed by using regres-
sion tools. As noticed by many authors, the dilemma with nonresponse is
inconsistent regression. A regression model in s does not hold in r due to
selective response mechanism, the unequal response probabilities. Bias of the
calibration estimator is largely de�ned by the di�erence in slopes br − bs,
[9]. Bias of the f-estimator is respectively de�ned by the di�erence bsr −bs.
But for di�erent y-variables one of these two biases is smaller. Consequently,
it is pro�table to choose between these estimators.

Acknowledgements

The author thanks the referee for constructive comments and sugges-
tions. This work was partly supported by the Institutional Research Funding
IUT34-5 of Estonia.

References

[1] J. F. Beaumont, On the use of data collection process information for the treatment of

unit nonresponse through weight adjustment, Survey Methodol. 31 (2005), 227�231.
[2] J. M. Brick, Unit nonresponse and weighting adjustments: A critical review, J. O�c.

Statist. 29 (2013), 329�353.
[3] J. C. Deville and C.-E. Särndal, Calibration estimation in survey sampling, J. Amer.

Statist. Assoc. 87 (1992), 375-382.
[4] D. Haziza and É. Lesage, A discussion of weighting procedures for unit nonresponse,

J. O�c. Statist. 32 (2016), 129�145.
[5] D. G. Horvitz and D. J. Thompson,A generalization of sampling without replacement

from a �nite universe, J. Amer. Statist. Assoc. 47 (1952), 663�685.
[6] R. J. A. Little and S. Vartivarian, Does weighting for nonresponse increase the vari-

ance of survey means?, Survey Methodol. 31 (2005), 161�168.
[7] B. Rosen, On inclusion probabilities for order πps sampling, J. Statist. Plann. Infer-

ence 90 (2000), 117�143.
[8] C.-E. Särndal, The 2010 Morris Hansen lecture: Dealing with survey nonresponse in

data collection, in estimation, J. O�c. Statist. 27 (2011), 1�21.



306 IMBI TRAAT

[9] C.-E. Särndal and P. Lundquist, Inconsistent regression and nonresponse bias: Ex-

ploring their relationship as a function of response imbalance, J. O�c. Statist. 33
(2017), 709�733.

[10] C.-E. Särndal and S. Lundström, Estimation in Surveys with Nonresponse, John
Wiley & Sons, Ltd., Chichester, 2005.

[11] C.-E. Särndal, I. Traat, and K. Lumiste, Interaction between data collection and

estimation phases in surveys with nonresponse, Statistics in Transition 19 (2018),
183�200.

Institute of Mathematics and Statistics, University of Tartu, 50090 Tartu,

Estonia

E-mail address: imbi.traat@ut.ee


