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Existence of positive solutions to multi-point third
order problems with sign changing nonlinearities

ABDULKADIR DOGAN AND JOHN R. GRAEF

ABSTRACT. In this paper, the authors examine the existence of positive
solutions to a third-order boundary value problem having a sign chang-
ing nonlinearity. The proof makes use of fixed point index theory. An
example is included to illustrate the applicability of the results.

1. Introduction

Third-order differential equations arise in a variety of different areas of
applied mathematics and physics such as the deflection of a curved beam
having a constant or varying cross section, a three layer beam, electromag-
netic waves, gravity driven flows, etc. (see [10]). Anderson [1] proved the
existence of solutions to the third-order nonlinear boundary value problem
(BVP)

o(t) = f(t,z(t), t1<t<ts,
x(t1) =2/ (ta) =0, ~x(ts) + 62" (t3) =0,
by applying the Krasnosel’skii and the Leggett and Williams fixed point

theorems. Dogan [5] investigated the existence of positive solutions to the
multi-point problem

u" + M f(tbu) =0, 0<t<l,
m—2 m—2
u(0) =Y (&), W'(1)=Y Bal(&),
i=1 i=1

where & € (0,1), 0 < & < & < -+ < &p-2 < 1, a; B; € [0,00), and A is
a positive parameter. He used Krasnosel’skii’s fixed point theorem to give
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sufficient conditions for the existence of at least one positive solution to this
problem. Emphasis was put on the fact that the nonlinear term f could take
negative values.

Graef and Kong [8] studied the BVP consisting of a forced nonlinear third
order differential equation together with multi-point boundary conditions

(BC)
u"(t) = Mf(t, u(t)) + e(t), 0<t<l,

1
u(0) = o' (p) = / w(s)u(s)ds = 0,

where A > 0 is a parameter, 1/2 < p < ¢ < 1 are constants, f : (0,1) X
[0,00) = R, e:(0,1) - R, and w : [g,1] — [0, 00) are continuous functions
with e € L(0,1). They gave sufficient conditions for the existence of positive
solutions.

Henderson and Kosmatov [12] considered the third-order nonlinear BVP

u'(t) — f(t,u(t) =0, 0<t<l,
u(0) = u'(1/2) = 4" (1) = 0,
with a sign-changing nonlinearity. Li [15] studied the existence of single and

multiple positive solutions to the nonlinear singular third-order two-point
problem

u"' () + Aa(t) f(u(t) =0, 0<t<1,
u(0) =4/(0) = (1) = 0.
Using Krasnosel’skii’s fixed-point theorem, he established intervals on the
parameter A\ that yield the existence of at least one, at least two, and infin-
itely many positive solutions of the BVP.

Liu et al. [16] considered the existence of positive solutions to the third
order two-point generalized right focal BVP

2"(t)+ f(t,z(t) =0, a<t<b,
z(a) = 2'(a) = 2" (b) =0
and gave some new results for the existence of at least one, two, three, and
infinitely many monotone positive solutions. They also used Krasnosel’skii’s

fixed point theorem and the Leggett-Williams fixed-point theorem.
Sun and Zhao [22] considered the third order three-point problem

u(t) = f(tu(t), te(0,1],
u'(0) = u"(n) = u(1) =0,

where f € C([0,1] x [0, +00),[0,+00)) and i € [2 — +/2,1). Although the
corresponding Green’s function is sign-changing, they found the existence of
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a decreasing positive solution under some suitable conditions on f. Their
technique of proof involved using an iterative approach.
The third-order Sturm-Liouville BVP with a p-Laplacian

(dp(u" (1)) + f(t,u(t) =0, te(0,1),
au(0) — Bu’'(0) =0, ~yu(l) +6d'(1) =0, u"(0)=0,

was studied by Yang and Yan [26]. They proved the existence of at least one
or at least two positive solutions by using fixed point index theory.

Zhang et al. [27] studied the existence and uniqueness of nontrivial solu-
tions of the third-order eigenvalue problem

u" = Nf(tu,u'), 0<t<l,
u(0) = u'(n) = 4"(0) = 0.

Without requiring any monotone-type or nonnegative assumptions, they
found several sufficient conditions for the existence and uniqueness of non-
trivial solution for A in certain intervals. Their approach was based on the
Leray-Schauder nonlinear alternative. Zhou and Ma [28] showed the exis-

tence of positive solutions and established a corresponding iterative scheme
for the third-order generalized right-focal BVP

(dp(u")) = q(t) f(t,u(t), 0<t<1,
u(0) = (&), w'(n) =0, u'(1)=>_ pu"(6)
i=1 =1

by using the monotone iterative technique.
In [21], Sang and Su considered the problem

(")) +at)f(t,u(t) =0, 0<t<1,

m—2 m—2
P("(0) = > ap(u"(&)), w(0)=0, ul)=> bu(&),
i=1 =1

and gave sufficient conditions for the existence of one or two positive solu-
tions.

While recently the question of the existence of positive solutions to non-
linear BVPs has been studied extensively in the literature, (see, for example,
[1,2,3,4,5,6,7,9, 13, 16, 17, 15, 18, 19, 20, 23, 22, 25, 24, 28]), there are
relatively few results on the existence of positive solutions for third order
multi-point BVPs with sign changing nonlinearities (see [21]). Our purpose
here then is to consider the multi-point nonlinear third order problem

(G(u") +q®)f(t,u(t)) =0, 0<t<L, (1)

m—2 m—2
u<0>:2aiu(§i>, ¢(u”(0>>:2bi¢(u”(&>>, u'(1)=0, (2
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where ¢ : R — R is an increasing homeomorphism and homomorphism
with ¢(0) = 0.
A projection ¢ : R — R is called an increasing homeomorphism and
homomorphism if the following conditions are satisfied:
(i) if x <y, then ¢(x) < ¢(y) for all z, y € R;
(ii) ¢ is a continuous bijection and its inverse mapping is also continuous;
(ii}) 6(zy) = B()(y) for all z, y € R.
Throughout the paper, we assume that the following conditions are satis-
fied:

(H1) 0 < & < & < -+ < &pm2 < 1 and a;, b; € [0,+00) satisfy 0 <
S e <1,0< M <1, and 0 < Y2 ai(1— &) < 1

(H2) ¢ : [0,1] — [0,400) is continuous and there exists ty € (0,1) such
that q(tg) > 0;

(H3) f:]0,1] x [0,+00) — (—00, +00) is continuous with f(¢,0) > 0.

Motivated by the work described above, our aim is to give some existence
results for positive solutions to BVP (1)—(2). To the best of our knowledge,
there are still no results for the existence of positive solutions to BVP (1)—
(2) by using fixed point index theory. It is important to point out that the
nonlinear term f may change sign.

This paper is organized as follows. In Section 2, we present some lemmas
that will be used to prove our main results. In Section 3, we present the
main results in our paper; they generalize and extend corresponding works
in the references. At the end of the paper an example is included to illustrate
the results.

2. Preliminaries

To find positive solutions of BVP (1)—(2), the following fixed point theo-
rem in cones is fundamental.

Theorem 2.1 (see [11]). Let K be a cone in a Banach space X and D
be an bounded open subset of X with D = DNK # @ and D # K.
Let F : D — K be a completely continuous map such that uw # Fu for
u € ODg. Let i(F,Dg,K) denote a fized point index. Then the following
results are satisfied.
(A1) If |Ful| < ||ul|, v € 0Dk, then i(F, Dk, K) = 1.
(A2) If there exists e € K \ {0} such that u # Fu + e, u € 0D, and
A >0, then i(F, Dk, K) = 0.

(A3) Let U be open in X such that U C Dg. If i(F,Dg,K) = 1 and
i(F,Uk,K) = 0, then F has a fized point in Dg \ Ux. The same
result holds if i(F,Dg,K) =0 and i(F, Uk, K) = 1.

The following lemmas will play important roles in our proofs.
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Lemma 2.1. Let 1 — Y7 %a; # 0, 1 — Y.7"%b; # 0, and h € C[0,1].
Then u(t) is the unique solution of the BVP

(p(u")) +h(t) =0, 0<t<l, (3)

m—2 m—2
= am(&),  ¢@W'(0) =) bisw (&),  W(1)=0, (4)
i=1 i=1
if and only if

umzéb—@w%}A%mm+q>@+@uwa (5)

where
m72b f@
Cp == 0
1 m— 2 )
1-— Z b
1 s
Cy = —/ ¢! <—/ h(r)dr + Cl> ds,
0 0
_1 azfol i — S ( fO dT’+C'1)d
03 - m—2
1- Zz 1 W
B Y aiks fol ' (= Jy h(r)dr + C1) d
1- Z?llz @i

Proof. First, we prove the necessity. Integrating the differential equation
from 0 to t gives

S(u(1)) = — /O h(r)dr + Ci, (6)

-t <— /Ot h(r)dr + 01> .

Integrating from 0 to ¢, we have

u'(t) = /Ot ot <— /0 h(r)dr + Cl> ds + Cs. (7)

A final integration yields

u(t) = /0 (= 5! (- /0 Ch(r)dr + 01> ds+Cot+Cs. (8

Setting t = 0 and ¢t = &; in (6) gives ¢(u”(0)) = C; and

ie.,

&
S(u(€)) = —/0 h(r)dr + Ch.
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Setting ¢t = 1 in (7), we have

(1) :/01¢_1 <_ /Osh(r)dr+01> ds + Cs.

With ¢ = 0, (8) becomes

Similarly, we have

& s
u(&;) = / (& —s)p~ ! (—/ h(r)dr + 01> ds + C2&; + Cs.
0 0
Applying BC (4) gives
S b Jyt b(r)dr

CiL=— ,
1 I Sl
1 s
Cy = —/ ¢t <—/ h(r)dr + Cl> ds,
0 0
m—2 & s
O3 = Z a; [/ (52 - S)¢_1 <_/ h(T’)dT’ + Cl) ds + Cgfz + Cs|,
i=1 0 0
SO
Cn — S a6 — 8)¢ (= [ h(r)dr + C1) ds
’ 11—y %
Y Jy ¢~ (= J h(r)dr + C1) ds
11—y '
To prove sufficiency, let u be as in (5). Then
t s
u'(t) = / ¢! <_/ h(r)dr + Cl) ds + Co,
0 0
t
u'(t) = ¢~ </ h(r)dr + 01> :
0
and

S (1)) = — /O h(r)dr + Cy.

Differentiating again, we obtain (¢(u”)) = —h(t). Standard calculations
verify that u satisfies the BCs in (4), so that u given in (5) is a solution of
BVP (3)—(4). It can be readily seen that the BVP

m—2 m—2
(")) =0, u(0) =3 au(&), o) =3 bis((&), w(1)=0
i=1 =1
9)
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has only the trivial solution if
m—2 m—2
1= a;#0 and 1— ) b #0.
' i=1
Thus, w in (5) is the unique solution of BVP (3)—(4), and this completes the
O

proof of the lemma.
Lemma 2.2. Let (H1) hold and h € C|0,1] with h(t) > 0. Then, the
unique solution u of BVP (3)—(4) satisfies u(t) > 0 on [0, 1]. Moreover

inf u(t) > vul,

te€(0,1]
where
NI V: 5| =1 "aidi and |ul| = max |u(t)].
1= a(1 - &) te[0,1]
Proof. Let
wo(s) =~ (— / h(r)dr + 01> _
0
Since
m—2 ;
s s b [ h(r)dr
— hrdr—{—C:—/hrdr— 0 <0,
| wtwr e == [nin zm%

it follows that ¢p(s) < 0. For 0 <t <1,
t
)ds — fo (t — s)po(s)ds <.

<f0 (t—s)p ds) tfggoo(s
t 2

Now )
Jo(t = )po(s)ds o Jo (1= 8)po(s)ds
t - 1
=1,2,...,m— 2, we see that

for 0 <t <1, so for &, ¢
133 . 1
/0 (& — 8)po(s)ds > 511/0 (1 — s)po(s)ds.

Using Lemma 2.1 and (10), we obtain
12 ai& [y wo(s)ds

Yoy az fol & — s)po(s)ds — Y70

u= 1= e
o X aii Jy (1= s)eo(s)ds — S0 % aiks fy wo(s)ds
- 1=y e

_ _22_12 ai&; [y spo(s)ds -
1= a N
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and

1 1
um:Au—@%@w—Awmm

. S ai [5 (& — s)po(s)ds — S0 i [ pols)

172?;712 a;
1 1
ZAO—@%@*—A%NMS
Zz 1 algl fo 1_5 300( )dS—ZZ 1 azéz fo 900

+ -
1-Y"?a
! *a s
= —/ spo(s)ds — Zint Z&{g ;00 Z 0.
0 1=>" " a

If t € (0,1), we have
t 1
uwzéu—mmmw4émmm

_'_

ai [5' (& — s)po(s)ds — S aik fol ©o(s)

ds

1-3" % a;

1 1
zéu—@w@w—ﬂ¢wm8

| e i (& s)vo(s)ds — S5 ik Jy po(s)d

1-3"?a

1 1
> /0 (1 —8)po(s)ds —/0 wo(s)ds
Zz 1 alfl fO 1 - S)SOO( )dS - Zz 1 algl fo (700

_l’_

1->"%a
1
= —/ spo(s)ds — Licy al&;{? 42,00 2 0.
0 1= ai

Hence, u(t) > 0 for ¢t € [0, 1].
Now taking the derivative of (5) with respect to t, we obtain

u'(t) = /Ot ot (— /OS h(r)dr + C’1> ds + Co

_ [ ’ SR bi fgt h(r)dr
_/0 é 1(_/0 h(r)dr — 1-2&‘12@ >d8



MULTI-POINT THIRD ORDER PROBLEMS

1 s m—2
- / ot ( — [ h(r)dr— Lizi
0 0

117

bi [5" h(r)dr

1=
:_1262- Jo! h(r)dr

:_/Ot¢—1</osh(r)dr+z

1= 3%
1 s -2 i
—i—/o gbl(/o h(r)dr + le_blzfglgbr' dr)ds
i=1 Yi
_ [ S bi Jy' h(r)dr
= /0¢ /Oh(r)dr—l— 1_2?;_12@ ds
t s -2 i
+ /Ogi)_l(/o h(r)dr—}— _1)2:{?1 ory 7“>ds
1 S i
—i—/t ¢1(/0 h(r)dr + 162{2 s T)ds
1 s 2, J5t h(r)dr
= -1 h(r)d 0 ds > 0.
/t¢> <0 (r)r—l— —Zme >s>0
This implies
min u(t) =wu(0) and |lul| =u(l).
tel0,1]

It is easy to see that u'(t2) < u/(t1) for any t1,t5 € [0, 1] with t; < ¢5. Hence,
u'(t) is decreasing on [0,1], so the graph of w(t) is concave down on (0,1).
For each i € {1,2,...,m — 2}, we have

u() —u(0) _ u(l) —u(&)
1-0 - 1-&
ie.,
u(&i) — &u(l) > (1 = &)u(0),
so that
m—2 m—2 m—2
Z azu(fz) - Z azfz Z az 1 - gz
i=1 i=1 i=1

Applying the BC u(0) = >_7" _1 a;u(&;), we have

Zm* a;&i
1_21 1 al( 51)

This completes the proof of the lemma. O

u(0) >

u(1).
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3. Main results

In order to present our main results, we first define our Banach space, an
appropriate cone, and an operator. Let E = C[0,1]; then F is a Banach

space with respect to the norm || - || defined above. We take
K = {ue C0.1):u() 2 0. inf uft) = y]ul),
telo,

where 7 is given in Lemma 2.2. It is easy to see that K is a cone in C|0, 1].
For any constant p > 0, we define:

olt) = min{t, 1 — 1}, t € (0,1); (11)
K, ={ueK: ul < pk
Ky ={ue K : pplt) <ult) < p, t € [0,1]}
Q,={ue K: trer[l(i)ﬂ} u(t) < vp}.
Lemma 3.1 (see [14]). The set €, has the following properties:
(i) Q, is open relative to K;
(i) Kyp C Q) C Kp;
(iil) u € 99, if and only if ming(o 1) u(t) = vp;
(iv) If u € 09, then vp < u(t) < p fort € [0,1].

For convenience, we set

I ! -1 B a(q)
M_/o 10) (/0 q(r)dr+1—2?112bi>ds

12)
1 ~ [ a(q)
* 1- " % ;al&/o ¢ (/0 a(r)dr =+ — 2, a5,
and
1_ ! -1 B o(q)
5 —/0 s¢ (/0 q(r)dr + 7, *Z?:f bi) ds "
1 = Y a(q)
+1—Z?i_12ai ;azfz/o s¢ </0 q(r)d?“—{—il_zgi_lzbi ds,
where
m—2 &
= b; d
dCRDY | atwar

Also, for a € {07, 00}, we define

fe = limsup{ max f(t,u)}7

u—a tef0,1] ¢(u)
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fo = liminf{ min f(t,u)}’

u=a | te0,1] P(u)
Y = min{tg%q f;( ))- E[VP:P]},
Fowe = max{tglgf] f;t( 1;) [so(t)pm]},
f(tu

Our main result in this paper is contained in the following theorem.
Theorem 3.1. In addition to conditions(H1)-(H3), assume that one of
the following conditions holds:

ere exist p1, pa € (0,+00) with p1 < yp2 such that
(B1) Th p1, p2 € (0,+00) with p1 < ypy such th
(1) f(t,u(t)) >0 fort e [0,1] and u(t) € [p1p(t), +00), and
(i) S7,),, < B() for t € [0,1] and f53, > $(67);
ere exist p1, p2 € (0,400) with p1 < pa such that
B2) Th 0 h h th

(i) f(téU(t)) >0 fort €[0,1] and u(t) € [min{yp1, p2p(t)}, +-00),

(i) 23, > 6(6v) and £, < () for t € [0,1].
Then BVP (1)—(2) has at least one positive solution.

In oder to prove this theorem, first note that if we define the function f*
by

ftp1o(t), 0<u<pio(t),

for t € [0, 1], then it is easy to see that f*(t,u) € C(]0,1]x [0, +00), (0, +00)).
Consider the following modified BVP:

(")) +q@®)f(tut) =0,  te(0,1),
m—2 m—2
=Y (&), o'(0) =Y bip(u"(&)), w'(1)=0.
=1 =1
We define the operator F' : K — E by
(Fu)(t) = /Ot(t —s)p~t (- /0 q(r) f*(r,u(r))dr + él> ds + Cat + Cs,
where

G, — 2, Jo a(r) f*(ru(r ))dr’

1— 320,

Fltu) = {f(t, u), u > pr(t),
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Gy - _/01¢_1 (= [ a1 utrar + ) as,
Ci= 15 ! 1%[ la,/& ) (—/Osq(r)f*(r,u(r))dr+él)ds

—Zaz&/ (= [ anr et + &) as|.

We will need the following lemma in the proof of our main result.

Lemma 3.2. The function F : K — K is completely continuous.

Proof. First, we show that F'(K) C K. For each v € K it is easy to check
that F'u is nonnegative, concave, and nondecreasing on [0, 1]. Moreover, it
is clear that F'u satisfies (4). Hence, Lemma 2.2 implies that the Harnack
type inequality

inf (Fu)(t) > |[Full
te[0,1]
holds for v € K. Thus, F(K) C K.

Next, we prove that F' maps a bounded set into itself. Let ¢ > 0 be a
constant and v € K. = {u € K : ||u|| < c¢}. Note that the continuity of f*
guarantees that there is a L > 0 such that f*(¢,u(t)) < ¢(L) for ¢t € [0, 1].
Therefore, using also the notation

Zb/ q(r) f*(r,u(r))dr,

we get,
Ful|l = Fu(t
|Ful tgl[g>l<] u(t)
= 1—3¢1< q(r ())dT+C1>dS+ég+é3
0
1 —5)p ! q (ryu(r))dr — 70((1;:_)2 ds
0 1- Zi:l bi
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m—2 1 s
_ e [ o[- . __ogw)
;azfz /0 ¢ < /O q(r) f*(ru(r))dr 1_2?1_12@) ds]
1
_ —1 B * a(q,u)
- [ ( ) a2 m) ds

L s . o(q,u)

1= 7%
+ mgg I < [ atr s utear + 1_"(55‘)6) ds]
< | e < [ atsutryar + 1_";&) ds
+ 1_217,1:2 mgzjg /0 o ( /0 () u(r)dr
< L[/()lscb_l(/OSQ(T)d“F %)ds
+ %gaigi/ol¢1</Osq<r>dr+1_§;)_l2ai>ds]‘

That is, FK, is uniformly bounded.
Next, for any 1, t2 € [0,1], we have

[Putn) — Fu(ts)| = \ / - et (— I q(r)f*(r,U(r))errél) ds+Cot,
~ [t 907 (= [ atrrr et + &) s - Gt
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tl —1 s * U(q,u)
R O e e
1 S o u
[ o (— / q(r)f*(r,U(r))dr—l_g;n)zb) ds
=1 "7

t2 _ s % U(Qv u)
_/O (ty — s)p~? (—/0 q(r)f*(r,u(r))dr — 1—27”26) ds

=1

1 s o u
[ o (— / (J(r)f*(r,U(T))dr—l_gin)zb) ds
=1 7

1 S o
< L|t1 — to] [/0 qbl(/o q(r)dr + 1—2(3”‘)21)->d8
=1 "

Therefore, by the Arzela-Ascoli theorem, F'(K) is relatively compact.
Finally, we show that F : K. — K is continuous. Assume that {u,}°; C
K. and u,(t) converges to ug(t) uniformly on [0,1]. Thus, {(Fuy)(t)}>>,
is uniformly bounded and equicontinuous on [0,1]. By the Arzela-Ascoli
theorem, there is a uniformly convergent subsequence of {(Fuy,)(t)}52, say

{(Fup(my)(t) =1, that converges to v(¢) uniformly on [0, 1]. Observe that

= t —S)o — ’ Y F*(r u., (r T—M s
(Put) = [ >¢1< | a1ty 1_2&2@)6!

1 s o U,
—|—t/0 ¢—1<_/0 q(r)f*(r,un(r))dr—l_(z%mgb)ds
i=1 Y

1 m72‘ &i - o s )
| g o 6 (< [

— 0 as ty — to.

=1
_olgu) o
1=
m—2 1
i _l—sr*rurr—Ms

Along the subsequence u, () letting m — oo, we see that

_t_Sil—sT‘*T‘UT T—M S
o) = [ (=)0 ( | a1 Guatra 1_2?1_12@)01

1 s o U
+t w(- / Q(T)f*(r,UO(T‘))dT—l_%nElb>d5
i=1
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1 & s .
+1_z:m_12ai[1 1 al/ i —S) (—/0 q(r) f*(ryup(r))dr

7

o U(Qanqjgg ds
1=2057bi

m—2 1
& _l—sr*rur T—MS
—st/o ’ ( IR GG 1_2?:12@)4.

From the definition of F', we know that v(t) = Fug(t) on [0, 1]. This shows
that each subsequence of {Fu,(t)}>2, converges uniformly to (Fup)(t). So
the sequence {(F'uy,)(t)}52; uniformly converges to (Fug)(t). That is, F is
continuous at ug € K.. Since ug is arbitrary, F is completely continuous,
and this proves the lemma. ]

Proof of Theorem 3.1. Suppose that (B1) holds. We will show that the hy-
potheses of Theorem 2.1 are satisfied. First, we will show that

(P K K) = 1.

Notice that from (12) and the facts that f;l()tl)pl < ¢(p) and u # Fu for

u € 0K, for every u € 0K},

—/8 q(r) f*(ryu(r))dr + C, = _/8 o) F* (ry u(r))dr — cr(q,li)
0 0

we have

1 - Z;LZ bi
> —¢(p1) (1) [/0 q(r)dr + 1_;%]
i=1 Ui
so that
o(s)=¢ ! (— /OS q(r)f*(r,u(r))dr + C’l)
—prpgp " [/05 q(r)dr + = (;33 7 ]
Hence,
! 1
1Pl < — / T
&i - 1
[ al/ — s)p(s)ds — Zzl alfi/o gp(s)ds]

1 m—2 1
< —/0 p(s)ds — =y, Zazfz/o p(s)ds

i=1 @i ;=
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1 s ! -1 B Pdr a(q) s
—i—l_zm_lQaiiZ:azfz/o ) </0 q(r)d +1_Zm_12bi>d]

=p1 = [lul.
This implies that [|Ful| < |lul| for u € 9K} . Hence, it follows from part
(A1) of Theorem 2.1 that i(F, K, , K) = 1.
Next, we show that
i(F,Q,,, K) =0.
Let e =1 for t € [0, 1]; then e € 0K;. We claim that
u# Fu+Xe for ue€ 0Q,,, A>0.
If this is not the case, then there exist ug € 0€2,, and A9 > 0 such that
ug = Flug + Mge.

Then from (13) and the facts that 352 > ¢(6y) and u # Fu for u € 98,
we obtain

_ /OS q(r) f*(ryuo(r))dr + C~'1 ‘u:uo

- s P (e (r T—M
== [ a1 () T ST

< —d(p2)9(07) [/Os q(r)dr + 1_;(232[)]
i=1 Oi
so that

B(s) = 6! (— [ ato)frualryar + € \)

< —padyp! [/OSQ(T)dT + 1_;33_%] :
=1 7

For &,i=1,2,...,m — 2,

&i 1
/ (& —s)p(s)ds > 51/ (1 —s)p(s)ds.

0 0

Since
S

—/Sq(r)f*(ﬁUO(r))dTJrC’l lu=uo = —/ q(r) f* (r, uo(r))dr
0 0

U(Q?“O)
w2, =0,
1- Zi:l bi
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it follows that ¢(s) < 0. For 0 <t <1,

(fg(t - s)@(s)ds)l _ tfg P(s)ds — fg(t — 8)p(s)ds <0
t t2 -
Jot=9)@(s)ds _ fy (1= s)§(s)ds (14
t - 1 '
From (14), for &, i=1,2,3,...,m — 2, we have (see (10))
&i ~ & 1 R
[ 6= speas = § [a-e)s (15)

Using (15), we see that
uo(t) = Fuo(t) + Aoe(t)

1 ~ - ,
> /0 (1—s)p(s)ds — /0 @(s)ds + Tm
m—2 &i m—2 1
X (; ai/o (& — s)@(s)ds — ; aigi/o go(s)ds) + o
1 m—2 1
B 1—21m_2 /0 (1= 9)@(s)ds = 3 ai/o (1—s)@(s)ds
i=1 i=1

1 m—2 1 m—2 &
- / Pds + 3 a / Pleds + 3 a / (& — 5)@(s)ds
m—2 1
- ; aifi/o @(s)ds

+ Ao

i=1 i i=1

m—2 & m—2 1

# X a G- 9ptsds = ks [ als| +
i=1 i=1

1 o m—2 1
= 1_2?:2 . [—/0 sp(s)ds + ;az/o s@(s)ds

m—2 m—2 1

# X a G- 9ptsds = ks [ alds| +x
=1 =1
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m—2 1 m—2 1
i&i —s)p(s)ds — & 5(s)d A
+;a5/0<1 $)@(s)ds Zg/o B(s)ds| + o

Lo 1 s ! .
= _/0 s@(s)ds + Tm [ ; ai{i/o (1—s)p(s)ds
m—2 1
- ; ai&/o p(s)ds

o 1 m—2 o
= —/O S@(S)ds — Tyjaz [ Z alél/o 590(5)d5

i=1

1 s
> yp2d [/0 s¢p~! (/0 q(r)dr + 1_02-%)2()) ds + Ao
i=1 Vi

m—2

1 P L R, o(q) .
e D S R (/0 a(r)d +1—z;”12bi>d]

v =1

+ Ao

+ Xo

= vp2 + Ao.

This means that vps > vpa + Ao, which is a contradiction. Consequently, it
follows from Theorem 2.1(A2) that

i(F,Q,, K) =0.

Lemma 3.1(ii) and the fact that p; < ypo implies K,, C K, C Q,,. From
Theorem 2.1(A3), it follows that F' has a fixed point u; in Q,, \ K} . Now
uy ¢ K, implies u; < p1¢(t) or uy > p1. Moreover, u; < p1e(t) implies
f*(t,u) # f(t,u), so we have u; > p;1. Therefore, BVP (1)—(2) has a positive
solution.

If condition (B2) holds, the proof is similar. This completes the proof of
the theorem. O

The following results guaranteeing the existence of two positive solutions
are analogous to those above and are proved in a similar fashion.

Theorem 3.2. In addition to (H1)-(H3) assume that one of the following
conditions holds:
(C1) There exist p1, p2, p3 € (0,400) with p1 < yp2 and py < p3 such
that
(i) f(t,u(t)) >0 fort € [0,1] and u(t) € [p1o(t),+00), and
i) /2 < 9(u) for t € [0,1], f£3 > 6(67), and u # Fu for al
u € 0Qpa, and ch?t)p:; < o(p).
(C2) There exist p1, p2, p3 € (0,+00) with py < pa < yp3 such that

() 76, u(t) > 0 for t € 0.1] and u(t) € bnin{rp1, (8}, +90),
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(i) £ = 6(07), 1%, < 60 for t € 0,1, w # Fu for all
u € 0Qpa, and fw3 > gb(&y).
Then the BVP (1)- (2) has two positive solutions.

Corollary 3.1. Assume that (H1)-(H3) hold and there exist p', p €
(0, +00) with p' < vp such that one of the following assumptions holds:

(D1) (1) f(t,u(t)) >0 fort e [0,1] and u(t) € [p'o(t), +00), and
(ii) fgltp < ¢(p) fort € [0,1], 5y > ¢(67), u # Fu for all u €
00p, and 0 < f° < p(u).
(D2) There exist p, p € (0,400) with p' < p such that
(i) f(t,u(t)) > 0 fort € [0,1] and u(t) € [min{vyp', pp(t)}, +o0),

and
(i) 2, > 6(67), f2p, < o) for t € [0,1], u # Fu for all u €
0Np, and ¢(9) < foo < 00.
Then (1)—(2) has two positive solutions.

4. Application

As an example, consider the problem

(‘b(u”))/ + f(t7 u(t)) =0, te (07 1), (16)
w(0) = Ju(3), BW(0) = SO (), WM=0, (7
where
—u?, u<0,
Plu) = {uQ, u > 0,
feu L1 4+1) (u(t) 10} P dr0<u<s,
yu) =
%(1—}—75)(3—@)1 , for u > 3,
f(t,0) =0, and ¢ is defined in (11). It is

It is easy to see that f : [0, 1]x[0, +00) —
(—00,+00) is continuous. With ¢(t) =1, & = 1, a1 = %, and by =
calculations show that

1
a1y 7 X

vT= 1
Z

l—a(1—&) 1-
1 1

; — /O¢ < 151 >d + a1£1/ ¢! <s—|—1bi€zl>ds
_ /01<8+;>§d3+; ( > ds ~ 0.9979,

— /013q§—1 (s 11511) >d s+ 17 L alfl/ st <S+1bi€ll)1>d8

SR
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1
1 1\ 1/ 1\ 2
= —| d — — ds ~ 0.5512.
/08 5+3 s+9/os<s+3> S

Hence, p =~ 1.0021 and § ~ 1.8142. Choosing p; = 1 and p2 = 20, it is easy
to see that 1 = p; < yp2 = % x 20 = 2, f(t,u(t)) > 0, for t € [0,1] and
u(t) € [p(t), +00), and f satisfies

ft,u) 2 _
blp = max) max o= iu € [p(t)pn p] ¢ = 3~ 0606667
< ¢(p) = p? = (1.0021)% = 1.0042,
- ) 513
T = ming i g ezl o = S 120170

112
> 9(07) = (67)% = (1.8142 X To) ~ 0.0329.

Thus, condition (B1) of Theorem 3.1 is satisfied, so the BVP (16)—(17) has
at least one positive solution.
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