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Some unrestricted Fibonacci and Lucas
hyper-complex numbers

Göksal Bilgici and Ahmet Daşdemir

Abstract. A number of studies have investigated the Fibonacci quater-
nions and octonions that include consecutive terms of the Fibonacci
sequence. This paper presents a new generalization of Fibonacci quater-
nions, octonions and sedenions, where non-consecutive Fibonacci num-
bers are used. We present the Binet formulas, generating functions and
some identities for these new types of hyper-complex numbers.

1. Introduction

Real number algebras can be converted into hyper-complex number al-
gebras by applying the Cayley–Dickson process (so-called Cayley–Dickson
doubling). Using this process, by starting from the real numbers, we suc-
cessively obtain the well-known complex numbers, quaternions, octonions,
sedenions, 2N -ons. Each algebra is a sub-algebra of all the previous ones.
However, increasing the dimension of the algebra results in the loss of some
properties, for example, complex numbers do not have the self-conjugacy
properties that real algebras have and octonions are non-associative. These
lost properties often lead to unexpected results.

The hyper-complex numbers known as 2N -ons can be regarded as linear
combinations of elements from a canonical basis set:

ω =

2N−1∑
i=0

wiei = w0e0 + w1e1 + · · ·+ w2N−1e2N−1,

where the ei’s are elements of the basis set and the wi’s are real numbers.
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In terms of this basis, the conjugate of ω is

ω∗ = w0e0 −
2N−1∑
i=0

wiei = w0e0 − w1e1 − · · · − w2N−1e2N−1

and the norm of ω is

N (ω) =
2N−1∑
i=0

wi
2.

Hyper-complex numbers have been studied by many researchers. In par-
ticular, many papers have been devoted to cases such as N = 2 (quater-
nions), N = 3 (octonions) and N = 4 (sedenions). Table 1, taken from the
paper [3], summarizes the multiplication rules for the bases used by these
algebras. For abbreviation, we set i ≡ ei for i = 0, . . . 15.

Table 1. Multiplication table for 2N -ons for values of N
between 0 and 4

· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 -0 3 -2 5 -4 -7 6 9 -8 -11 10 -13 12 15 -14

2 2 -3 -0 1 6 7 -4 -5 10 11 -8 -9 -14 -15 12 13

3 3 2 -1 -0 7 -6 5 -4 11 -10 9 -8 -15 14 -13 12
4 4 -5 -6 -7 -0 1 2 3 12 13 14 15 -8 -9 -10 -11

5 5 4 -7 6 -1 -0 -3 2 13 -12 15 -14 9 -8 11 -10
6 6 7 4 -5 -2 3 -0 -1 14 -15 -12 13 10 -11 -8 9

7 7 -6 5 4 -3 -2 1 -0 15 14 -13 -12 11 10 -9 -8

8 8 -9 -10 -11 -12 -13 -14 -15 -0 1 2 3 4 5 6 7
9 9 8 -11 10 -13 12 15 -14 -1 -0 -3 2 -5 4 7 -6

10 10 11 8 -9 -14 -15 12 13 -2 3 -0 -1 -6 -7 4 5

11 11 -10 9 8 -15 14 -13 12 -3 -2 1 -0 -7 6 -5 4
12 12 13 14 15 8 -9 -10 -11 -4 5 6 7 -0 -1 -2 -3

13 13 -12 15 -14 9 8 11 -10 -5 -4 7 -6 1 -0 3 -2

14 14 -15 -12 13 10 -11 8 9 -6 -7 -4 5 2 -3 -0 1
15 15 14 -13 -12 11 10 -9 8 -7 6 -5 -4 3 2 -1 -0

Since the inception of hyper-complex number theory, many authors have
investigated quaternions, octonions, and sedenions whose coefficients have
been taken from special integer sequences, such as the Fibonacci and Lucas
sequences, in different ways. The Fibonacci numbers {Fn}∞n=0 are recursively
defined via the relation Fn+1 = Fn + Fn−1 with initial terms F0 = 0 and
F1 = 1, and the Lucas numbers {Ln}∞n=0 are defined by the same recursive
equation but with initial terms L0 = 2 and L1 = 1. Horadam [6] defined
Fibonacci quaternions as

Qn := Fn + iFn+1 + jFn+2 + kFn+3.

Iyer [7] gave a similar definition for Lucas quaternions via the relation

Tn := Ln + iLn+1 + jLn+2 + kLn+3,
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as well as presenting many properties of Fibonacci quaternions. Halici [5] in-
vestigated Binet’s formulas and generating functions for Fibonacci and Lucas
quaternions. Fibonacci and Lucas quaternions have been extensively stud-
ied, and many generalizations have been considered. For instance, Swamy
[10] considered the new quaternion Rn defined as

Rn := Mn + iMn+1 + jMn+2 + kMn+3,

where Mn+1 = Mn + Mn−1, with initial terms M0 = s and M1 = r. Flaut
and Shpakivskyi [4] gave certain properties of generalized Fibonacci quater-
nions and Fibonacci–Narayana quaternions. Akyigit et al. [1] introduced the
Fibonacci generalized quaternions and described many of their properties.
Kecillioglu and Akkus [8] extended the definitions of Horadam [6] and Iyer
[7] to Fibonacci and Lucas octonions as follows:

Qn :=

7∑
i=0

Fiei and Tn :=

7∑
i=0

Liei.

They have also authors presented Binet’s formulas and some other identities
for these types of octonions.

In addition, Bilgici et al. mentioned Fibonacci and Lucas sedenions in
their study [2].

Note that all these authors introduced Fibonacci and Lucas hyper-complex
numbers and their generalizations into consecutive basis coefficients
{e0, e1, . . . , e2N−1} as in Horadam [6] and Iyer [7]. In this paper, however,
we present a new perspective on Fibonacci and Lucas quaternions, octonions
and sedenions. We introduce unrestricted Fibonacci and Lucas 2N -ons and
present several properties of these hyper-complex numbers.

Throughout the paper, we take ~c = (c0, c1, . . . , c2N−1) where c0 = 0 and
c1, c2, . . . , c2N−1 are integers.

Definition 1. The rth unrestricted Fibonacci and Lucas 2N -ons are de-
fined, respectively, by the relations

F~c
N,r :=

2N−1∑
i=0

Fr+ciei and L~cN,r :=

2N−1∑
i=0

Lr+ciei.

.

From the defining recurrence relations for Fibonacci and Lucas numbers,
we can see that unrestricted Fibonacci and Lucas 2N -ons satisfy the recur-
rence relations

F~c
N,r = F~c

N,r−1 + F~c
N,r−2 (1)

and

L~cN,r = L~cN,r−1 + L~cN,r−2,

respectively.
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Depending on the choice of N and ~c, some particular examples of our
newly defined 2N -ons are as follows.

• For N = 0 and ~c = (0), the original Fibonacci and Lucas (integer)
numbers are obtained.
• For N = 1 and ~c = (0, 1), Fibonacci and Lucas complex numbers are

obtained.
• For N = 2 and ~c = (0, 1, 2, 3), Fibonacci and Lucas quaternions are

obtained.
• For N = 3 and ~c = (0, 1, . . . , 7), Fibonacci and Lucas octonions are

obtained.
• For N = 4 and ~c = (0, 1, . . . , 15), Fibonacci and Lucas sedenions are

obtained.

We now give an example to clarify these ideas. Consider the Fibonacci
quaternion F5e0 + F−6e1 + F22e2 + F0e3. The most important coefficient
for us is the coefficient of e0, i.e., the real part. We write this Fibonacci

quaternion as F (0,−11,17,−5)
2,5 .

The identities F−n = (−1)n+1Fn and L−n = (−1)nLn also allow us to
give unrestricted Fibonacci and Lucas quaternions with negative indices r
as follows:

F~c
N,−r := (−1)r+1

2N−1∑
i=0

(−1)ciFr−ciei


and

L~cN,−r := (−1)r

2N−1∑
i=0

(−1)ciLr−ciei

 .
2. Results

The first result is the Binet’s formulas for our unrestricted Fibonacci and
Lucas 2N -ons which are given by the following theorem.

Theorem 1. For any non negative integer r, the unrestricted Fibonacci
and Lucas 2N -ons are, respectively,

F~c
N,r =

ᾰαr − β̆βr

α− β
(2)

and

L~cN,r = ᾰαr + β̆βr, (3)

where

ᾰ =
2N−1∑
i=0

αciei and β̆ =
2N−1∑
i=0

βciei.
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Proof. From the definition of unrestricted Fibonacci 2N -ons and Binet’s
formula for the Fibonacci numbers we have

F~c
N,r = Fr + Fn+c1e1 + · · ·+ Fn+c

2N−1
e2N−1

=
1

α− β
(
αr − βr + (αr+c1 − βr+c1)e1 + (αr+c2 − βr+c2)e2

+ · · ·+ (αr+c
2N−1 − βr+c

2N−1)e2N−1

)
=

1

α− β
(
αr(1 + αc1e1 + αc2e2 + · · ·+ αc

2N−1e2N−1)

−βr(1 + βc1e1 + βc2e2 + · · ·+ βc2N−1e2N−1)
)
.

We can obtain (2) from the last equation, and (3) can be proved similarly. �

For i, j ∈ {1, 2, . . . , (2N−1 − 1)} and i 6= j, we define

Si := {(j, k)|eiej = ek, 1 ≤ j, k ≤ (2N−1 − 1), i 6= j, i 6= k and j 6= k}.
For example, for N = 5, we have

S12 = {(1, 13), (2, 14), (3, 15), (4, 8), (9, 5), (10, 6), (11, 7)}.

We now need to present the following properties of ᾰ and β̆ since they
will play key roles in the proofs of subsequent theorems.

Lemma 1. For N ∈ {0, 1, 2, 3, 4}, we have

ᾰβ̆ = A~c
N +
√

5B~c
N (4)

and

β̆ᾰ = A~c
N −
√

5B~c
N , (5)

where

A~c
N = L~cN,0 −

2N−1∑
i=0

(−1)ci and B~c
N =

2N−1−1∑
i=1

ei
∑

(j,k)∈Si

(−1)ckFcj−ck .

Proof. We easily see that

A~c
0 = 1, A~c

1 = Lc11,0 + (−1)c1 − 1, B~c
0 = B~c

1 = 0.

For N = 2, from the definitions of ᾰ and β̆ we have

ᾰβ̆ = (1 + αc1e1 + αc2e2 + αc3e3)(1 + βc1e1 + βc2e2 + βc3e3)

= 1− (αβ)c1 − (αβ)c2 − (αβ)c3 + (αc1 + βc1 + αc2βc3 − αc3βc2)e1

+ (αc2 + βc2 + αc3βc1 − αc1βc3)e2 + (αc3 + βc3 + αc1βc2 − αc2βc1)e3

= 1 + (−1)c1+1 + (−1)c2+1 + (−1)c3+1 +
(
Lc1 + (−1)c3

√
5Fc2−c3

)
e1

+
(
Lc2 + (−1)c1

√
5Fc3−c1

)
e2 +

(
Lc3 + (−1)c2

√
5Fc1−c2

)
e3.
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Applying the identity F−r = (−1)r+1Fr and Binet’s formulas for the
Fibonacci and Lucas numbers yield

A~c
2 = L~c2,0 + (−1)c1+1 + (−1)c2+1 + (−1)c3+1 − 1

and
B~c

2 = (−1)c3Fc2−c3e1 + (−1)c1Fc3−c1e2 + (−1)c2Fc1−c2e3.

For N = 3, we have

A~c
3 = L~c3,0 + (−1)c1+1 + (−1)c2+1 + · · ·+ (−1)c7+1 − 1

and

B~c
3 =[(−1)c3Fc2−c3 + (−1)c5Fc4−c5 + (−1)c6Fc7−c6 ]e1

+ [(−1)c1Fc3−c1 + (−1)c6Fc4−c6 + (−1)c7Fc5−c7 ]e2

+ [(−1)c2Fc1−c2 + (−1)c5Fc6−c5 + (−1)c7Fc4−c7 ]e3

+ [(−1)c1Fc5−c1 + (−1)c2Fc6−c2 + (−1)c3Fc7−c3 ]e4

+ [(−1)c2Fc7−c2 + (−1)c4Fc1−c4 + (−1)c6Fc3−c6 ]e5

+ [(−1)c3Fc5−c3 + (−1)c4Fc2−c4 + (−1)c7Fc1−c7 ]e6

+ [(−1)c1Fc6−c1 + (−1)c4Fc3−c4 + (−1)c5Fc2−c5 ]e7.

For the case N = 4, we calculate

A~c
4 = L~c4,0 + (−1)c1+1 + (−1)c2+1 + · · ·+ (−1)c15+1 − 1.

Each coefficient of ei in B~c
4 has seven terms. So, it would be too tedious to

write B~c
4 in open form. For example, we give only coefficient of e12. From

the definition of the set S12, the possible choices of (j, k) are (1,13), (2,14),
(3,15), (4,8), (9,5), (10,6) and (11,7). Thus the coefficient of e12 is

(−1)c13Fc1−c13 + (−1)c14Fc2−c14 + (−1)c15Fc3−c15 + (−1)c8Fc4−c8

+ (−1)c5Fc9−c5 + (−1)c6Fc10−c6 + (−1)c7Fc11−c7 .

The other coefficient of ei in B~c
4 can be obtained similarly. �

Using Lemma 1, we can obtain the useful equation

ᾰβ̆ + β̆ᾰ = 2A~c
N . (6)

The following theorem gives the generating functions.

Theorem 2. The generating functions for unrestricted Fibonacci and Lu-
cas 2N -ons are

∞∑
i=0

F~c
N,i =

F~c
N,0 + xF~c

N,−1

1− x− x2
(7)

and
∞∑
i=0

L~cN,i =
L~cN,0 + xL~cN,−1

1− x− x2
. (8)
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Proof. Define F (x) =
∑∞

i=0F~c
N,ix

i. Expanding the first two terms of

F (x), we obtain

F (x) = F~c
N,0 + F~c

N,1x+

∞∑
i=2

F~c
N,ix

i. (9)

Multiplying both sides of this equation by −x and −x2 yields

−xF (x) = −F~c
N,0x−

∞∑
i=2

F~c
N,i−1x

i (10)

and

−x2F (x) = −
∞∑
i=2

F~c
N,i−2x

i, (11)

respectively. Adding the equations (9), (10) and (11), and applying the
recurrence relation (1), we see that

f(x) =
F~c
N,0 + (F~c

N,1 −F~c
N,0)x

1− x− x2
.

Using the identity F~c
N,−1 = F~c

N,1 − F~c
N,0, we get (7). The equality (8) can

be obtained in similar way. �

3. Some identities

By using Binet’s formulas and properties of the Fibonacci and Lucas num-
bers, we now present several identities for unrestricted Fibonacci and Lucas
2N -ons. The following theorem gives the Catalan identities for unrestricted
Fibonacci and Lucas 2N -ons.

Theorem 3 (Catalan identity). For any integers r and s, we have

F~c
N,r+sF~c

N,r−s −
[
F~c
N,r

]2
= (−1)r+s+1Fs

(
A~c

NFs +B~c
NLs

)
(12)

and

L~cN,r+sL~cN,r−s −
[
L~cN,r

]2
= 5(−1)r+sFs

(
A~c

NFs +B~c
NLs

)
.

Proof. From (2) and (6) we have

F~c
N,r+sF~c

N,r−s −
[
F~c
N,r

]2

=
1

5

[
(ᾰαr+s − β̆βr+s)(ᾰαr−s − β̆βr−s)− (ᾰαr − β̆βr)2

]
=

1

5

[
((−1)r−s+1(ᾰβ̆α2s + β̆ᾰβ2s) + (−1)r2A~c

N

]
.
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Using (4) and (5), we get

F~c
N,r+sF~c

N,r−s −
[
F~c
N,r

]2

=
1

5

[
(−1)r+s−1

(
(A~c

N +
√

5B~c
N )α2s + (A~c

N −
√

5B~c
N )β2s

)
+ (−1)rA~c

N

]
=

1

5

[
(−1)r+s−1

(
A~c

N (α2s + β2s) + 5B~c
N

(
α2s − β2s

α− β

))
+ (−1)rA~c

N

]
=

1

5

[
(−1)r+s−1

(
A~c

NL2s + 5B~c
NF2s

)
+ (−1)rA~c

N

]
.

The identity 5F 2
r = L2r − (−1)r (see [9, p.42]) gives

F~c
N,r+sF~c

N,r−s −
[
F~c
N,r

]2
= (−1)r+s+1

(
A~c

NF
2
s +B~c

NF2s

)
,

and (12) can be proved by substituting the identity F2s = FsLs into the
last equation. The Catalan identity for unrestricted Lucas 2N -ons can be
obtained similarly. �

If we choose ~c = (0, 1, 2, 3) with N = 2, then we obtain the respective
Catalan identities for Fibonacci and Lucas quaternions:

F~c
2,r+sF~c

2,r−s −
[
F~c

2,r

]2
= (−1)r+s+1Fs [FsL2,0 + Ls(−e1 − e2 + e3)]

and

L~c2,r+sL~c2,r−s −
[
L~c2,r

]2
= 5(−1)r+sFs [FsL2,0 + Ls(−e1 − e2 + e3)] .

The Catalan identities for the case s = 1 become the Cassini identities
for unrestricted Fibonacci and Lucas 2N -ons, and are given in the following
result.

Corollary 1 (Cassini identity). For any integer r, we have

F~c
N,r+1F~c

N,r−1 −
[
F~c
N,r

]2
= (−1)r(A~c

N +B~c
N )

and

L~cN,r+1L~cN,r−1 −
[
L~cN,r

]2
= −5(−1)r(A~c

N +B~c
N ).

Kecilioglu and Akkus [8] gave the Cassini identities for Fibonacci octo-
nions. Here we obtain the Cassini identities for Fibonacci and Lucas octo-
nions by choosing ~c = (0, 1, 2, . . . , 7) with N = 3:

F~c
3,r+1F~c

3,r−1 −
[
F~c

3,r

]2
=(−1)r(L3,0− e1 − e2 − 2e3 − 3e4 + 9e5 + 6e6−6e7)

=(−1)r(L3,0 −F3,0 + 14e5 + 14e6 + 7e7)
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and

L~c3,r+1L~c3,r−1 −
[
L~c3,r

]2
= −5(−1)r(L3,0 −F3,0 + 14e5 + 14e6 + 7e7).

Now we present the d’Ocagne identities for unrestricted Fibonacci and
Lucas 2N -ons.

Theorem 4 (d’Ocagne identity). For any integers r and s, we have

F~c
N,rF~c

N,s+1 −F~c
N,r+1F~c

N,s = (−1)s(A~c
NFr−s +B~c

NLr−s) (13)

and

L~cN,rF~c
L,s+1 − L~cN,r+1L~cN,s = −5(−1)s(A~c

NFr−s +B~c
NLr−s). (14)

Proof. From Binet’s formula for unrestricted Fibonacci quaternions we
have

F~c
N,rF~c

N,s+1 −F~c
N,r+1F~c

N,s =
1

5

[(
ᾰαr − β̆βr

)(
ᾰαs+1 − β̆βs+1

)
−
(
ᾰαr+1 − β̆βr+1

)(
ᾰαs − β̆βs

)]
=

√
5

5
(−1)s

(
ᾰβ̆αr−s − β̆ᾰβr−s

)
.

Substituting (4) and (5) into the right-hand side of the last equation, we
have

F~c
N,rF~c

N,s+1 −F~c
N,r+1F~c

N,s

=

√
5

5
(−1)s

[
(A~c

N +B~c
N

√
5)αr−s − (A~c

N −B~c
N

√
5)βr−s

]
=

√
5

5
(−1)s

[
A~c

N (αr−s − βr−s) +B~c
N

√
5(αr−s + βr−s)

]
.

We can obtain (13) from the last equation, and (14) can be obtained in a
similar way. �

Choosing ~c = (0, 1, 2, 3) with N = 2, we obtain the respective d’Ocagne
identities for Fibonacci and Lucas quaternions:

F~c
N,rF~c

N,s+1 −F~c
N,r+1F~c

N,s = (−1)s
[
L~cN,0Fr−s + (−e1 − e2 + e3)Lr−s

]
and

L~cN,rL~cN,s+1 − L~cN,r+1L~cN,s = −5(−1)s
[
L~cN,0Fr−s + (−e1 − e2 + e3)Lr−s

]
.

Next, we present several properties for our unrestricted Fibonacci and
Lucas quaternions.
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Theorem 5. For any integers r and k, we have

F
(c0,c1,...,c2N−1

)

N,r+k = F
(c0+k,c1+k,...,c

2N−1
+k)

N,r (15)

and

L
(c0,c1,...,c2N−1

)

N,r+k = L
(c0+k,c1+k,...,c

2N−1
+k)

N,r . (16)

Proof. We only present here the proof of (15), as (16) can be proved
similarly. By the definition of unrestricted Fibonacci 2N -ons, we can write

F
(c0,c1,...,c2N−1

)

N,r+k = Fr+k+c0e0 + Fr+k+c1e1 + · · ·+ Fr+k+c
2N−1

e2N−1

= Fr+c0+ke0 + Fr+c1+ke1 + · · ·+ Fr+c
2N−1

+ke2N−1

= F
(c0+k,c1+k,...,c

2N−1
+k)

N,r .

This completes the proof. �

In the next theorem, we give certain identities involving convolutions of
unrestricted Fibonacci and Lucas 2N -ons.

Theorem 6. For any integers r, s and t, we have

L~cN,r = F~c
N,r−1 + F~c

N,r+1,

L~cN,r+sF~c
N,r+t − L~cN,r+tF~c

N,r+s = 2(−1)r+sA~c
NF~c

N,t−s,

F~c
N,rL~cN,s − L~cN,sF~c

N,r = 2(−1)rB~c
NLs−r,

F~c
N,rL~cN,s − L~cN,rF~c

N,s = 2(−1)s(A~c
NFr−s +B~c

NLr−s),

F~c
N,rF~c

N,s −F~c
N,sF~c

N,r = 2(−1)s+1B~c
NFr−s, (17)

L~cN,rL~cN,s − L~cN,sL~cN,r = 10(−1)sB~c
NFr−s,

F~c
N,r+sFr+s −F~c

N,r−sFr−s = F~c
N,2rF2s,

L~cN,r+sLr+s − L~cN,r−sLr−s = 5F~c
N,2rF2s, (18)

F~c
N,r+sLr+s −F~c

N,r−sLr−s = F~c
N,2rL2s + 2(−1)r+sF~c

N,0,

L~cN,r+sLr+s − L~cN,r−sLr−s = L~cN,2rL2s + 2(−1)r+sL~cN,0,

5
[
F~c
N,r

]2
−
[
F~c
N,r

]2
= 4(−1)r+1A~c

N ,

F~c
N,r+s + (−1)nF~c

N,r−s = F~c
N,rLs,

L~cN,r+s + (−1)nL~cN,r−s = L~cN,rLs,

F~c
N,2r = Fr+1F~c

N,r + FrF~c
N,r−1.

Proof. The above identities can be proved, for example, using a method
based on the Binet’s formulas for the corresponding 2N -ons. We will only
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prove (17) and (18) since the others can be proved similarly. Using Binet’s
formula for unrestricted Fibonacci 2N -ons, we have

F~c
N,rF~c

N,s −F~c
N,rF~c

N,s =
1

5

[ (
ᾰαr − β̆βr

)(
ᾰαs − β̆βs

)
−
(
ᾰαs − β̆βs

)(
ᾰαr − β̆βr

) ]
=

1

5

[
− ᾰβ̆αrβs − β̆ᾰαsβr + ᾰβ̆αsβr + β̆ᾰαrβs

]
.

By substituting (4) and (5) into the previous equation we get

F~c
N,rF~c

N,s −F~c
N,rF~c

N,s =
1

5

[
−αrβs2

√
5B~c

N + αsβr2
√

5B~c
N

]
= −2

√
5

5
B~c

Nα
sβs

(
αr−s − βr−s

)
= 2 (−1)s+1B~c

NFr−s.

Similarly, using Binet’s formula again, we obtain

L~cN,r+sLr+s − L~cN,r−sLr−s =
(
ᾰαr+s + β̆βr+s

) (
αr+s + βr+s

)
−
(
ᾰαr−s + β̆βr−s

) (
αr−s + βr−s

)
=
(
ᾰα2r+2s + β̆β2r+2s − ᾰα2r−2s − β̆β2r−2s

)
=
(
ᾰα2r+2s + β̆β2r+2s − ᾰα2rβ2s − β̆α2sβ2r

)
= (α− β)2

(
ᾰα2r − β̆β2r

α− β

)(
α2s − β2s

α− β

)
= 5F~c

N,2rF2s.

�

The next theorem gives certain summation formulas for unrestricted
Fibonacci and Lucas 2N -ons without proof, because the proofs can be ob-
tained straightforwardly using only elementary operations.

Theorem 7. We have
r∑

t=0

F~c
N,t = F~c

N,r+2 −F~c
N,1,

r∑
t=0

L~cN,t = L~cN,r+2 − L~cN,1,

r∑
t=0

F~c
N,2t−1 = F~c

N,2r −F~c
N,0,

r∑
t=0

L~cN,2t−1 = L~cN,2r − L~cN,0,

r∑
t=0

F~c
N,2t = F~c

N,2r+1 −F~c
N,−1,

r∑
t=0

L~cN,2t = L~cN,2r+1 − L~cN,−1,
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and
r∑

t=0

(
r

t

)
F~c
N,t = F~c

N,2r,
r∑

t=0

(
r

t

)
L~cN,t = L~cN,2r.
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