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Structure and classification of Hom-associative
algebras

ABDENACER MAKHLOUF AND AHMED ZAHARI

ABSTRACT. The purpose of this paper is to study the structure and the
algebraic varieties of Hom-associative algebras. We characterize multi-
plicative simple Hom-associative algebras and give some examples de-
forming the 2 x 2-matrix algebra to simple Hom-associative algebras.
We provide a classification of n-dimensional Hom-associative algebras
for n < 3. Then we study irreducible components using deformation
theory.

1. Introduction

The first motivation to study nonassociative Hom-algebras came from
quasi-deformations of Lie algebras of vector fields, in particular, from ¢-
deformations of Witt and Virasoro algebras. The deformed algebras arising
when replacing usual derivations by o-derivations are no longer Lie algebras.
It was observed in the pioneering works, mainly by physicists, that in these
examples a twisted Jacobi identity holds. Motivated by these examples and
their generalizations on the one hand, and the desire to be able to treat
within the same framework such well-known generalizations of Lie algebras
as the color and Lie superalgebras on the other hand, quasi-Lie algebras and
subclasses of quasi-Hom-Lie algebras and Hom-Lie algebras were introduced
by Hartwig, Larsson and Silvestrov in |5, 6]. The Hom-associative algebras
play the role of associative algebras in the Hom-Lie setting. They were intro-
duced by the first author and Silvestrov in [7]. Usual functors between the
categories of Lie algebras and associative algebras were extended to Hom-
setting, see [10] for the construction of the enveloping algebra of a Hom-Lie
algebra.
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A Hom-associative algebra (A, p, ) is consisting of a vector space, a multi-
plication and a linear self-map. It may be viewed as a deformation of an asso-
ciative algebra, in which the associativity condition is twisted by a linear map
a and such that when a = id, the Hom-associative algebra degenerates to
exactly an associative algebra. We aim in this paper to study the structure of
Hom-associative algebras. We give a characterization of multiplicative simple
Hom-associative algebras and give some examples deforming the 2 x 2-matrix
algebra to simple Hom-associative algebras. Moreover, we compute some in-
variants and discuss irreducible components of the corresponding algebraic
varieties. Let A be an n-dimensional K-linear space and {e1, es,...,e,} be a
basis of A. A Hom-algebra structure on A with product y is determined by n3
structure constants ij, where p(e;,e5) = > p_y ijek, and by a which is iden-
tified by n? structure constants a;;, where a(e;) = > i—1 ajiej. Requiring the
algebra structure to be Hom-associative and unital gives rise to a sub-variety
HAssy, (resp. UHAss,) of k" +7° Base changes in A result in the natu-
ral transport of structure action of GL,(K) on HAss,. Thus isomorphism
classes of n-dimensional Hom-algebras are in one-to-one correspondence with
the orbits of the action of GL,,(K) on H.Ass,. The decomposition of H.Assy,
into irreducible components with respect to Zariski topology is called the
geometric classification of n-dimensional algebras.

The paper is organized as follows. In Section 2 we give the basics about
Hom-associative algebras and provide some new properties. Moreover, we
discuss unital Hom-associative algebras. Section 3 deals with simple mul-
tiplicative Hom-associative algebras. We present one of the main results of
this paper, that is a characterization of simple multiplicative Hom-associative
algebras. Indeed, we show that they are all obtained by twistings of simple
associative algebras. Moreover, we give all simple Hom-associative algebras,
which are related to 2 x 2 matrix algebra. Section 4 is dedicated to describing
algebraic varieties of Hom-associative algebras and providing a classification,
up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative al-
gebras. In the last section, we consider the geometric classification problem,
using one-parameter formal deformations, and describe the irreducible com-
ponents.

2. Structure of Hom-associative algebras

Let K be an algebraically closed field of characteristic 0, A be a linear space
over K. We refer to a Hom-algebra by a triple (A, u, ), where u: Ax A — A
is a bilinear map (multiplication) and « is a homomorphism of A (twist map).

2.1. Definitions.

Definition 2.1 (see [7]). A Hom-associative algebra is a triple (A, u, «)
consisting of a linear space A, a bilinear map p: A x A — A and a linear
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space homomorphism o : A — A satisfying

plel), ply, 2)) = p(p(z, y), a(2)), (2.1)
a(p(z,y)) = pla(z), a(y)).

Usually such Hom-associative algebras are called multiplicative. Since we
are dealing only with multiplicative Hom-associative algebras, we shall call
them Hom-associative algebras for simplicity. We denote the set of all Hom-
associative algebras by H.Ass. Notice that in [3], the author introduced
monoidal Hom-algebras which are Hom-associative algebras where « is an
automorphism. In the language of Hopf algebras, the multiplication of a
Hom-associative algebra over A consists of a linear map u: A® A — A and
condition (2.1) writes p(a(z) @ u(y ® 2)) = p(p(z @ y) ® a(z)).

Definition 2.2. A unital Hom-associative algebra is given by a quadruple
(A, 1, a,u), where u € A, such that

e (A, u, ) is a Hom-associative algebra,
o u(z,u) = p(u,z) = a(z), @€ A,
o au) =u.

Remark 2.3. 1t was pointed out in |1, Proposition 1.2] that the multiplica-
tivity condition is a direct consequence of the Hom-associativity together
with the second and third conditions.

Definition 2.4. Let (A1, 1, 01) and (Asg, po, a2) be two Hom-associative
algebras (respectively, unital Hom-associative algebras with uq, uo the units).
A linear map ¢ : Ay — As is called a Hom-associative algebra morphism if

e (z,y)) = pa(e(@), o(y)) and agop(r) =poai(x), =,y € A,

and ¢(u1) = ug for unital algebras.

In particular, Hom-associative algebras (Ap, p1, 1) and (Ag, po, a2) are
isomorphic if ¢ is also bijective.

Remark 2.5. Following |1], in the case of unital Hom-associative algebras,
one may remove from the definition the condition ag o p(x) = ¢ o ai(x).
Indeed, for any = € Ay, we have

ag 0 p(x) = po(uz, p(z)) = p2(p(ur), p(z)) = @(p1(u1, ) = @ o ay ().

2.2. Structure of Hom-associative algebras. We state in this section
some results on the structure of Hom-associative algebras which are not nec-
essarily multiplicative.

Proposition 2.6 (see [11]|). Let (A, pu,«) be a Hom-associative algebra
and B : A — A be a Hom-associative algebra morphism. Then (A, Bu, Ba) is
a Hom-associative algebra. In particular, if (A, u) is an associative algebra
and B is an algebra morphism, then (A, Bu, 3) is a Hom-associative algebra.
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Definition 2.7. Let (A, u, «) be a Hom-associative algebra. If there is an
associative algebra (A, u') such that p(z,y) = ap/(z,y), x,y € A, then we
say that (A, u, @) is of associative type and (A, ') is its compatible associa-
tive algebra or the untwist of (A4, p, a).

Corollary 2.8. Let (A, u, ) be a multiplicative Hom-associative algebra
where « is invertible. Then (A, ' = a=! o u) is an associative algebra and
a is an automorphism with respect to p'. Hence, (A, u, ) is of associative
type and (A, 1’ = o=t o ) is its compatible associative algebra.

Proof. We prove that (4,a~! o p) is an associative algebra. Indeed,
W (2,y),2) = a Lo p(a™ u(z,y), 2) = o™t o pla™ p(x, y), a7 o a(z))
— o 2o p(u(@,y),a(2)) = a2 o plal@), iy, )
=a top(z,atop(z,y)) = u(x, 1 (y, 2)).
Moreover, « is an automorphism with respect to u/. Indeed,
W (a(x),a(y) = a ' op(a(z),aly)) =aoa™ opu(z,y) = ao(z,y).
O

Remark 2.9. Notice that if « is not invertible, assuming u = «ji leads to

plaw), p(y, 2)) = p(u(e, y), a(2)),
afi(e(z), afi(y, 2)) = afi(ai(z, y), a(2)),
o (i, iy, 2))) = A ((iz,y), 2)),

which means that /i is associative up to a?.

Proposition 2.10. Let (A1, p1, 1) and (Aa, pa, o) be two Hom-associa-
tive algebras and let ¢ : Ay — Ao be an invertible Hom-associative algebra
morphism. If (A1, p1, 1) is of associative type and (Aq, p}) is its compatible
associative algebra, then (Asg, po, ) is of associative type with compatible
associative algebra (Ag, ph = ¢opyo (¢t @ ¢ 1)) such that ¢ : (A1, u)) —
(Ag, ph) is an algebra morphism.

Proof. Because ¢ is a homomorphism from (Ay, u1, 1) to (As, pg, a2),

az¢ = ¢a1, and ¢ defines pg by pa(d(x), ¢(y)) = dpa(z,y), x,y € Ar. It is
easy to check that (Asg, p2) is an associative algebra. Furthermore,

p2(6(x), d(y)) = ¢ o (2,y) = ¢ o ay o iy (x,y))
= az o o (w,y) = aapiy(6(x), 6(y)).
We show that us is an associative algebra such that
pa(u,v) = ¢ o (¢~ (u), ¢~ (v))
with 2 = ¢ (u),y = ¢~ (v) and z = ¢~ 1 (w) for all x,y,2z € A;. One has
:UQ(MQ(uv U)> w) =¢o M1(¢_1 X ¢_1)(¢ o M1 ((Z)_l ® ¢_1)(ua U): ’LU)
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=¢om(¢™ @¢ ) (dom(d " (u),¢"" (v),w)

= ¢o (¢ (), 67 (v), ¢~ (w))

=¢o (o~ 1( ) 197 (v), 07 (w)))

=¢om(d" @9 )@@ ) (¢ (u), pa (¢ (v), 67 (w))

=g¢om(s ®¢ D (u, ppn (97 (v), 67 w))) = pau, pa(v, w)).
Hence, (Aa, u2) is an associative algebra. O

Proposition 2.11. Let (A, u, «) be an n-dimensional Hom-associative al-
gebra and let ¢ : A — A be an invertible linear map. Then there is an isomor-
phism with an n-dimensional Hom-associative algebra (A, u', pag=1), where

W = ¢opo(dp®¢t). Furthermore, if {CZ} are the structure constants of

W with respect to the basis {e1,... ey}, then ' has the same structure con-
stants with respect to the basis {¢(e1),. .., P(en)} when ¢(ep) = D 11—, apper-

Proof. We prove, for any invertible linear map ¢: A — A, that (A, y/,
pagp~1) is a Hom-associative algebra. We have

W (,y), pag™(2)) = (o™ @ ¢ (opu(o™ ® o) (x,y), <z>a¢ '(2))
= ou(u(o ™ (2), ¢~ (1), ad ™ (2)) = dp(ag™ (x), ulo " (v), 67" (2)))

= (o' @ ¢ ) (0 ® @) (ag " (z), (¢~ ® ¢ 1) (1, 2)))

= ou(¢~' @ ¢ ) (dad! (z), duld™ ' ® ¢~ 1) (y, 2)) =1 (dad™" (x), 1/ (y, 2)).

So (A, i/, pap™1) is a Hom-associative algebra.
It is also multiplicative. Indeed,

pad™ i (z,y) = pad 'ou(o T @ o) (2, y) = dau(eT @ ¢ (2, y)
= ¢p(ag (z), a0 (y)) = du(o™ ' ® ¢ (P ® @) (ad  (z),ad  (y))
= 1 (pag™ (x), pagp™ " ().

Therefore, ¢ : (A, p, o) — (A, i/, pagp™?) is a Hom-associative algebra mor-
phism, since

pop=gopo(¢p ' ®d No(p®e) = o(¢®e)

and (pagp o =¢oa.
It is easy to see that {¢(e;), -+, p(e,)} is a basis of A. Fori,j =1,...,n,
we have

pa(p(er), dles)) = pr (¢ (er), 671 (es)) = pules,e5) ZC
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Remark 2.12. A Hom-associative algebra (A, u,«) is isomorphic to an
associative algebra if and only if a = id. Indeed, ¢ o ap~! = id is equivalent
to a = 1d.

Remark 2.13. Proposition 2.11 is useful to make a classification of Hom-
associative algebras. Indeed, we have to consider the class of morphisms
which are conjugate. Representations of these classes are given by Jordan
forms of the matrices corresponding to the morphisms. Any n X n matrix
over K is equivalent, up to basis change, to a Jordan canonical form, then we
choose ¢ such that the matrix of pa¢~! = v, where 7 is a Jordan canonical
form. Hence, to obtain the classification, we consider only Jordan forms for
the structure map of Hom-associative algebras.

Proposition 2.14. Let (A, u, «) be a Hom-associative algebra. Let (A, i/,
pap1) be its isomorphic Hom-associative algebra described in Proposition
2.11. If v is an automorphism of (A, i, ), then ¢1p¢p~1 is an automorphism

of (A, i, pag™1).
Proof. Note that v = ¢pa¢~!. We have

PYoy = g g = pad ™! = gt = pad T gvd Tt = youe !
For any z,y € A, one has

PPo i (6(x), $(y) = o™ du(x,y) = pvule,y) = du(P(x), ¥ (y))

= 1 (¢ (@), 0 (y)) =1/ (¢~ (6(x)), p™" (d(y)))-

By definition, ¢1¢~! is an automorphism of (A, i/, pagp=1). O

The following characterization was given for Hom-Lie algebras in [9].

Proposition 2.15. Given two Hom-associative algebras (A, pa,a) and
(B, ug, ), there is a Hom-associative algebra (A @ B, pasp,a + ), where
the bilinear map paep(.,.): (A® B) x (A® B) — (A® B) is given by

paps(ar +bi,az +b2) = (nalar, az), pp(b1,b2)), ai,as € A, b1,b2 € B,
and the linear map (o« + p): A® B — A® B is given by
(a+ B)(a,b) = (a(a),B(b)), ac A, be B.
Proof. For any a; € A, b; € B, by direct computation, we get
pass((a+ B)(a1,b1), pasp(az + bz, as + bs))
= pags((a+ B)(a1,b1), (palaz, as), pp(ba, b3)))
= pasp((a(ar), B(b1)), (palaz, as), pp(be, b3))
= (pala(ar), palaz, as)), pa(B(br), (b2, b3))
= (ra(palar, az), (as)), pp(ps (b1, b2), B(b3))
= pagpB(pasp(ar + b1, a2 + ba), (a + B)(as, b3))).

)
)
)
)
)
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This ends the proof. O

A Hom-associative algebra morphism ¢: (A, pa,a) — (B, ug, f) is a lin-
ear map ¢ : A — B such that ¢ o pa(a,b) = up o (¢(a),d(b), a,b €
A, ¢oa = Bo¢. Denote by & C A @ B, the graph of a linear map
¢:A— B.

Proposition 2.16. A linear map ¢ : (A, pa, ) — (B, up, ) is a Hom-
associative algebra morphism if and only if the graph £, C A @ B is a Hom-
associative subalgebra of (A ® B, pagp, o+ f).

Proof. Let ¢: (A, pa, ) — (B, up, 5) be a Hom-associative algebra mor-
phism. Then for any a,b € A, we have

/LAEBB((C% (;S(CL)), (ba ¢(b)) = (MA(av b)7 NB((Z)(a)v ¢(b))) = (NA(a7 b)7 ¢MA(G7 b))

Thus the graph &, is closed under the product pagp. Furthermore, since
¢oa=pFo¢, we have

(a+ B)(a, ¢(a)) = (ala), B o ¢(a)) = (ala),d o a(a)),
which implies that (a+ 8) C &. Thus & is a Hom-associative subalgebra of

(A® B, pagp, o+ B).
Conversely, if the graph £ C A ® B is a Hom-associative subalgebra of
(A® B, pagp,«+ ), then we have

rass((a, ¢(a)), (b, 9(b))) = (nala,b), pp((a), ¢(b)) € &4,
which implies that p5(¢(a), p(b)) = ¢opa(a,b). Furthermore, (a+5)(&p) C
& yields that
(a+ B)(a, () = (aa), B0 6(a) € &,
which is equivalent to the condition 5o ¢(a) = ¢ o a(a). Therefore, ¢ is a

Hom-associative algebra morphism. O

2.3. Unital Hom-associative algebras. In this section we discuss unital
Hom-associative algebras. We denote by UH.Ass,, the set of n-dimensional
unital Hom-associative algebras.

Proposition 2.17. Let (A, u,«) be a Hom-associative algebra. We set
A= span(A,u) the vector space generated by elements of A and u. Assume
that p(x,u) = p(u,z) = a(x), = € A, and a(u) = u. Then (A, p,a,u) is a
unital Hom-associative algebra.

Proof. Tt is straightforward to check the Hom-associativity. For example

(i, y), o)) = p(p(r, y),u) = a(p(r,y))
= pla(z), a(y)) = pla(), u(y, w)).



86 ABDENACER MAKHLOUF AND AHMED ZAHARI

Remark 2.18. Some unital Hom-associative algebras cannot be obtained
as an extension of a non-unital Hom-associative algebra.

Remark 2.19. Let (A, p, o, u) be an n-dimensional unital Hom-associative
algebra and let ¢: A — A be an invertible linear map such that ¢(u) = u.
Then it is isomorphic to an n-dimensional Hom-associative algebra (A, i/,

pap ' u) where ' = popuo (¢! ® ¢~!). Moreover, if {ij} are the
structure constants of p with respect to the basis {e1,...,e,} with e; = u
being the unit, then ' has the same structure constants with respect to the

basis {¢(e1),...,¢(e,)} with u the unit element.
Indeed, we use Proposition 2.11 and Definition 2.2. The unit is preserved

since p/(z,e1) = ¢pou(¢(z), ¢ (e1)) = poao g ().

Proposition 2.20. Let (A1, p1,01,u1) and (Asg, pe, ag, uz) be two unital
Hom-associative algebras. Suppose that there exists a Hom-associative alge-
bra morphism ¢: Ay — Ag with ¢(uy) = we. If (A1, py,u)) is an untwist
of (A1, p1,a1,u1), then there exists an untwist of (Ag, pio, aa,us) such that
o (Aq, ph,uy) — (Ao, ph,ufy) is an algebra morphism.

Proof. Since ¢ is a homomorphism from (A1, 1, a1, u1) to (Ag, p2, ag, us),
a2 = ¢ay, and for all x € A we have ua(d(z), p(u1)) = pa(d(z),u2) =

azo@(x) and ¢po uy(z,u1) = poay(z). By Proposition 2.10, we can see that
(Az, p2,u2) is also an associative algebra. Furthermore,
1(3(2), ¢(u1)) = pa(p(x),u2) = ot o d(z) = ¢ oo pi(z,u)
= a0 ¢opui(z,u1) = azo uz(d(x), uz).

3. Simple Hom-associative algebras

In this section, we study and characterize simple multiplicative Hom-
associative algebras. Then we provide examples by considering 2 x 2 matrix
algebra. This study is inspired by the study of simple Hom-Lie algebras in
[4].

Definition 3.1. Let (A, u, @) be a Hom-associative algebra. A subspace
H of A is called a Hom-associative subalgebra of (A, u, «) if a(H) C H and
w(H, H) C H. In particular, a Hom-associative subalgebra H is said to be a
two-sided ideal of (A, u, ) if u(H,A) C H and u(A,H) C H.

Definition 3.2. The set

C(A) = {z € Alp(z,y) = p(y, x), ple(z), y) = ply, a(x)), y € A}
is called the center of (A, u, a).

Clearly, C(A) is a two-sided ideal.
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Lemma 3.3. Let (A, u,a) be a multiplicative Hom-associative algebra,
then (Ker(a), u, «) is a two-sided ideal.

Proof. Obviously, a(z) = 0 € Ker(a) for any € Ker(a). Since ap(z,y) =
wla(z), a(y) = p(0,y) = 0 for any = € Ker(a) and y € A, we get u(x,y) €
Ker(a).

On the other hand, we have a(y) = 0 € Ker(a) for any y € Ker(a).
Since ap(z,y) = pla(z), a(y)) = p(x,0) = 0 for any =z € Ker(a) and y € A,
we get p(z,y) € Ker(a). Therefore, (Ker(a),pu, a) is a two-sided ideal of
(A, p, ). O

Definition 3.4. Let (A, u,a) (o # 0) be a non trivial Hom-associative
algebra. It is said to be a simple Hom-associative algebra if it has no proper
two-sided ideals.

Theorem 3.5. Let (A, u, «) be a finite dimensional simple Hom-associative
algebra. Then « is an automorphism, the Hom-associative algebra is of as-
sociative type with a simple compatible associative algebra.

Proof. According to Lemma 3.3, Ker(a) is a two-sided ideal. Since the
Hom-associative algebra is simple, either Ker(a) = {0} or Ker(a) = A. The
Hom-associative algebra is nontrivial, therefore Ker(a) # A.

Thus, A is of associative type. Let (A, i’ = a~!u) be the induced associa-
tive algebra of the multiplicative simple Hom-associative algebra (A, u, ).
Clearly, « is both an automorphism of (A, u, ) and (A, u’). Indeed,

ap!(z,y) = aa” u(z,y) = o u(a(z), aly) = ' (a(z), a(y)).

Suppose that A; # 0 is the maximal two-sided ideal of (A, 1'). Because
a(A;) is also a two-sided ideal of (A, i), we have a(A;) C A;. Moreover,

(A1, A) = ap/ (A1, A) C a(Ay) C Ay
and
w(A, Ay) = ap/ (A, A) C a(Ay) C A
So A; is a two-sided ideal of (A, p, ). Then A; = A, and we have
WA A) = (A1, A) = ap' (A, A) G a(A1) C A=A
and
H(A,A) = p(A, Ay) = ap (A, A1) G (A1) € A; = A.
Furthermore, since (A4, i, ) is a multiplicative simple Hom-associative alge-

bra, we clearly have (A, A) = A. It is a contradiction. Hence A; =0. O

By the above theorem, there exists an induced associative algebra for any
multiplicative simple Hom-associative algebra (A, u, o) and « is an automor-
phism of the induced associative algebra, in addition to this their products
are mutually determined.
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Theorem 3.6. Two simple Hom-associative algebras (Ay, pi, ) and (As,
wa, B) are isomorphic if and only if there exists an associative algebra iso-
morphism ¢: A1 — As (between their induced associative algebras) satisfying
poa = fop. In other words, the two associative algebra automorphisms «
and B are conjugate.

Proof. Let (A1, f11) and (Ag, fiz) be the induced associative algebras of
(A1, p1,a) and (Asg, po, 5), respectively. Suppose that ¢: (A1, pu1,a) —
(Ag, po, ) is an isomorphism of Hom-associative algebras. Then poa = [og,
thus ¢ oa~! = 871 0 . Moreover,

i (,y) = poa "l oafin(z,y) = poa ui(z,y) = B~ o pui(z,y)
= 87 (u2(p(@), 0())) = fiz(p(x), 0 (y))-

So, ¢ is an isomorphism between the two induced associative algebras.
On the other hand, if there exists an isomorphism ¢ between the induced
associative algebras (A, i) and (Ag, fi2) such that ¢ o a = 5o ¢, then
o1 (z,y) = o ajiu(x,y) = B o fa(e(x), o(y))
= Blua(p(2), 0(y)) = pa(e(2), o(y))-
O

3.1. Examples of simple Hom-associative algebras. We consider the

simple associative algebra defined by 2 x 2 matrices, which we denote by Mo.

Let B = {E,J} =12 be the canonical basis given by elementary matrices. We
1,2

seek first for algebra morphisms ¢ of My, that is linear maps such that
@(Eij)-o(Ex) = o(Eij.Ex) = dpp(Eu),
where d;; is the Kronecker symbol. Then we apply the previous theorem

to construct families of 4-dimensional simple Hom-associative algebras. By
straightforward calculation we obtain the following algebra morphisms:

Morphism 1
w(E1) = B — i%Em ©(E12) = iv/PivVB2Ervi + B1E12 + faFoy
—iv/ 31/ B2 B2
p(Bn) = B2 P(E22) = '\/\/g:fEm + Egs;
Morphism 2
o(F) =En+ i\/\/g:szl ©(E12) = —iv/B1vVB2E11 + B1E12 + B2 Ea
+iv/B1v/ BB
p(Ear) = B P(E22) = —i%Em + Fag;
Morphism 3

©(Ev1) = B1n — MEa p(Bi2) = *%En — %Ew + B2Ea1 + %Ezz
2
o(Ea) = —%Em ©(E22) = A\ Ea1 + Eao;
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Morphism 4
©(E1) = Byt — M Ear p(Er2) = fi) B + B1E12 — fiA1Ey — 1B
{ p(Exn) = 2 P(Ea2) = A1 B2 + Eaa;
Morphism 5
{ ©(E1) = BEn + BsmiExn o(Er2) = —f3E11 + % — B3v1E21 + B3E2
©(Eo1) = 11 En ©(E22) = —B371E21 + Ea;
Morphism 6
©(E11) = iv/Bay/N1 E21 + Eaa ©(Er2) = f2Ea
{ ©(Ep1) = i%Eu + % +71E2 — i%Em ©(Ea2) = E11 —iv/Bay/71Eo1;

Morphism 7

2
<)0(E11) = &Elz -+ E22 QD(E12) = ﬁ4E11 _ &E12 + ﬂ2E21 o 54E22
ﬁ2 52
SD(EQI) = % (‘0<E22) = E11 — %E12;
Morphism 8
SD(Ell) = F —|—’}/2E12 QO(EIZ) _ %
2
p(En) = —72En — 2B+ mEn +72E2  ¢(Bn) = — 3 B + Ea;

Morphism 9

{ ¢(E1) = —72E21 + Ex p(Erp) = 22

2
©(E21) = =2 B +v4FE12 — %Em + 2B @(E) = Eyn + %E217
where 31, B2, 83, B4, A1, A2, A3, Mg, 71,72, 73, 74 € C are parameters.

They lead to simple Hom-associative algebras (Mo, *, ¢) where E;jx Ep,, =
@(E;jEpg). Therefore, the multiplication tables are given as follows:

Algebra 1

Ev x B = B — i\/\/g:fEm Ery % Eyp = in/B1vV/P2F11 + B1Er2 + f2Ean
—iv/B1vV B2 B2
Eyg % B9y = B — Z'%Em E1g % Eg = iy/Bi1v/BaEr1 + f1E12 + BoEyn
—iv/B1v/B2Eaa
Es x FEy1 = % Ea1 % E1p = —Z'%Em + Eg
Eas x oy = % Eaz *x Egs = —Z'%Em + Eoo;
Algebra 2
E11x By = Eip + i%Em B+ Erg = —iy/BivVB1En + Bi1Ei2 + o Ea
+iv/B1vB1 B2
Eyg % By = Eqp + i%Em Ery % Eoy = —in/B1v/PaErn + f2Er2 + B2 Ey
+iv/B1v B2 E2a
FEo x By = % Eo % Epp = *i\/\/g:szl + Faa
By« By = £21 Eay # Egy = —iY22 gy + Eg;

B1 VB
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Algebra 3

By xEn=Fi1—MEa EnxFBip= —%En — %Em + BaFar + %Em
Eig% By = Evi = M By Eig Byy = —52E1 — 25 By + B3Es + 52 Esy

By x By = —%Em Eo1 % B = A By + Eap
2
Eog x Egp = *%Em Egg * Eog = A\ Eo1 + Fay;
Algebra 4

E11 % E11 = E11 — MEa1 Eip x Eio = i\ By + B1E12 — BiMiEoy — B1E9
Eio % Ey1 = Eyy — MEo1 Erg % Egsy = Bi\1E11 + B1E12 — Bid{Ear — B1E2

By x By = ? Eo1 % Eiop = M Eg1 + Fap
Egg * Fop = s Eag % Fyy = M\ Eo1 + Eay;
Algebra 5

Eu o« Eno=Ei + BsviBar Eix Big = —psE + Efllz — P31 B0 + B3FEan

Evg % Eo1 = En + P3v1B21 Erg % Epy = —f3En + 22

— B3v1E21 + B3Ea

v
Ea1 % Fip = 71 B9 Eoy % E1g = —f3371E21 + Ea
Eag * Foy = v1 B9y Eog x By = — 371 a1 + Ea;

Algebra 6

Ey1 x By = i/ Bay/J1E21 + Ea2
B3 % B2y = iy/Bay/71FE21 + Ea2

Bo1 x Eny = iﬁ%En + % +mEo — i%EQQ

Eog x By = igEu + % + 71k — i%Em

Algebra 7

Eyy x E1g = B2E0
E19 % Eoy = BoEa
Eo1 x B2 = By
—iv/B2/71 Ea1
Eao x Bog = Fyy
—iv/Bay/1Eo21;

2

B+ B = %Eu + Ey Ei1x Eig= 4B — %Eu + foEo1 — BaEan
2

Eig % Eop = %Em + Eop  Eig* Eop = B4F11 — %Em + BaEa1 — Bakan

Eg + By = 52 By % E1y = Eyy — 5L Eny
Eao x By = % Eao % Eag = E11 — %Em;
Algebra 8
By x By = By + 2B By x By = 212
Eq2 % o1 = E11 + 72 Er2 Eyg x By = 212

2

By x By = =y B — %Eu +v1Eo1 +v2Fy Eoyx Eip = —%Eu + Eop
2

By x By = —yoEq11 — %Eu +v1Eo1 + v2Eo  FEog *x Eop = —%Eu + Egg;

Algebra 9

By x Eip = —y2FE21 + Eag
Eqo % Eo1 = —y2FE21 + Ega

2

By x By = —yoE11 + yaEha — %Ezl + Yo Eao
2

Eog x Eoy = —yo 11 + yaE12 — %Em + Yo Eao

L
Eqg % Egg = 22

Y4
_ !
Eo1 x Erg = By + 20 By

Eog x Fop = Eq1 + :%Em-
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4. Algebraic varieties of Hom-associative algebras and
classification

In this section, we deal with algebraic varieties of Hom-associative algebras
with a fixed dimension. A Hom-associative algebra is identified with its
structure constants with respect to a fixed basis. Their set corresponds to an
algebraic variety where the ideal is generated by polynomials corresponding
to the Hom-associativity condition.

4.1. Algebraic varieties H.Ass,. Let A be a Hom-algebra defined by a
multiplication p and a twist map a. We set p(ei e;) = > p g ijek and
a(e;) = Y% ; ajiej. Then the Hom-algebra structure is defined by the n?
structure constants C,f“j corresponding to u and the n? structure constants A
corresponding to « with respect to the basis {ej,...,e,}. If we require this
algebra structure to be Hom-associative, then this limits the set of structure
constants (ij, a;j) to a cubic sub-variety of the affine algebraic variety K n?
defined by the polynomial equations system

n n
> aaCiCr, — amiCiiCh, =0, iyj ks =1,...,n.

=1 m=1
P _ A
Zas,,cij — Z Zam’aqjcgq =0, 4j4,s=1,...,n.
p=1 p=1g=1
Moreover, if u is commutative, then we have ij = CJ’?Z- fori,j,k=1,...,n.

The first set of equations corresponds to the Hom-associative condition
plaes), nlej, exr)) = p(p(es, e5), aer)) and the second set to multiplicativity
condition « o p(e;, e5) = p(ale;), a(e;)). We denote by H.Ass,, the set of all
n-dimensional multiplicative Hom-associative algebras.

Assume that e; = u, the unit, in the basis B. It turns out that in addition
to the system (4.1), we have the following condition with respect to unitality

n n n
k k
ur.e; = ejup = afe;) = g Criex = E Cier = g aki€k,
k=1 k=1 k=1

that is Cfl = Cﬁ- = ag; for all i,k. We denote by UH.Ass,, the algebraic
varieties of n-dimensional unital Hom-associative algebras.

4.2. Action of linear group on the algebraic varieties H.Ass,. The
group GL,(K) acts on the algebraic varieties of Hom-structures by the so-
called transport of structure action defined as follows. Let A = (A, u, ) be
an n-dimensional Hom-associative algebra defined by multiplication p and a
linear map «. Given f € GL,(K), the action f - A transports the structure
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© :GL,(K) x HAss, — HASSsy,
(f, (A, 1, @) — (A, fTopo(f@f), foao )
defined for x,y € A, by
fomay) = fTuf@), fv), f-al@)=f"a(f(z)).
The conjugate class is given by
O(f, (A, pya)) = (A, flopo (f& f), foao ™)) for feGLy(K).
The orbit of a Hom-associative algebra A of H.Ass, is given by
= {A' =f-A fe GLn(K)}.

The orbits are in 1-1 correspondence with the isomorphism classes of
n-dimensional Hom-associative algebras.
The stabilizer is

Stab((A, p,a)) = {f € GL,(K)|(f ' opo(f® f)=pand foa=aof}.
We characterize in terms of structure constants the fact that two Hom-
associative algebras are in the same orbit (or isomorphic). Let (A, 1, aq)
and (A, u2,as) be two n-dimensional Hom-associative algebras. They are
isomorphic if there exists ¢ € GL,(K) such that

popur =p2(p®¢p) and poa; =azop. (4.2)

Remark 4.1. Conditions (4.2) are equivalent to p; = ¢! oy 0 ® ¢ and

061:()0710062080.

We set with respect to a basis {e;},_;
n n n
i) = Zapiepy a1(e;) = Z@ji€j7 az(e;) = Zﬁjz‘%

/’Ll(ehej Zcz]ek7 H2 6176] ZDz]€k7 i j - 1
k=1

Conditions (4.2) translate to the system of equations

chaqk Z prkapzak] =0, Zaﬂaqk Zakzﬁqk =0, %j,9=1,...,n

k=1p=1

4.3. Algebraic variety H.Asso. A Hom-associative algebra is identified
with its structure constants (C’fj) and (a;;) with respect to a given basis.
They satisfy the first family of system (4.1), for which the solutions belong
to the algebraic variety defined by the following Groebner basis:

(azieiiety — azeqyey — anciyery + anchica,

1 2 1 2 2 2 2 2
(21€11C 2 — G21C11C21 — A11€11C12 + A11€11Ca1,5
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142 11 11 1 2 2 1 11
a12(c1y)” + a11¢11C9 — a22€71Ca + A11C19CT — A12€71Co1 + A21C19C
2 1 2 1
— a22C71C99 + A21C12Co9,
22 2 1 11 11 11 1 2
a12(c1y)” + a12¢11C12 — a11C11Cyy + 22011 Cyy — A21C19Ch1 — A11C91Coy
2 1 2 1
+ 22€71Cyp — A21C51Cag,
11 1,2 11 2 1 1,2 1.2
— a1y cyy — ag1(cpp)” + aricy ey — ar1ciacy; + azi(cyy)” + arciacy
2 1 2 1
— a21C19C99 + A21C31Coo,
11 1 2 11 1 2 2 1 2 1
a12€11C12 1 G12€12C 2 — @12€11C1 — A12C91Co1 + A22C19C — A22C2) 29,
11 1.2 11 1 2
— (22C19C91 + A12C12Cn + A22C51Cap — @12C21C9,
2 1 2 2 2 2 2 2
(22C19Co9 — A12C19C29 — A22C19CHn + (22C51Chg,
1 2 2 1 1 2 22 2 2 1 2
a12€11C11 + a11€11C1y — A22€11CTo + a11(cia)” — @12¢71Cy1 + G21¢19Co
2 9 2 9
— @22€71Cy9 T A21C12C59,
1 2 2 2 2 1 2 1 1 2
@12€11C11 + A12€11C12 — A11C11C1 — A21C12C1 + A22C71C
212 2 2 2 2
—a11(c31)” + @211 Co — A21C51 Co,
2 1 1 2 2 1 1 2 2 2 2 2
— a11C€11C1 — 21C12C]p + A11C 1 Co1 + A21C91Co1 — A21C19Cop + A21C51Cho,
2 1 2 12 2 1 2 1 1 .2 212
a12¢71¢12 + a12(cia)” — a12¢71Cyy — a22C79C1 + a22C19C5 — a12(C31)
2 2 2 2
T 22€12C9 — A22C51 oo,
11 142 12 11 11 2 1
1211091 + a22(c91)” + a12¢15¢51 — A11C11Cy9 — A21C19Co9 + A22C51 Coo
1 2 1 2
— A11C21C9p — A21C9C29,
11 1,2 2 1 11 2 1 11
— a12¢y1¢19 — ag2(cpa)” — a12¢79Cy; + a11C11Cyg — 22C19Co9 + A21C91 Coo
1 2 1 2
+ a11€12C39 + A21C32C59,
2 1 2 2 1 2 2 1 2 1 2 2
@12€71C91 + @12C12C1 + A22C51Co1 — A11C11Co9 — G21C1C9 — A11C21Co
2 2 212
+ agac31 39 — a1(caa)”,
2 1 1 2 2 2 2 1 2 1 2 2
— @12€71C12 — A22C19C12 — A12C12C1 + A11C11Cog 1 A21C31Co9 + A11C12C9

— 4227550 + a1(chy)).

If the Hom-associative algebra is multiplicative, it should satisfy further the
second family of (4.1), that is, it belongs to the intersection with the algebraic
variety defined by the Groebner basis:

1 2 1 2 1 1 2 1
<CL11CH — a71€11 T @12€77 — G11021C19 — A11021C1 — A1C29,
1 1 1 2 1 1
a11G12C11 + A11C19 — @1102,2C 9 + A12CT9 — @12021Cy1 — G21022C9
1 1 11 1 1 2 1
a11G12C1] — A12021C1o + A" Cy1 — G11A22C51 + G12C51 — A21A22C59,

2 1 1 1 1 2 1 2
aj9C11 — A12022C19 — G12022C51 + A11C5 — A29Cay + A12C5,



94 ABDENACER MAKHLOUF AND AHMED ZAHARI

1 2 2 2 2 2 2 2
a21C11 — G11C11 T G22€71 — A11021C1p — A11421C31 — (219,
2 1 2 2 2 2
a11G12€11 + A21C19 + G22C79 — A11G22C 9 — A12G21C51 — A21A22CH9,

2 2 1 2 2 2
@11Q12€C1] — Q12021C] + A21Cy1 1 @22C31 — @11G22C31 — G21A22C9;
2 2 2 2 1 2 2 2
ai5Cl] — @12a22€T5 — A12a92C31 + A1Cy + A22C50 — 35C3).
Describing the algebraic varieties by solving such systems lead to the clas-
sification of 2-dimensional and 3-dimensional Hom-associative algebras.

4.4. Classification of 2-dimensional Hom-associative algebras. We

have to consider two classes of morphisms which are given by Jordan forms,

. 0 1
namely they are represented by the matrices < g b ) and 8 0 ) We
check whether the previous are isomorphic. We provide all 2-dimensional
Hom-associative algebras, corresponding to solutions of the system (4.1). To

this end, we use a computer algebra system.

Lemma 4.2. Let « be a diagonal morphism such that a(e1) = pe1, aez) =
gea, p # q, with respect to basis {e1,e2}. Then any ¢ : A — A such that
poa = «aop is of the form p(e1) = Ae1 and p(e2) = pea with respect to the
same basis.

Proof. Let p(e1) = Are1 + Aees and p(e2) = pire; + peea. On the one
hand, poa(er;) = A\iper + Aapes and o’ o p(e1) = Aip'er + Aag'ea. So we have
A1p = A1p’ and Aap = A2¢’. On the other hand, ¢ o a(e3) = gpirer + gpze2
and o o p(e2) = p1p'er + p2q’ea. We have p1g = p1p’ and pag = p2q’. Then
we have A\i(p —p') =0, Xa(p—¢) =0, pi(g—p)=0, p2q—¢)=0.

If p=9p' and ¢ = ¢/, we have Aa(p—¢') =0 and pa(¢ —¢') = 0. If p # ¢,
then Ay = p; = 0. Hence the lemma with A = A\; and p = pa. O

Theorem 4.3. FEvery 2-dimensional multiplicative Hom-associative al-
gebra is isomorphic to one of the following pairwise non-isomorphic Hom-
associative algebras (A, *, ), where x is the multiplication, « is the structure
map, and {e1,es} is a basis of K2:

A% epkxe; =—ey, e1%xex=e€, Eg%xe] =e2, €9%*ey=eq,
aler) =e1, aley) = —es;

A%:el*elzel, erxeo =0, egxe; =0, egkxey =eo,
aler) =e1, ale) =0;

A%:el*elzel, 61*62:0, 62*61:0, 62*62:0,
aler) =e1, aley) =0;

Ai:el*elzel, e1*%ey =€y, eg*xe] =ey, eg*ey =0,
aler) =e1, aley) =ey;

A%:el*elzel, 61*62:0, 62*61:07 62*62:0,
aler) =0, oafe2) = kes;
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A%:el*elzeg, erxea =0, ey*xe; =0, egxxeq =0,
aler) =e1, afeg) = es;

A%:el*elzo, el xeq =aey, egxep =bey, eg*xey=ceq,
aler) =0, «fe2) = e, where a,b,c, k € C;

Ag:el*elzo, erxey=ey, eaxep =0, egxes=e+ ey,
aler) =e1, ale2) =e +ez;

Ag:el*elzo, erxea =0, egxe =e|, egxer=e]+eg,
aler) =e1, afez) =eg + ea.

Proof. The proof follows from straightforward calculation using Definition
2.4 and Lemma 4.2. t

Proposition 4.4. The Hom-associative algebras A1, Ay, Ag, Ag, Ag are of
associative type.

Proof. Indeed, we set in the following corresponding associative algebras:
Al ter-er=—e1, e1rea=—e, ex-e1=—ez, ez-ex=ei;
Ai:el-elzel, €1 - €3 = €9, €g - €1 = €9, 62-62:0;

A%:eyel:eg, e1-ea=0, ex-e1 =0, ey-ey=0;

flg:el-el:O, e1-ea=eq, eg-e1 =0, eg-eqg=e9;

1213:61-61:0, e1-epg=e1, ex-ep =0, eg-ex=eo.
]

Remark 4.5. It turns out that A3, A2, A2, A% cannot be obtained by twist-
ing of an associative algebra.

4.5. Classification of 3-dimensional Hom-associative algebras. We
seek for all 3-dimensional Hom-associative algebras. We consider two classes
of morphism which are given by Jordan form, namely they are represented
by the matrices

a 0 O a 1 0 a 1 O
0O b 0|, 0 a 0 ], 0 a 1
0 0 c 0 0 b 0 0 a

Using similar calculation as in the previous section, we obtain the following
clagsification.

Theorem 4.6. Every 3-dimensional multiplicative Hom-associative alge-
bra is isomorphic to one of the following pairwise non-isomorphic Hom-
associative algebras (A, x, ), where x is the multiplication, « is the struc-
ture map (the non written products and images of o are equal to zero), and
{e1,e2,e3} is a basis of K3:

A:{’:el*elzel, €ax€y = €g+€3 eg*kez — ex+e3, €e3*xey = eg+e3,
e3xe3 =ex+ez, ale)=ei;
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A3 s e kel =pier, egpxey =paea, €3%e3 = p3es,
aler) =e1, afer) = es;

A3 s erxer =pier, epxep=paoes, e3xez=paes, afer) = e,
alez) = ez, ales) = es;

Ai’i © €1 %€z =pie1, €1 x €3 = P2€1, €2 *k €2 = P3€1, €2 * €3 = P4€1,
e3*e; = pse1, €3key =pgeq, ez * ez =pger, alex) = eq;

A3 s egxey =prer, egxez=npoes, aler) =e1, a(e2)=er+e;

A} ierxea=e1, exkxey=ej, egkez=e1, e3kex=eq,
ales) =e1, «afe3) = es;

A3 egkes =e1, eaxez=el, e3kea =e1, ezxez=e1, ale])= e,
afez) =e1 +e2, ale3) = e3;

Af i epxea=—e3, eakxel=e3, eakea=c3 ale)=el,
a(ez) = e +ea, afe3) = e3;

A} eaxe3=pier, eszxex=poer, afe1)=aey,

_a(e2) =e1+aez, afes) =es;

A3y i eaxea =pre1, eszkxez=npare1, aler) = e,
alez) = e+ e, alez) = —es;

A3t erxes=pier, exkez=paer, e3*e3 = pseq,
alez) =e1, oafes) = ez;

A3, i egke3 = —pie1, ezkex =pie;, ezkez=peer, ale])=e,
alez) =e1 +e2, afesz) =ex + es.

Proposition 4.7. The Hom-associative algebras A3, A3, A3, A3, A3,, A3,
are of associative type.
Proof. Indeed, we set in the corresponding associative algebras

i3 . _ _ _ )
A3 e1-ep =pier, ez-ex =Dpaea, €3-e3 = p3es;

3 . _ _ _ _ _ .
A7 ieg-er=e1 ex-eg=e1, ex-e3=e1, e3-ex=¢€1, €3-€3=¢€1;

Ag ‘163 = —e3, €3-€] =e3 €€y = e3;

/ng teg-e3 = Bley, e3-ex = Bey;

{1‘;’0 ‘€2 - €2 = Pp1€1, €3 €3 = P2e1;

Aiﬁ ‘€2 €1 = €3 €3°€3= —pi€1, €3 €3 =DpPi1€1, €3-€3 = p2ei,
where p; are parameters. O

Remark 4.8. It turns out that A3, A3 A3 A3 A3 A3, cannot be obtained
by twisting of an associative algebra.

Theorem 4.9. FEvery 2-dimensional unital multiplicative Hom-associative
algebra is isomorphic to one of the following pairwise non-isomorphic Hom-
associative algebras (A, *, ), where x is the multiplication, « is the structure
map, and {e1, es} is a basis of K2 with the unit vector e; :

/
A12261*61:€1, €1 * eg = €9, €g * €1 = €9, 62*62:61+€2,
aler) =e1, alex) =ey;
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AZ i epxe;=e1, e xey=—ey, eakel =—ez, e€3%e€y= e,
aler) =e1, alez) = —ey;

AZ tepxe;=e1, erxea=0, eaxe; =0, eg*ey= ey,
aler) =e1, afe2) =0;

A2 i erxe;=e1, elxex=ey, exxe; =eg, egxeg =0,
aler) =e1, afez) =ea.

.le . .. ~2 ~2 ~2
Proposition 4.10. The unital Hom-associative algebras A'y, A'5, A’, are
of associative type.

Proof. Indeed, we set in the following the corresponding associative alge-
bras:

<9
Ay te1-er=e1, er-ex=¢e2, ex-e€ =e, €3-€=€1+e;

~ 2

Aly tep-ep=ey, ej-ex=ez, ez-€]=e3, €3-€2=e€;
~,2

A4:€1-€1:€1, €1 - €3 = €9, €9 - €1 = €9, 62-62:0.

O

2 . i
Remark 4.11. It turns out that A’; cannot be obtained by twisting of an
associative algebra.

Theorem 4.12. Every 3-dimenstonal unital multiplicative Hom-associative
algebra is isomorphic to one of the following pairwise non-isomorphic Hom-
associative algebras (A, *, ), where x is the multiplication, « is the structure
map, and {e1,ea,e3} is a basis of K3 with the unit ey (the non-written prod-
ucts and images of a are equal to zero):

A'13 lerkxep =e1, egxeg = e9+e€3, €E2%e3 =eg+e€3, e3*ey = es+es,

esxe3 =eg+e3, aler) = er;

A/23 S epxe;p =eq, €9 * €9 = €9, €3 x €1 = €3, 63*63:€1+63,

aler) =e1, ales) =es;

AP erxep=e1, exkxea=eg, e€1%e€3=—e€3, e3xe]=—e3,

esxez=e1, ale)=e1, alez)=—es;

Aﬁf’ S e1pxe;p = ey, €1 * ep = €9, €9 * €1 = €2, 62*62:€1+€2,

e3xe3 =e3, afe) =e1, afez)= e

AB s e1xep=e1, elkxea=—ea, egkel = —e3, e€3%e€3= e,

e3xe3 =e3, ale) =e1, alez)= —ea;

A/63 Je1*e; = e, €1*xey = €9, €1%€3 = €3, €9*xe1 = €9, €g*eg = €9,

ey *e3 =e3, e3xe] = €3, €3 % €3 = €3,e3 ¥ e3 = ez + e3, afer) = ey,
afez) = ez, afe3) = es;

A’73 ;€e1*ep =e1, epxex = €2, €1*%€3 = —€3, €2%€] = €2, €%y = —€2,
€2 * €3 = €3, €3 x €1 = —€3,€3 *x €2 = €3, €3 * €3 = €2,
aler) = e1, alez) = ez, afes) = —es;

Aé?’ S elr*kep =e1, 61 k€y = —€2, €1 k€3 = €3, €3 k€] = —€2, €2 X €2 = €3,
€9 ¥ €3 = €2, €3 * €] = €3, €3 * €9 = €9, €3 * €3 = —€3,

ale1) = e1, aleg) = —eq, afez) = es;
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Ag’ S e xe;p =eq, €1 * €2 = aey, €1 *x €3 = €3, €9 * €1 = aey,
esxe; =e3, egxez=e3, afe])=ep,aer)=aes, «e3)=es;

A/130 S epkxep = ey, e1*keg = aeg, €1*ke3 = —e€3, €2*€1 = aey, €3*€e;] = —e3,
aler) = e1, a(ez) = aes, alez) = —es;

A/131 S epxe;p =eq, €1 * €2 = aey, 61*63:a2€3, €9 * €1 = aey,
e2 % €9 = €3, €3 * e1 = a’e3, a(er) = e1,a(ez) = aes, afles) = a’es;

A’f’z cerxep =eq, e keg =eg, 61 xe3 = beg, ea k€] = €3, €3 k €y = %62,
eg % e3 = ez, ez x e1 = beg, ae1) = e1, a(ea) = e, afes) = bes;

A’133 cepke] =eq, e1xeg = —eg, e1*keg = beg, eaxe] = —eq, egkxe; = bes,
aler) = e, a(ez) = —ez, a(es) = bes;

A’134 epxe; = e, e1key = b2€2, e1xe3 = bes, eaxe; = b?eq, e3xe; = bes,
e3 % e3 = eg, afe]) = e1, aley) = b2ea, aes) = bes;

A’135 epxel = e, €1%xey = aes, e1 xe3 = bes, eaxe; = aey, egxe; = bes,
aler) = e1, a(ez) = aes, a(es) = bes.

. . <3 ~3 -3 -3
Property 4.13. The unital Hom-associative algebras A’g, A’;, A'g, A/,
~3 <3 ~3 ~3 -3 -3 -
A, A, ALy, Al  AYyy, Al 5 are of associative type.

Proof. Indeed, we set in the following, the corresponding associative alge-
bras:

Alg te1-e1 = e1, e1-e3 = €2, €1-€3 = €3, €2-€] = €2 €2-€3 = €2, €2°€3 = €3,
€3-€e1 =e€3, €3 €2 =e€3, €3-€3 =€+ e3;

A’i i€1-€1 =€1,€1 €3 =e€9, €] €3 =€3, €3-€]=E9€y -y = —€g,
, €2763= €3 €3:C1=€3 €3 = —€3,  €3°€3= €
Alg te1-e1 = e1, e1-e3 = €2, €1-€3 = €3, €2-€] = €2 €2-€3 = €3, €2°€3 = €3,
€3:€1 =e€3, €363 = —€2, €3€3 = —€3;

A/9 ‘€1-€1=¢€1, €1 -€2=¢€3, €1-€3=¢€3, €€ =E€y,

€3 €1 = €3,€3 €3 = €3;
Allo €1-€1 = €1, €1 €y = €9, €1 -€e3 = €3, €9 €1 = €9, €3 - €1 = €3]
Alll €1 €1 = €1, €1 - €y = €9, €1 - €3 = €3, €9 €1 = €9

€2 €2 =€3, €3°€] = €3]
Ay iep-ep =e1, ej-ex=ey, e1-e3=e3, e3-€] =€y €3-€3= €,
~ €2 €3 =e€3, €3-€] = €3
Ay cer-ep=e1, ej-eg=ez, e1-e3=e3, e€3-€] =€,

€3 €1 = €3, €3 - €3 = €9.

O

~3 ~3 =3 -3 -3 .
Remark 4.14. It turns out that A’}, A’y, A’5, A’y, A’5 cannot be obtained
by twisting an associative algebra.
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5. Deformations and irreducible components of
Hom-associative algebras

In this section, we aim to discuss the geometric classification of H.Ass, and
UHAss,, for n = 2,3. To this end we use one parameter formal deformation
theory introduced first by Gerstenhaber for associative algebras and extended
to Hom-associative algebras in |2, 8.

Definition 5.1. Let (A, u, ) be a Hom-associative algebra. A formal
deformation of the Hom-associative algebra A is given by a K[[t]]-bilinear
map ¢ A[[t]] x A[[t]] — A[[t]] of the form p; = Y5 t'pti, where each p; is
a K-bilinear-map p; : Ax A — A (extended to be K[[t]]-bilinear) and o = u
such that, for x,y,z € A,

pe(pe(z,y), a(2)) = pe(al@), pe(y, 2))-

Suppose that (A[[t]], p1,4, c14) and (A[[t]], p7 4, ) ;) are Hom-associative
deformations of the Hom-associative algebras (A, u, ). They are said to be
equivalent if there exists a formal isomorphism between them, i.e., a K[[t]]-
linear map ¢y, compatible with both the deformed multiplications and the
deformed twisting maps, of the form ¢; = 3", t'w;, where the p;: A — A
are linear maps and ¢g = id4. Compatibility with the deformed multipli-
cations means that ¢y o uy = ' o (¢ ® @), compatibility with the twisting
maps means p; o oy = o 0 ;.

Proposition 5.2. Let 1, = ¢ touzo(p® @) and a1r = ¢ loagod.
If (A, po, a9) is Hom-associative, then (A[[t]], p1t, cu,e) is Hom-associative.

Proof. By straightforward computation, we have

p2(d(¢" o az 0 ¢(x)), dp " 0 pa(e(y), $(2)))
—¢> Ypa( 2 © (), pa(e(y), $(2)))
= ¢ pa(p2(e(z), 6(y)), az o ¢(2))
= ¢ pa(do ¢ (na(d(2), (), ¢ o ¢~ arg(2)))
= p1e (a2, y), a1,(2)).

p (o (w), pi(y, 2)) =

0

Definition 5.3. A Hom-associative algebra A is called formally rigid, if
every formal deformation of A is trivial. It is called geometrically rigid, if

its orbit () is open in H.Ass,. Then 9(y) is an irreducible component of
HASS,,.
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Remark 5.4. Any irreducible component C of H.Ass, containing A also

contains all degenerations of A. Indeed, we have ¥(u) C C so that ¥(p) is
contained in C, since C is closed.

Proposition 5.5. The irreducible components of HAsse are the Zariski
closure of orbits of Hom-associative algebras Q) = {AQ, A%}

A A

A4

Irreducible components of H.Asss.

Proposition 5.6. The irreducible components of HAss3 are the Zariski
closure of orbits of Hom-associative algebras Q) = {A%, A3, AS}.

3

Ay

Irreducible components of Asss.

Proposition 5.7. The irreducible components of UHAsss are the Zariski
closure of orbits of Hom-associative algebras ) = {A’Q7 Aﬁf}.

52
A

A’

52

-~
1

2 ,2
4 AS

Irreducible components of UH Asss.

Proposition 5.8. The irreducible components of UHAssg are the Zariski
closure of orbits of Hom-associative algebras

o 13 413 13 13 13 13 3
Q= {AQ 7A107 Allv A12a A137 A147 A15
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Irreducible components of UH Asss.

Proposition 5.9. The irreducible components of UAsss are the Zariski
closure of orbits of Hom-associative algebras 2 = {[1‘;’0, Ai)’4}.

~ 3
/A]2
~3
/ : ' \
RET TN

L,
AIO
3 J
9
~,3 /
A8 .
T A

Irreducible components of Asss.

>
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