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Plastic response of conical shells with stiffeners
to blast loading

Jaan Lellep and Ella Puman

Abstract. The inelastic response of circular conical shells to the blast
loading is studied. The impact loading is applied at the initial time mo-
ment and it is removed at a certain instant of time. The load intensity
depends of the coordinate of the shell. The material of the shell is a per-
fect plastic one obeying the Johansen yield condition and the associated
flow law. It is assumed that the frustum of the cone is furnished with
ring stiffeners made of the same material. A theoretical method for the
evaluation of the stress strain state of the shell and for determination of
maximal residual deflections is developed.

1. Introduction

The blast loading of structural elements occurs in real life situations as
traffic accidents, ship collision, metal forming and so on. The dynamic plastic
response of axisymmetric plates is investigated by Jones [1], [2], Shen and
Jones [7], Wang et al. [8]. In the literature much less attention has been paid
to conical shells. Lellep and Puman [3], [4], [5] studied the plastic response of
conical shells to the rectangular blast loading, where loading intensity decays
according to the exponential law. In the present paper, a theoretical method
is developed for the shell, loaded by the pressure uniformly distributed over
the shell. It is assumed that the load intensity decreases from inner edge to
the outer edge.

2. Problem formulation

Consider the response of a conical shell to the distributed dynamic loading.
Let the shell be absolutely free at the inner edge r = a and be simply
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supported at the outer edge r = R (Figure 1), where r stands for the current
radius of the shell. Let the intensity of the uniformly distributed transverse
loading be P (t, r) where

P (t, r) =

P∗
r −R
a−R

, t ∈ [0, t1],

0, t > t1.

Here P∗ is a given constant and t1 is the time moment, when loading will be
removed.

Figure 1. Conical shell with a stiffener.

In the present study the shell with the stiffeners is modelled as the shell
of stepped thickness. It is expected that this simplification does not proceed
large discrepancies of results in comparison to those corresponding to the
exact model of the shell. Let the thickness of the shell wall be h, where

h =


h0, r ∈ [a, a1],

h1, r ∈ [a1, a2],

h0, r ∈ [a2, R].

(1)

The equilibrium equations for the conical shell element are

(rN1)
′ −N2 = 0 (2)

and (
(rM1)

′ −M2

)′
−N2

sinϕ

cos2 ϕ
+

r

cos2 ϕ

(
P∗
r −R
a−R

− hµ̄Ẅ
)

= 0, (3)

where prime denotes the differentiation with respect to current radius r.
In (2) and (3) N1 and N2 are membrane forces, M1 and M2 are bending
moments in the radial and circumferential directions, and ϕ stands for the
angle of inclination of a generator of the middle surface of the shell (Figure 1).
The displacements U and V in the radial and circumferential directions are
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assumed to be small in comparison to the transverse deflection W . The
strain rate components can be presented as

ε̇1 =
dU̇

dr
cosϕ,

ε̇2 =
1

r

(
U̇ cosϕ+ Ẇ sinϕ

)
,

(4)

and

κ̇1 = −d
2Ẇ

dr2
cos2 ϕ,

κ̇2 = −1

r

dẆ

dr
cos2 ϕ,

(5)

where ε1, ε2 are linear elongations and κ1, κ2 are curvatures. Let us introduce
the following non-dimensional quantities

% =
r

R
, αl =

al
R
, l = 0, 1, 2, γj =

hj
h∗
, j = 0, 1,

ni =
Ni

N∗
, mi =

Mi

M∗
, i = 1, 2,

p∗ =
P∗R

N∗ sinϕ
, µ =

µ̄Rh∗
N∗ sinϕ

, k =
M∗ cosϕ

RN∗ sinϕ
.

Here h∗ stands for the thickness of the reference shell, M∗ = σ0h2∗
4 , and

N∗ = σ0h∗ are the yield moment and the yield force, and σ0 is the yield
stress of the material.

3. The stress strain state of the shell

The stress profile could lie on sides A1B1 and AB of the yield loci
(Figure 2). From these regimes and from the associated flow law it follows
that

ε̇1 = 0, κ̇1 = 0.

Thus from (4) and (5) one obtains

U̇ ′ = 0, Ẇ ′′ = 0.

After integration with respect to % one has

Ẇ = C1(t)%+ C2(t),

where C1(t) and C2(t) are arbitrary functions. From the boundary require-
ments

U̇(1, t) = 0, Ẇ (α, t) = ẇ0, Ẇ (1, t) = 0,

were w0 is unknown function, we can deduce that

U̇ = const, Ẇ = ẇ0
%− 1

α− 1
, Ẅ = ẅ0

%− 1

α− 1
. (6)
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Figure 2. Johansen’s yield condition.

4. Equations of motion

The equations of motion in non-dimensional variables are

(%n1)
′ − n2 = 0 (7)

and

k
(
(%m1)

′ −m2

)′ − n2 + %

(
p∗
%− 1

α− 1
− γµẄ

)
= 0, (8)

where p∗ is given constant. Making use of (6), one can rewrite the
equation (8) as

k
(
(%m1)

′ −m2

)′ − n2 + %
%− 1

α− 1

(
p∗ − γµẅ0

)
= 0. (9)

The boundary conditions for free inner edge and simply supported outer
edge are

n1(α, t) = 0, q(α, t) = 0, m1(α, t) = 0, m1(1, t) = 0, (10)

where q = (%m1)
′ − m2 is non-dimensional shear force. After integration

of the equations (7) and (9) with respect to % and finding the constants of
integration, one obtains

n1 = γ

(
1− α

%

)
,

m1 = γ2
(

1− α

%

)
+
γ

k

(
γ

2
− α+

α2

2γ

)
+
p∗ − µγẅ0

12k(α− 1)

(
%2(2− %) + 2α2(2α− 3)− α3

%
(3α− 4)

)
.

(11)

The acceleration at the shell center ẅ0 in (11) can be obtained by using the
last boundary condition in (10):

µẅ0 =
p∗
γ

+
12k(α− 1)

(3α+ 1)(1− α)3

(
γ(1− α) +

(1− α)2

2k

)
. (12)
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At the time period t > t1, the acceleration is notated by ẅ1 = ẅ(α, t), then
p∗ = 0 and

µẅ1 =
12k(α− 1)

(3α+ 1)(1− α)3

(
γ(1− α) +

(1− α)2

2k

)
.

After integration of (12) with respect to the time t, one obtains

µẇ0 =
p∗
γ
t+

12k(α− 1)t

(3α+ 1)(1− α)3

(
γ(1− α) +

(1− α)2

2k

)
,

µw0 =
p∗t

2

2γ
+

6k(α− 1)t2

(3α+ 1)(1− α)3

(
γ(1− α) +

(1− α)2

2k

)
.

The peak value of the linearly distributed static plastic collapse pressure p0
can be evaluated from (12), when ẅ0 = 0:

p0 =
6γ(2kγ + 1− α)

(1− α)(1 + 3α)
.

The shell thickness (1) in non-dimensional variables for the shell with a single
stiffener is

γ =


γ0, % ∈ [α, α1],

γ1, % ∈ [α1, α2],

γ0, % ∈ [α2, 1].

According to the Johansen’s yield condition, one can assume that

m2 =


γ20 , % ∈ [α, α1],

γ21 , % ∈ [α1, α2],

γ20 , % ∈ [α2, 1],

n2 =


γ0, % ∈ [α, α1],

γ1, % ∈ [α1, α2],

γ0, % ∈ [α2, 1].

After integration of the equations of motion in three different regions, the
radial membrane force obtains:

n1 =


γ0 − γ0α

% , % ∈ [α, α1],

γ1 + 1
%

(
α1(γ0 − γ1)− γ0α

)
, % ∈ [α1, α2],

γ0 + 1
%

(
α2(γ1 − γ0) + α1(γ0 − γ1)− γ0α

)
, % ∈ [α2, 1].

Similarily, one obtains the radial bending moment for % ∈ [α, α1]:

m1 = γ20 +
γ0
k

(%
2
− α

)
− p∗ − µγ0ẅ0

12k(α− 1)
%2(%− 2) +

C11

k
+
C21

k%
,

for % ∈ [α1, α2]:

m1 = γ21 +
γ1
k

(%
2
− α1

)
+
γ0
k

(α1 − α)− p∗ − µγ1ẅ0

12k(α− 1)
%2(%− 2) +

C12

k
+
C22

k%
,
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and for % ∈ [α2, 1]:

m1 = γ20 +
γ0
k

(%
2

+ α1 − α− α2

)
+
γ1
k

(α2 − α1)

− p∗ − µγ0ẅ0

12k(α− 1)
%2(%− 2) +

C13

k
+
C23

k%
.

The constants of integration are

C11 =
p∗ − µγ0ẅ0

6(α− 1)

(
2α3 − 3α2

)
,

C21 = −kαγ20 + γ0
α2

2
+
p∗ − µγ0ẅ0

12(α− 1)

(
α4 − 2α3

)
− C11α,

C12 =
µẅ0(γ0 − γ1)

6(α− 1)

(
2α3

1 − 3α2
1

)
+ C11,

C22 = kα1

(
γ20 − γ21

)
+
α2
1

2
(γ1 − γ0)

+
µẅ0

12(α− 1)
(γ0 − γ1)

(
α4
1 − 2α3

1

)
+ α1(C11 − C12) + C21,

C13 =
µẅ0(γ1 − γ0)

6(α− 1)

(
2α3

2 − 3α2
2

)
+ C12,

C23 = kα2

(
γ21 − γ20

)
+
α2
2

2
(γ0 − γ1)

+
µẅ0

12(α− 1)
(γ1 − γ0)

(
α4
2 − 2α3

2

)
+ +α2(C12 − C13) + C22.

The acceleration for the shell with a stiffener at the internal edge of the shell
ẅ0 can be determined using the last boundary condition of (10) as

µẅ0 =
12k(α− 1)

N
L,

where

N = γ0(1+3α)(1−α)3+(γ0 − γ1)
(
(1 + 3α1)(α1−1)3+(1 + 3α2)(1−α2)

3
)
,

L =
p∗

12k(α− 1)
(1 + 3α)(1− α)3 + γ20(1− α+ α1 − α2)

+ γ21(α2 − α1) +
γ0
2k

(1− α)2 +
1

2k
(γ0 − γ1)

(
α2
2 − α2

1 + 2(α1 − α2)
)
.

5. Numerical results

The results of calculations are presented in Figures 3–13. In Figure 3
values of the lower limits of the pressure p0, corresponding to the onset of
plastic deformations, are shown for shell with constant thickness for different
inner radii. The lowest curve is obtained for the value of the parameter
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k = 0.1 and the highest curve for k = 0.9. It can be seen from Figure 3 that
if the angle of inclination of the conical shell increases, then the lower limit
of the pressure increases as well.

Figure 3. Lower limit of the pressure for different inner radii.

The volume of the shell material for the shell with stiffener is

Vs = γ0(α1 − α) + γ1(α2 − α1) + γ0(1− α2),

Similarily, for the shell with constant thickness γ, the volume is

Vc = γ(1− α).

Then from Vs = Vc we get the value of the constant thickness

γ =
γ0(α1 − α) + γ1(α2 − α1) + γ0(1− α2)

1− α
.

The maximal residual deflection for different heights of the stiffener are de-
picted in Figure 4. The dash lines represent the shells with constant thick-
nesses and solid lines the shells with a stiffener. The upper dashed line
represents the maximal residual deflections for the shell with constant thick-
ness γ = 1.075, which has the same material volume as the shell with a
single stiffener with thickness γ1 = 1.5. The lower dashed line represents
the shell with constant thickness γ = 1.103 with the same material volume
as the shell with stiffener, when the stiffener thickness is γ1 = 2. It can
be seen from Figure 4 that if the stiffener thickness increases, the maximal
residual deflection decreases, as might be expected. For the same material
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Figure 4. Maximal residual deflections for shells with con-
stant thickness and for shells with a stiffener.

volume, one can achieve lower maximal residual deflections when using stiff-
eners. In Figure 5 the maximal residual deflections are depicted for different
stiffener locations for α = 0.3, 0.5, 0.6 and 0.7. It can be seen from Figure 5
that stiffener location near the inner edge provides lower maximal residual
deflections.

Figure 5. Maximal residual deflections for different stiffener locations.

The maximal residual deflections for load intensity p∗ = 0.5 and k = 0.3
are presented in Figure 6 for different loading times t1 and inner radii. Here
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α1 = α + 0.1, α2 = α1 + 0.05, γ0 = 1.05, γ1 = 1.5. It can be seen from
Figure 6 that longer loading time causes larger maximal residual deflections.

Figure 6. Maximal residual deflections for different inner
radii and loading times.

The maximal residual deflections for loading time t1 = 0.5 and k = 0.3 are
presented in Figure 7 and Table 1 for different inner radii and load intensities.
The residual deflection attains its maximum if the inner radius α is about
0.5 for larger load intensity values.

Figure 7. Maximal residual deflections for different inner
radii and load intensities.



14 JAAN LELLEP AND ELLA PUMAN

The maximal residual deflections for different values of the parameter k
are presented in Figure 8. If the value of the parameter k decreases, then
the angle of inclination of the middle surface of the shell increases and the
maximal residual deflections have greater values. It can be seen from Figure
8 that, in the case of small values of k, the residual deflections increase
together with the inner radius α. However, in the case of moderate values
of k (k > 0.01), maximal deflections decrease with increasing the internal
radius of the shell if a > R/2. The result coincides with our expectations
as, evidently, a narrow annulus deforms less than an annular plate with a
comparatively small central hole.

Figure 8. Maximal residual deflections for different angle of
inclination and inner radii.

The radial bending moment distributions are presented in Figures 9–11
for α = 0.1 and α = 0.5 for different stiffener locations α1 and different
stiffener thicknesses γ1 = 1.5 and γ1 = 2. The dashed lines in Figures 9–
11 represent the shells with constant thickness so that the volumes of the
material of the shell with constant thickness and the shell with stiffener are
equal. From Figures 9–11 we can see that the stiffener location and stiffener
thickness cause the changes of values of the bending moment.

In Figures 9–11 the distributions of the radial bending moment are pre-
sented for the shell with the internal radius a = R/2.

In Figure 11 the stiffener thicknesses are γ1 = 1.5 and γ1 = 2 for the inner
radii α = 0.5. Stiffeners are located in the intervals [0.5, 0.55], [0.6, 0.65] and
[0.7, 0.75] for both cases.

The results of calculations are presented for different loading times and
inner radii for k = 0.3, p∗ = 11, γ0 = 1.05, γ1 = 1.5, α2 = α1 + 0.05 in
Table 2. The stiffener locations are near the inner radius with the step 0.1.
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Figure 9. Sensitivity of the radial bending moment on the
stiffener location.

Figure 10. Sensitivity of the radial bending moment on the
stiffener location.

From Table 2 we can see that the maximal residual deflection values are
higher for longer loading time and for inner radius α = 0.5, as might be
expected. The total response time t2 increases together with t1.

The results of the current paper regarding the quasi static and impact
loading are compared with corresponding results by Sawczuk and Sokol-
Supel [6] and Jones [2] in Figures 12, 13. In Figure 12 the limit loads for the
conical shell are compared with the limit load of the annular plate with the
same external and internal radii. The lower curve corresponds to the conical
frusta with the angle of inclination ϕ = 0.034◦, the corresponding value of
the parameter k is k = 100, if h = 0.24R. It can be seen from Figure 12
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Figure 11. Radial bending moment distributions for α =
0.5 and for different stiffener thicknesses and locations.

Figure 12. Limit loads for conical shells compared with an-
nular plates for different yield conditions.

that the limit load for the conical shell tends to the value corresponding to
the load carrying capacity of the annular plate, as might be expected.

In Figure 13 a similar comparison has been undertaken for the conical
shell, respectively, subjected to the dynamic pressure. Here the transverse
load intensity is varying linearly from the value p0 at the internal edge until
zero at the external edge of the shell. The results obtained in the present
paper for conical frusta coincide in the limit case ϕ = 0 with those obtained
by Jones [2]. The solution of Jones is presented in Figure 13 by the dashed
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Figure 13. Maximal residual deflection for annular plate
compared with conical shell for different angles of inclination.

line. Here the curves correspond to the angles of inclination of the conical
shell from lower line with ϕ = 10◦, 5◦, 0.344◦, 0.034◦ (corresponding values
of the parameter k are k = 0.333, 0.685, 10, 100, in the case h = 0.24R,
p∗ = 2p0).

6. Concluding remarks

A theoretical method for the determination of maximal residual deflections
of circular conical shells with a stiffener was developed. It was shown that
when using a stiffener, one can reduce the maximal residual deflection. It
appeared that the best position for the stiffener is somewhere near the free
inner edge. This regards to the case of small deflections. The case of large
deflections needs additional investigation.
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