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Hermite—Hadamard type inequalities via
k-fractional integrals concerning differentiable
generalized n-convex mappings

ARTION KASHURI AND ROZANA LIKO

ABSTRACT. The authors discover a new identity concerning differen-
tiable mappings defined on (m, g; 0)-invex set via k-fractional integrals.
By using the obtained identity as an auxiliary result, some new estimates
with respect to Hermite-Hadamard type inequalities via k-fractional in-
tegrals for generalized-m-(((h10g)?, (h20g)?); (11, n2))-convex mappings
are presented. It is pointed out that some new special cases can be de-
duced from the main results. Also, some applications to special means
for different positive real numbers are provided.

1. Introduction

The following notations are used throughout this paper. By I we denote
an interval [a,b] with a,b € R = (—o00,+00) and a < b. For any subset
K C R™, K° is the interior of K. The set of integrable functions on the
interval [a, b] is denoted by L[a, b].

The following inequality, named Hermite-Hadamard inequality, is one of
the most famous inequalities in the literature for convex functions.

Theorem 1.1. Let f: I — R be a convex function on I C R and let
a,b € I with a <b. Then

The inequality (1.1) is also known as trapezium inequality.
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For other recent results which generalize, improve, and extend the in-
equality (1.1) through various classes of convex functions, interested readers
are referred to [1, 3, 6, 10].

Let us recall some special functions and evoke some basic definitions as
follows.

Definition 1.2. For k& > 0 and « € C, the k-gamma function (or k-
Pochhammer’s symbol) is defined by

nlk"™ (nk) = !

w)n,k

where (), = z(x+k)...(z+ (n—1)k). Its integral representation is given
by

o tk

Ii(a) = / t* e F dt. (1.2)
0
One can note that
Pe(a+ k) = al'y(a).

For k =1, (1.2) gives the integral representation of gamma function.

Definition 1.3 (see [9]). Let f € L[a,b]. Then k-fractional integrals of
order a,, k > 0 with a > 0 are defined as

a,k _ 1 ¢ T —
1@ = gy [ @0

|0

“Lfydt, x> a,

and ,
1 a
er :/t— ETLf(Ddt, b > .
For k =1, k-fractional integrals give Riemann—Liouville integrals.
Definition 1.4 (see [14]). A set S C R is said to be inver with respect
to the mapping n : S x S — R" if x + tn(y,x) € S for every z,y € S and
t e [0,1].

The invex set S is also termed as the n-connected set.

Definition 1.5 (see [8]). Let h : [0,1] — R be a non-negative function
such that h # 0. A positive function f on the invex set K is said to be
h-preinver with respect to n: K x K — R if

flaz+tn(y,2)) < h(1—1t)f(z) +h(t)f(y)
for each z,y € K and ¢ € [0,1].

If n(y,x) = y — x in Definition 1.5, then the h-preinvex function f reduces
to the h-convex mapping f (see [12]).
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Definition 1.6 (see [13]). Let S C R" be an invex set with respect to
n:SxS — R" A function f: S — Ry := [0, +00) is said to be s-preinver
(or s-Breckner-preinvex) with respect to n and s € (0, 1] if, for every x,y € S
and t € [0, 1],

flz+tnly,2)) < (1—1)°f(z) +t°f(y).
Definition 1.7 (see [10]). A function f: K — R is said to be s-
Godunova—Levin—Dragomir-preinvex of second kind, if
fla+tn(y,2)) < Q-1 f(@) +t°f(y),
for each z,y € K, t € (0,1) and s € (0, 1].

Definition 1.8 (see [11]). A non-negative function f: K — R is said to
be tgs-conver on K C R if the inequality

F(A =tz +ty) <t = )[f(2) + FW)]
holds for all z,y € K and t € (0,1).

Definition 1.9 (see [7]). A function f: I — R is said to be M T'-convex
if it is non-negative and, for all z,y € I and t € (0, 1),

Vit V11—t
fltz+(1—1t)y) < 2\/ﬁf(w)ﬂL WG

The concept of n-convex functions (which at the beginning are named as
¢-convex functions) has been introduced in [5] as follows.

f(y).

Definition 1.10. Consider a convex set I C R and a bifunction 7 :
f(I) x f(I) — R. A function f: I — R is called n-convez if

fOz+1=Ny) < fy) +Mn(f(2), f(y)
is valid for all z,y € I and A € [0,1].

Geometrically it says that if a function is n-convex on I, then for any x,y € I,
its graph is on or under the path starting from (y, f(y)) and ending at
(z, f(y) + n(f(x), f(y))). If f(x) should be the end point of the path for
every x,y € I, then we have n(z,y) = x — y and the function reduces to a
convex one. For more results about n-convex functions, see [2]-[6].

Definition 1.11 (see [1]). Let I C R be an invex set with respect to
m I xI — R. Consider f: I — R and n : f(I) x f(I) — R. The
function f is said to be (11, n2)-convex if

flz4+ 2y, x) < f(2) 4+ n2(f(y), f(z))
for all z,y € I and X € [0,1].
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The main objective of this paper is to establish, in Section 2, some new
estimates on Hermite-Hadamard type inequalities via k-fractional integrals
associated with generalized-m-(((hy o ¢)P, (ha o ¢)?); (n1,12))-convex map-
pings. It is pointed out that some new special cases will be deduced from
the main results. In Section 3, some applications to special means for differ-
ent positive real numbers will be obtained.

2. Main results
The following definitions will be used in this section.

Definition 2.1. Let 6: I — R and g: [0, 1]
let m: [0,1] — (0, 1]. AsetKC]Rlsnamed(
themappingn:RxR—)lem()() g(&
for each z,y € I and any t,& € [0, 1].

Remark 2.2. If m(t) =m for all t € [0,1], g(§) = £ for all £ € [0,1], and
f(z) = x for all x € I, then the (m, g; #)-invex set degenerates to an m-invex
set. In the special case m = 1 we get Definition 1.4.

— [0, 1] be continuous, and
m, g; ) -invex with respect to
m(0(y), m(t)f(x)) € K holds

We now introduce the concept of generalized-m-(((hy o g)P, (he o g)?);
(n1,m2))-convex mappings. We use the notation Ry := [0, +00).

Definition 2.3. Let K C R be an (m, g; f)-invex set with respect to the
mapping 71: R x R — R, where 6: I — R, g: [0,1] — [0, 1] are continu-
ous, and m: [0,1] — (0, 1]. Consider the functions f : K — (0, +00) and
n2 : f(K) x f(K) — R4, and two continuous functions hq, he : [0,1] —
R, . The mapping f is said to be generalized-m-(((h10g)?, (h20g)?); (n1,m2))-
convex if the inequality

f(m()0(z) + g(&)m(O(y), m(t)0(x)))

< [m(€) (b1 0 9O () + (he 0 ) (Em F" (). /" (@))] "
holds for all x,y € I, r #0, t,£ € [0,1], and for any fixed p,q > —1.

Remark 2.4. If we choose p = ¢ = 1, m(t) = m (¢t € [0,1]) and g(&§) =
¢ (£ € [0,1]) in Definition 2.3, then we get Definition 2.3 in [6]. Setting
m =1, hi(t) = 1, and ha(t) = t, we get Definition 1.11. If, in addition,
m(z,y) = z —y and p(f(2), f(y)) = n(f(z), f(y)), then Definition 2.3
reduces to Definition 1.10. Under some suitable choices as we have done
above, we can get also Definitions 1.6 and 1.7.

S =

Remark 2.5. Let us discuss some special cases of Definition 2.3, where
9(&) =¢.

(I) Taking hi(t) = h(1 — t) and ho(t) = h(t), we get generalized-m-
((RP(1 —1),h1(t)); (m,n2))-convex mappings.



HERMITE-HADAMARD TYPE INEQUALITIES 23

(IT) Taking hi(t) = (1—t)° and ho(t) = t* for s € (0, 1], we get generalized-

m-(((1 —t)*P,t%7); (m, n2))-Breckner-convex mappings.

(III) Taking hq(t) = (1 —¢)~° and ho(t) = t~° for s € (0,1], we get
generalized-m-(((1—t) %P, t=%9); (11, n2))-Godunova—Levin-Dragomir-convex
mappings.

(IV) Taking hi(t) = ha(t) = t(1 —t), we get generalized-m-((t(1 —
0%, (1 — 1))"9): (11, 72))-conves: mappings.

(V) Taking hi(t) = V1 —1t/(2vt) and hao(t) = Vt/(2V/1 —1), we get

generalized-m- ( ( ( 21\/_; ) 8 , ( 2\}{%) q) ; (1, 772)> -convex mappings.

It is worth to mention here that to the best of our knowledge all the special
cases discussed above are new in the literature.

We give an example of a generalized-m-(((h; o g)?, (ha o 9)9); (n1,12))-
convex mapping which is not convex.

Example 2.6. Let 6 be an identity function, g(t) = t" (r > 0), and
hi(t) = t, ho(t) = t* for all [, s € [0, 1]. Consider the function f: R, — R
defined by

z, 0<z<2
ﬂ@_{4,x>z

Define two bifunctions n;: Ry x Ry — R and 72: Ry x Ry — R4 by

Y, 0<y<2,
m@w%={m+y > 2

and

_ )ty r <y,
772(37711) = { 4(1‘—|—y), T > .

Then, for m = 3 and p,q > 1, f is a generalized 3-((t"P,t"59); (11, m2))-
convex mapping. But f is not preinvex with respect to 11, and it is also not
convex (consider z =0, y = 3, and t € (0, 1]).

For establishing our main results we need to prove the following lemma.

Lemma 2.7. Let 6: I — R be a continuous function, g: [0,1] — [0, 1]
be a strictly increasing function on (0, 1), and let m: [0,1] — (0, 1]. Suppose
that K = [m(t)0(a), m(t)0(a) + g(1)=(a,b)] C R is an (m, g; 0)-invezr subset
with respect to ¥: R x R — R, where ZE;(a,b) = V(0(b), m(t)0(a)) > 0 for
all t € [0,1]. Assume that f: K — R is a differentiable mapping on K°
such that f" € L(K). Then, for a,k >0 and X € [0,1], the equality

P (G0l 0 G EAGAGLOL
fg (W, 0,miA a,0) =
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9% (1) = (1= g)F + $(1 = )] F(e(g(1)
+ 2

N o(9(1))
e
E} (a,b)/o(o(0)
—m(t)0(@)F "+ (m(t)0(a) + Zi(a,b) — w) ] f(w)dw

holds, where

a(g(&)) : = m(t)0(a) + g(§)=i(a, b)

and
Eila 1 a a o
Tﬁ,gk(\lf,e, m; A\, a,b) : = “t(z’b)/o (g%(g) + E(l —A)—(1— g(g)ﬁ)
x f'(a(g(€)))dg(&).

Proof. Integrating by parts and changing the variable w = o(g(§)), we
get

=.(a 1
17 e = 00 | 6@ o))

« ! / ! & py
2= [ le©iae - [ (1= g7 e lo©)dsto)

—m(t)0(a))t T + (m(t)0(a) + Ei(a,b) — w)E | f(w)dw.
This completes the proof of our lemma.

Corollary 2.8. Under the conditions of Lemma 2.7, for g(§) = £ the

following identity for k-fractional integrals holds:

Ei(a /e « a
Tk w0 a0 = 8 [ (eh 4 Sa- ) - (1= 9F) Flole)s
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_ (=20 =X) f(@(0) + 1+ 50 -N) fle(D))

2
Tr (Oé + k) a, )
_ 21;(17) 126y Fa () + I35, f(e(0))],

where
o(&) :=m(t)0(a) + £Zi(a,b).
Remark 2.9. Using Corollary 2.8, for Z¢(a,b) = 6(b) — m(t)f(a), where

m(t) =1 and A = 1, we get the following Hermite-Hadamard k-fractional
integral identity:

f(0(a)) + f(6(b)) T(a+ k) N .
2 - 2(9(2) “b(a)E [Ie(fwf(@(b)) +Ie(f)—f(9(a))}

P a 1 « &
- Do), / (€8 = (1= %) F'(0a) + £(00) - 6(a)))de.

Using Lemma 2.7, we now state the following theorem for the correspond-
ing version for a power of the first derivative.

Theorem 2.10. With the assumptions of Lemma 2.7 let hq, hy: [0,1] —
R be continuous functions and let Vy: f(K) x f(K) — Ry. If (f'(z))?
is a positive generalized-m-(((hy o g)Pt, (he o g)P2); (¥, U1))-conver mapping
with p1,p2 > —1 and g > 1, then the inequality

< S0 ) e~ 40)

+§/9T+1<1> g”s‘+l<o>+§7/<1—g<0>>”’?“—<1—9<1>>p’?+1 (2.1)

41 B+l

TF (W, 0,m A, a,b)| <

%/ (f1(@)9Tf (ha 0 g) + Ty ((F(0)74, (f(@)) ) T (ha 0 g),
holds for o, k > 0 and X € [0,1], where p~1 + ¢~ 1 =1,

/ m ( (€)dg (),
and

1
To(h) = /0 B ()dg(€).

Proof. From Lemma 2.7, using Holder’s and Minkowski’s inequalities, we
have

T (\Ill,Hm)\ab

1—>\)
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— (1= g(©)* || (e (g(£)))|dg(€)
=:(a s «
< SO (g2@+ $0-0) Floa©Nase)

which gives (2.1) after simple calculations. O
We point out some special cases of Theorem 2.10.

Corollary 2.11. In Theorem 2.10, for p = q = 2 we get

Et,1(2av b) [%(1 —A)vg(1) —g(0)

+J S g ) J (- g(0) %+ — (1 - g<1>>k+1]

2 2
2211 oy

TOF (W1, 60, m; A, a,b)

19 S
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2’\"/(f’(a))Q’"If(hl o g) + W1 ((f'(0))*, (f'(a))*) I3 (h2 o g).
Corollary 2.12. In Theorem 2.10, for g(§) = & we get the following

inequality for k-fractional integrals:
k

= b) |«
TR (W, 0, m; \,a,b <w —(1=X)+2
f ( 1,0, M A, Q, ) = 92 k?( )+ pOé—f—ki

x G (F(@) T () + Wy (F(0))72, (1(a))9) T (h).

Corollary 2.13. Under the conditions of Remark 2.9, using Corollary

2.12, we get the following Hermite—Hadamard type inequality
IO( k

‘f ) +160) Fk<a*9‘(’f>)) I FO) + It fWa”H

(/; Y @)y T )+ (709, ((0) ) T3 ().
=: h(t), ha(t) =

Corollary 2.14. In Corollary 2.12, for hqi(t) = h(1 —1t)
m € (0,1] for allt € [0,1], we get the following k-fractional

h(t), and m(t) = ,
inequality for generalized-m-((hP* (1 —t), hP2(t)); (U, ¥1))-convex mappings
k

Zi(a,b) |«
Tk (w0, m; o= U RV
‘ f ( 79ama)\aa7b)‘— 9 k( )‘)—1_ poz—i—k

X Y ml (@) T ) + U ((F0), (1)) T (R).
Corollary 2.15. In Corollary 2.14, for hi(t) = (1 —t)® and ha(t) =
we get the following k-fractional integral inequality for generalized-m-(((1 —

)*P1 t5P2); (U Wy ))-Breckner-conver mappings:

o,k E (CL b)
‘Tf (\11797m;)‘7a7b)‘ S T

xvmu«a))w( ) n o ram ()

r+ sp1

Corollary 2.16. In Corollary 2.14, for hi(t) = (1 — )75, hao(t) = t~°
and r > s - max{p1, p2}, we get the following k-fractional integral inequality
for generalized-m-~(((1 — t)~*P1 t—*P2); (U, Uy))-Godunova—Levin—Dragomir-

tS

k
1—X)+2
( )+ pa+ k

k

convex mappings:
k

pa+ k

[1]

b
T]?’k(\ll,a,m;)\,a,b)‘ < E1@h) [Z(l—)\)+2
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) \/m( fr(ayya ( ’ ) + W1 () (1 @)) < _:m)r_

r—Sp1

28

Corollary 2.17. In Corollary 2.14, for hi(t) = ha(t) = t(1 — t) and
m(t) = m € (0,1] for all t € [0,1], we get the following k-fractional inte-

gral inequality for generalized-m-((t(1 —t))*P1, (t(1 —t))*P2); (¥, Uy))-convex
mappings:
k

@
—(1=X)+2
k( )+ pa+k

= b
Tk, 0,mex o) < S

f
x [m(r@yos (1+ 2,1+ 2)

T T ' p p
+0L (PO (@) 8 (1+ 21+ )]
Corollary 2.18. In Corollary 2.14, for hi(t) = Y2, ha(t) = 545 and
r > smax{pr,p2}, we ggt the folloging k-fractional integral inequality for
1 2
genemlized—m—((( E{ﬁt) , (2\/‘/1%) ) (0, \Ill)) -convex mappings:
k

Zi1(a,b) |«
TR(W, 0, m; A b‘< a,b) fag gy,
‘f ( , U, M5 A, Q, ) = 2 k'( >+ pO&—I—k

s (3) (1 2)

X

0 (O (F(@)) (;) o (1-21+2)
0,1] —

Theorem 2.19. With the assumptions of Lemma 2.7 let hy, ha: [
) x f(K) — By I (f'(2))"

R4 be continuous functions and let Uy: f(K
is a positive generalized-m-~(((h1 o g)P*, (hg 0 g)P2); (¥, ¥1))-convex mapping

with p1,pa > —1 and q > 1, then the inequality

‘To‘k\IIHm)\ab)‘

=.(q o 2+1 _ a5t q
< “t<2’b) { (k(l — ) (g(1) — g(0)) + 7 (1% ﬁ (0)>
"4, (f'(a)r9) Fi(hgog)  (2:2)

x4/ (f1(@) 0 F (a0 g) + W1 ((£/(8))

O]
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<Y Gi o g) + B (PO (@)D Gilhaog) |, (23)
holds for a, k > 0 and X\ € [0,1], where

o= [ mt© (50 + 10 - ) 0% ©anto),
= [ (sh@+ k:(l - A)) W% (€)dg(€).

and

Go(h) : = /O (1 g(€)th

Proof. From Lemma 2.7, generalized-m-(((hy o g)P*, (hg 0 g)P2); (¥, ¥y))-
convexity of (f/(z))?, the well-known power mean inequality, and Minkowski’s
inequality we have

TOH(W, 0, m; A, a b)‘

._.tab|/

O+ 0
< SCIT (e + 20 - A)) (e (o(€)))dg(€)

(=1
k

IN
[
Ly
—
N
o
SN—
| — |
VY
S—
—
/N
Q
>R
—
Iy
S—
+
ik
—_
|
>
SN—
~—
ISV
Q
—
Iy
S—
~_
_
|
=]
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Q=

a0 g (1 (7O, (7' (@)) ] dg(€)]
+<u—gw»%4—g—yu»%“>k

1
q

1 1 a P1 "
) [( 0 m- (§)(f'(a)?(1 — g(§))* (h1 o 9)T(£)d9(£)>
1 1 N o r i
+( [ o o @y 0 - s@)f e nF @) |-
This gives the desired result after simple calculations. 0
In what follows we point out some special cases of Theorem 2.19.

Corollary 2.20. In Theorem 2.19, for ¢ = 1 we get the inequality

o,k
Ty, (P, 0, m; A, a, b)‘

< Et(av b)
- 2

{{f@rzmen o (@ or @) o)

+VWWW%@W@+WMU%W&NWW%www}

Corollary 2.21. In Theorem 2.19, for g(§) = & we get the following
inequality for k-fractional integrals:

o,k
‘Tf (U, 8, m; \, a,b)
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1
Z(a,b) ko o« =g
< t(a7 01—
-2 {(a +k * k( A

x ’"ﬁ’/(f’(a))rqf{(hl) + W ((f(0)79, (f'(a))"9) F5 (ha)

kN e —
o) " @i e (o) q)gzam}.

Corollary 2.22. Under the conditions of Remark 2.9, using Corollary
2.21, we get the following Hermite—Hadamard type inequality:

I'i(« k o «,
L0 TO0) R b0 [t st + 5, 0|
O0) —0(a) [ k 4
< 2 (a+k‘>

x { B (@) () + Wy ((F/(8)79, (£/(a))79) F (h)

@G )+ () (F0)) G0 |

Corollary 2.23. In Corollary 2.21, for hi(t) = h(1 —t) =: h(t), ha(t) =
h(t), and m(t) = m € (0, 1] for allt € [0, 1], we get the following k-fractional
inequality for generalized-m-((hP*(1 — t), hP2(t)); (¥, ¥1))-convex mappings:

1

=1 (a,b) k o =g
TR (U6, m: A b(< 1@, +%1-
f(77m7 ,(1,)_ 2 Oé+k3 k( )

< m( /(@) Fy (R) + W ((F/(8)79, (f())e) F (h)

1—1
- (a_’f_ k) B/m(f(@)r9Gy () + 1 ((£(5))7, ((@))0) Gy (h }
(:

Corollary 2.24. In Corollary 2.23, for hi(t) = (1 —t)® and ha(t
we get the following k-fractional integral inequality for generalized-m-(((1
t)sP1, t5P2); (U, Wy ))—Breckner-convex mappings:

1
Z1(a,b k =g
TJ?"k(\I/,O,m;)\,a,b)‘g e, ){< +O‘(1—A)> !

2 a+k k

X

m(f'(a))" (5 (B4 T+1)+ o i )\))T

(™, (F@)) <Sp2 +1z +1 + k(r :aspz) - )\)) ] Tq
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ko' - 1 "
(&) T prer (s)

+0 ((F/0), (f'(a)) 57 (sz 11,94 1) } ,

o k

Corollary 2.25. In Corollary 2.23, for hi(t) = (1 —t)™5, ho(t) = t%,
and r > s max{pi,p2}, we get the following k-fractional integral inequality
for generalized-m-(((1 — ¢)~*P1 t=5P2); (¥, U1))-Godunova—Levin—Dragomir-
CONveT mappings:

1
=i (a,b k 1=
ij"k(\ll,e,m;)\,a,b)‘g e, ){< +Z(1—)\)> !

2 a+k

X

m(f'(a)) (5 (1-22+1)+ %(1 - A))r

k r — Sp1

=241 E(r—spa

T

() o ()

+\I/1((f’(b))7"q,(f’(a))’“q)( l )<1—A>)Tr

T

ra
0L (£ O) (@) B (1= 22 1)] } .
,

Corollary 2.26. In Corollary 2.23, for hi(t) = hao(t) = t(1 —t) and
m(t) = m € (0,1] for all t € [0,1], we get the following k-fractional inte-
gral inequality for generalized-m-((t(1 —t))*P1, (¢(1 —t))*P2); (¥, Uy))-convex
mappings:

‘T?”“(\I/,e,mm,a, b>‘ < El(;’b) {(aiﬁz(lwl_q {m(f,(“))rq(”/))(&

r
a

+ 241211+ 2008 (B, B ) e (o), (1))

(gt o (E e 2 )]

Eo\'a ,
() e (2 g en )

r

P (O @) 5 (24 S 1,2 )] } |
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At oty = 2
DN Wiy

and r > % max{p1,p2}, we %et the follog;ing k-fractional integral inequality
1 2
for genemlized—m—((( v l_t) , ( Vi ) > ; (0, \111)> -conver mappings:

Corollary 2.27. In Corollary 2.23, for hi(t) =

2Vt 2v/1—t
1
Z1(a,b) k o 1=y
T* (0. 0, m: \ b)< 1, + %1
‘f(77ma7a7)_ 2 Oé-f-k k( )

r1

Mf@ﬁ(DrQﬂg—$+Lg+g

ra-ns (1= 22 ) s (o @) (

X

2r’ 2r

«
( —I-f—l—ll )—l—
2r

( i

+<aik>1quﬂfW»m

Remark 2.28. By taking particular values of parameters o, k, A\, p1, and
po in Theorems 2.10 and 2.19, several k-fractional integral inequalities asso-
ciated with generalized-m-(((hy o g)P*, (ha 0 g)P?); (¥, W))-convex mappings
can be obtained. In particular, for K = 1, by our Theorems 2.10 and 2.19
we can get some new special Hermite-Hadamard type inequalities via frac-
tional integrals of order o > 0. Also, for a = k = 1, we can get some new
special Hermite-Hadamard type inequalities via classical integrals. The new
inequalities may have further applications in many domains of mathematics,
statistics, physics and other sciences.

Remark 2.29. Also, applying our Theorems 2.10 and 2.19 for appropriate
choices of functions g (for example, g(x) = =%, where o > 1, g(z) = tanz,
etc.), several k-fractional integral inequalities can be obtained.

Remark 2.30. Finally, applying our Theorems 2.10 and 2.19 for 0 <
f'(x) < L, x € I, we can get some new k-fractional integral inequalities.
The details are left to the interested reader.

3. Applications to special means

Definition 3.1. A function M : Rﬁ_ — Ry is called a mean function, if
it has the following properties:
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(1) Homogeneity: M (ax,ay) = aM (x,y), for all a > 0;

(2) Symmetry: M(z,y) = M(y,x);

(3) Reflexivity: M (z,z) = x;

(4) Monotonicity: if x <2’ and y <y, then M (z,y) < M(2',y');
(5) Internality: min{z,y} < M(z,y) < max{z,y}.

We consider some special means for arbitrary positive real numbers a < b
as follows: the arithmetic mean A := A(a,b), the geometric mean G :=
G(a,b), the harmonic mean H := H(a,b), the power mean P, := P,(a,b), the
identric mean I := I(a,b), the logarithmic mean L := L(a,b), the generalized
log-mean L, := Ly(a,b), and the weighted p-power mean M,. Assume that
hi, he, 0, g, ¥, and ¥, are the same as in Theorems 2.10 and 2.19. Let

M = M(0(a),0(b)): [0(a), 0(a) + g(1) ¥ (0(b), 0(a))]
x [0(a),0(a) + g(1)¥(6(b), 0(a))] — R,
which is one of the above mentioned means. Therefore, setting m(¢) = 1 and
U(h(y),0(x)) = M(0(x),0(y)) for all z,y € I in (2.1) and (2.2), we obtain
the following two inequalities involving means:
<7 [}

’T‘” ),6,1: ), a,b) 2= N /9(1) = 9(0)

) iq/g”wl(l) —g%1) | \/ (1—g(O)F ! — (1 - g

B+l B+l

X ”\’/(f’(a))rqff(hl °g) + Ui ((f'(0))"%, (f'(a))?) Z5(h2 © g),

%/ (71(a)) 0 F (hy 0 g) Ty ((F/())9, (f'(a))7) F3(ha o g)

(1— g(0)F+ — (1 — )i+t
e

+

%/ (£1(@)79G5 (hy 0 g) + 01 ((/(0))7, (f(a))r) G5 (ha o g>} .

Letting M := A,G,H, P,,I,L,L,, M, in these inequalities, we get the in-
equalities involving means for particular choices of positive (f/(z))? that are
generalized-1-(((hy o g)P*, (hg o g)P?); (¥, ¥ ))-convex mappings.
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Remark 3.2. Applying our Theorems 2.10 and 2.19 for appropriate choices
functions h; and hy (see Remark 2.5) such that (f/(x))? is a positive

generalized-1-(((h10g)P*, (ha o g)P?); (¥, ¥;))-convex mapping (as, for exam-
ple, f(x) = 2% (a > 1, x > 0), f(z) =€ (z € R), f(z) = Inz (x > 1),
etc.), we can deduce some new k-fractional integral inequalities using special
means given above. The details are left to the interested reader.
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