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Necessary and sufficient Tauberian conditions
for weighted mean methods of summability

in two-normed spaces

İbrahim Çanak, Gizem Erikli, Sefa Anil Sezer, and Ece Yaraşgil

Abstract. We first define the concept of weighted mean method of
summability and then present necessary and sufficient Tauberian con-
ditions for the weighted mean summability of sequences in two-normed
spaces. As corollaries, we establish two-normed analogues of two classi-
cal Tauberian theorems.

1. Introduction

The notion of two-normed spaces was first defined by Gähler [7], and has
been developed extensively by several authors (see, for example, [3, 5, 6, 9,
18]).

Let X be a real vector space with the dimension dimX ≥ 2. A two-norm
on X is a function ‖·, ·‖ : X ×X → R which satisfies the conditions

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent,
(ii) ‖x, y‖ = ‖y, x‖ for each x, y ∈ X,
(iii) ‖αx, y‖ = |α|‖x, y‖ for each x, y ∈ X and α ∈ R,
(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖ for each x, y, z ∈ X.

The pair (X, ‖·, ·‖) is then called a two-normed space. Observe that in any
two-normed space, ‖x, y‖ is nonnegative and ‖x, y + αx‖ = ‖x, y‖ for each
x, y ∈ X and α ∈ R.

A standard example of a two-normed space is R2 being equipped with the
two-norm

‖x, y‖ = |x1y2 − x2y1| , (1)

where x = (x1, x2) and y = (y1, y2).
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Let (xn : n = 0, 1, 2, . . . ) be a sequence in a two-normed space (X, ‖·, ·‖).
The sequence (xn) is said to be convergent to l ∈ X if for every y ∈ X,

lim
n→∞

‖xn − l, y‖ = 0.

Furthermore, (xn) is called bounded (notation xn = O(1)) if for every y ∈ X
there exists H > 0 such that

‖xn, y‖ ≤ H (n = 0, 1, 2, . . . ).

In 2017, Savas and Sezer [13] considered the (C, 1) summability in 2-
normed spaces. We introduce the weighted mean method of summability in
2-normed spaces.

Let (pn) (n ∈ N0 := {0, 1, 2, . . . }) be a sequence of nonnegative numbers
with p0 > 0 such that

Pn :=

n∑
k=0

pk →∞, as n→∞. (2)

The weighted means of the sequence (xn) are defined by

tn :=
1

Pn

n∑
k=0

pkxk, n = 0, 1, 2, . . . .

The sequence (xn) is said to be summable to l ∈ X by the weighted mean
method determined by the sequence (pn) (briefly, summable (N, p) to l ∈ X)
if for every y ∈ X,

lim
n→∞

‖tn − l, y‖ = 0. (3)

Notice that summability method (N, p) reduces to the Cesàro method
(C, 1) if pn = 1 for all n ∈ N0, and to the logarithmic method (`, 1) if
pn = 1/(n+ 1) for all n ∈ N0.

The following theorem indicates that the convergence of a sequence in a
two-normed space always implies the convergence of its weighted means to
the same limit.

Theorem 1. Let the condition (2) be satisfied. If a sequence (xn) in
(X, ‖·, ·‖) converges to l ∈ X, then the sequence (tn) of its weighted means
also converges to l.

Proof. If (xn) converges to l, then, for every ε > 0 and y ∈ X, there exists
a positive integer n0 such that ‖xn − l, y‖ ≤ ε/2 if n > n0, and there exists



NECESSARY AND SUFFICIENT TAUBERIAN CONDITIONS 51

H > 0 such that ‖xn − l, y‖ ≤ H if n ≤ n0. Hence, for every y ∈ X, we get

‖tn − l, y‖ =

∥∥∥∥∥ 1

Pn

n∑
k=0

pkxk −
1

Pn

n∑
k=0

pkl, y

∥∥∥∥∥
=

∥∥∥∥∥ 1

Pn

n∑
k=0

pk(xk − l), y

∥∥∥∥∥ ≤ 1

Pn

n∑
k=0

pk ‖xk − l, y‖

=
1

Pn

n0∑
k=0

pk ‖xk − l, y‖+
1

Pn

n∑
k=n0+1

pk ‖xk − l, y‖

≤ HPn0

Pn
+
ε

2
.

Since Pn0/Pn → 0 as n → ∞, there exists a positive integer n1 such that
|HPn0/Pn| ≤ ε/2 if n > n1. Therefore, ‖tn−l, y‖ ≤ ε if n > max{n0, n1}. �

Theorem 1 expresses the so-called regularity property of the weighted
mean method of summability in two-normed spaces.

Example 2. Let X = R2 be equipped with the two-norm (1). Define the
sequence (xn) in X by

xn =
(

1 + (−1)n+1, 1
2 + (−1)n

2

)
,

and let y = (y1, y2). Then, putting pn = 1 for all n, we find the (C, 1) mean
of (xn) as

tn =

{(
n
n+1 ,

n+2
2n+2

)
if n is even,(

1, 1
2

)
if n is odd.

In the case n is even, we obtain that, for all y = (y1, y2) ∈ R2,

lim
n→∞

‖tn − l, y‖ = lim
n→∞

∥∥∥( n
n+1 ,

n+2
2n+2

)
−
(
1, 1

2

)
, (y1, y2)

∥∥∥
= lim

n→∞

∥∥∥( −1
n+1 ,

1
2n+2

)
, (y1, y2)

∥∥∥
= lim

n→∞

∣∣∣−y2n+1 −
y1

2n+2

∣∣∣ = 0.

If n is odd, then (tn) = (1, 1/2). Therefore, it follows from (3) that (xn) is
(C, 1) summable to (1, 1/2).

Besides, if (xn) is convergent, the limit should be (1, 1/2). However, when
y = (0, 1), since

lim
n→∞

‖xn − L, y‖ = lim
n→∞

∥∥∥((−1)n+1, (−1)n

2

)
, (y1, y2)

∥∥∥
= lim

n→∞

∣∣∣(−1)n+1y2 − (−1)ny1
2

∣∣∣
= lim

n→∞

∣∣(−1)n+1
∣∣ = 1 6= 0,
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we have that the sequence (xn) is not convergent.

Example 2 shows that the converse of Theorem 1 is not true in general.
Thus we are led to the problem of finding additional conditions which, to-
gether with assumption (3), would assure the convergence of the sequence
(xn). Such conditions are called Tauberian conditions and the resulting the-
orem is called a Tauberian theorem. Tauberian type theorems have a long
history: see, for example, the book [10] and the papers [1, 2, 4, 12, 16, 17].

In this work, our purpose is to obtain Tauberian conditions under which
the convergence of (xn) in a two-normed space follows from its (N, p) summa-
bility.

2. Main results

Theorem 3. Let (pn) be a sequence of nonnegative numbers such that
p0 > 0 and

lim inf
n→∞

P[λn]

Pn
> 1 for every λ > 1, (4)

where [λn] denotes the integer part of the product λn, and let (xn) be a se-
quence in (X, ||·, ·||) which is (N, p) summable to l ∈ X. Then (xn) converges
to l if and only if one of the following two conditions is satisfied:

inf
λ>1

lim sup
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥ = 0, (5)

inf
0<λ<1

lim sup
n→∞

∥∥∥∥∥∥ 1

Pn − P[λn]

n∑
k=[λn]+1

pk(xn − xk), y

∥∥∥∥∥∥ = 0 (6)

for all y ∈ X.

Remark 4. It is clear that the condition (4) implies (2).

Remark 5. Consider the special cases of (5) and (6) for pn = 1 for all
n ∈ N0. In this case, conditions (5) and (6) reduce to

inf
λ>1

lim sup
n→∞

∥∥∥∥∥∥ 1

[λn]− n

[λn]∑
k=n+1

(xk − xn), y

∥∥∥∥∥∥ = 0 (7)

and

inf
0<λ<1

lim sup
n→∞

∥∥∥∥∥∥ 1

n− [λn]

n∑
k=[λn]+1

(xn − xk), y

∥∥∥∥∥∥ = 0, (8)

respectively.
Savaş and Sezer [13] used Tauberian conditions (7) and (8) to retrieve

convergence of (xn) from the (C, 1) summability.



NECESSARY AND SUFFICIENT TAUBERIAN CONDITIONS 53

Remark 6. Following Schmidt [14] (or Stanojević [15]), a sequence (xn)
is said to be slowly oscillating in two-norm if for every y ∈ X,

inf
λ>1

lim sup
n→∞

max
n<k≤[λn]

‖xk − xn, y‖ = 0 (9)

or equivalently,

inf
0<λ<1

lim sup
n→∞

max
[λn]<k≤n

‖xn − xk, y‖ = 0.

Notice that, if (xn) is slowly oscillating in two-norm, then (7) and (8) hold.

Remark 7. If the two-sided condition Pn
pn

∆xn = O(1) of Hardy [8] type,

where ∆xn = xn − xn−1, is satisfied under some appropriate condition im-
posed on (pn), then (xn) is slowly oscillating in two-norm.

Taking into account the Remarks 6 and 7, we obtain the following two-
normed analogues of some classical Tauberian theorems.

Corollary 8. Let (4) be satisfied and let (xn) be (N, p) summable to
l ∈ X. If (xn) is slowly oscillating in two-norm, then (xn) converges to l.

Corollary 9. Let

lim
n→∞

P[λn]

Pn
= λδ, λ > 1, (10)

be satisfied for some δ > 0 and let (xn) be (N, p) summable to l ∈ X. If

Pn
pn

∆xn = O(1), (11)

then (xn) converges to l.

Remark 10. It is clear that the condition (10) implies (4).

3. Auxiliary results

Lemma 11 (see [11]). If (Pn) is a nondecreasing sequence of positive
numbers, then (4) is equivalent to the condition

lim inf
n→∞

Pn
P[λn]

> 1 for every 0 < λ < 1. (12)

In the proof of the main theorem we need the following lemma on the
so-called moving weighted averages.

Lemma 12. Let (pn) be a sequence of nonnegative real numbers such that
p0 > 0 and the condition (4) is satisfied. If (xn) is (N, p) summable to l ∈ X,
then, for each y ∈ X,

lim
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pkxk − l, y

∥∥∥∥∥∥ = 0 for every λ > 1 (13)
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and

lim
n→∞

∥∥∥∥∥∥ 1

Pn − P[λn]

n∑
k=[λn]+1

pkxk − l, y

∥∥∥∥∥∥ = 0 for every 0 < λ < 1. (14)

Proof. For brevity, we denote the moving weighted averages (τ>n ) for λ > 1
and (τ<n ) for 0 < λ < 1, respectively, by

τ>n =
1

P[λn] − Pn

[λn]∑
k=n+1

pkxk and τ<n =
1

Pn − P[λn]

n∑
k=[λn]+1

pkxk.

Consider the case λ > 1. Then∥∥τ>n − l, y∥∥ =
∥∥τ>n + t[λn] − t[λn] − l, y

∥∥ =

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=0

pkxk

− 1

P[λn] − Pn

n∑
k=0

pkxk +
1

P[λn]

[λn]∑
k=0

pkxk −
1

P[λn]

[λn]∑
k=0

pkxk − l, y

∥∥∥∥∥∥
=

∥∥∥∥∥∥ Pn
P[λn]−Pn

1

P[λn]

[λn]∑
k=0

pkxk−
Pn

P[λn]−Pn
1

Pn

n∑
k=0

pkxk+
1

P[λn]

[λn]∑
k=0

pkxk−l, y

∥∥∥∥∥∥ .
Thus we see that∥∥τ>n − l, y∥∥ ≤ Pn

P[λn] − Pn
∥∥t[λn] − tn, y

∥∥+
∥∥t[λn] − l, y

∥∥ . (15)

Moreover, from (4) we have

lim sup
n→∞

Pn
P[λn] − Pn

=

(
lim inf
n→∞

P[λn]

Pn
− 1

)−1

<∞.

Now, (13) follows from (15) and the (N, p) summability of (xn) to l. The
proof of (14) is similar to that of (13). �

4. Proofs of main results

Proof of Theorem 3. Necessity. Assume that (xn) is convergent to l.
Given any λ > 1, by Lemma 12 we obtain

lim
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥
≤ lim

n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pkxk − l, y

∥∥∥∥∥∥+ lim
n→∞

‖xn − l, y‖ = 0
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for every y ∈ X. Namely, we have an even stronger condition than (5). In a
similar way, for any 0 < λ < 1, we have

lim
n→∞

∥∥∥∥∥∥ 1

Pn − P[λn]

n∑
k=[λn]+1

pk(xn − xk), y

∥∥∥∥∥∥ = 0,

which is stronger than (6).

Sufficiency. Suppose that (5) holds, and let y ∈ X be arbitrarily fixed.
Then, for any given ε > 0, there exists λ > 0 such that

lim sup
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥ ≤ ε.
So, using also (N, p) summability of (xn) and Lemma 12, we obtain

lim sup
n→∞

‖xn − l, y‖ ≤ lim sup
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pkxk − l, y

∥∥∥∥∥∥
+ lim sup

n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥ ≤ ε
for every y ∈ X. Since ε > 0 is arbitrary, convergence of (xn) to l follows.

A similar proof can be given if (6) is satisfied. �

Proof of Corollary 8. Suppose that (xn) is slowly oscillating in two-norm.
Then, for any given y ∈ X, we have∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥ ≤ 1

P[λn] − Pn

[λn]∑
k=n+1

pk ‖xk − xn, y‖

≤ max
n<k≤[λn]

‖xk − xn, y‖ .

Taking the lim sup of the last inequality as n→∞, we get

lim sup
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥ ≤ lim sup
n→∞

max
n<k≤[λn]

‖xk − xn, y‖ .

Therefore, we conclude that

inf
λ>1

lim sup
n→∞

∥∥∥∥∥∥ 1

P[λn] − Pn

[λn]∑
k=n+1

pk(xk − xn), y

∥∥∥∥∥∥ = 0

for every y ∈ X. The proof follows from Theorem 3. �



56 İBRAHIM ÇANAK, GIZEM ERİKLİ, SEFA ANIL SEZER, AND ECE YARAŞGİL

Proof of Corollary 9. Let (10) and (11) be satisfied. Then, for every

y ∈ X, there exists H > 0 such that
∥∥∥Pn
pn

∆xn, y
∥∥∥ ≤ H (n = 0, 1, . . . ).

Hence, slow oscillation of (xn) follows. Indeed, for each y ∈ X,

‖xk − xn, y‖ =

∥∥∥∥∥∥
k∑

j=n+1

(xj − xj−1), y

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑

j=n+1

∆xj , y

∥∥∥∥∥∥
≤

k∑
j=n+1

pj
Pj
‖∆xj , y‖ ≤ H

k∑
j=n+1

pj
Pj

≤ HPk − Pn
Pn

.

Taking the maximum of both sides of the inequality above, we have

max
n<k≤[λn]

‖xk − xn, y‖ ≤ H
P[λn] − Pn

Pn
.

Now, taking the lim sup of both sides of the last inequality, by (10) we have
that

lim sup
n→∞

max
n<k≤[λn]

‖xk − xn, y‖ ≤ H(λδ − 1). (16)

Finally, taking the infimum of both sides of (16) for λ > 1, we get

inf
λ>1

lim sup
n→∞

max
n<k≤[λn]

‖xk − xn, y‖ = 0.

Thus, the proof is completed by Corollary 8. �
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[11] F. Móricz and B. E. Rhoades, Necessary and sufficient Tauberian conditions for cer-
tain weighted mean methods of summability. II, Acta Math. Hungar. 102 (2004),
279–285.
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