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Quantitative versions of almost squareness and

diameter 2 properties

Eve Oja , Natalia Saealle, and Indrek Zolk

Abstract. We introduce a quantitative version (using s ∈ (0, 1]) of
almost (local) squareness of Banach spaces. The latter concept (i.e.,
the s = 1 case) was introduced by Abrahamsen, Langemets, and Lima
in 2016. Related diameter 2 properties (local, strong, and symmet-
ric strong) are also relaxed correspondingly. Our note contains some
(counter-)examples and results for the s-almost (local) squareness prop-
erty.

1. Concepts

Almost square Banach spaces were introduced by Abrahamsen et al. [1] in
2016. These spaces have already got quite a lot of attention in the literature;
see, e.g., [15] for results and references.

Let X be a Banach space over R and let SX denote its unit sphere, BX
its closed unit ball and X∗ its dual space. Following [1], we say that X is
almost square (ASQ) if for every �nite subset {x1, . . . , xn} of SX and every
ε > 0, there exists y ∈ SX such that ‖xi + y‖ 6 1 + ε for all i = 1, . . . , n.

Also, following [1], X is called locally almost square (LASQ) if for every
x ∈ SX and every ε > 0, there exists y ∈ SX such that ‖x± y‖ 6 1 + ε.

De�nition 1.1. Let s ∈ (0, 1]. A Banach space X is s-locally almost
square (s-LASQ) if for every x in SX and for every ε > 0 there exists y ∈ SX
such that

‖x± sy‖ 6 1 + ε.

Note that 1-LASQ means precisely LASQ.
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De�nition 1.2. Let s ∈ (0, 1]. A Banach space X is s-almost square
(s-ASQ) if for every �nite family x1, . . . , xn in SX and for every ε > 0 there
exists y ∈ SX such that

‖xi + sy‖ 6 1 + ε, i = 1, . . . , n.

Note that 1-ASQ means precisely ASQ. As in the case of the ASQ property,
we can have for free the plus-minus sign in the de�nition of the s-ASQ prop-
erty since we can take −xi together with xi in the �nite family of elements
from SX .

Note that the LASQ property occurs in [12], a paper by P. Harmand and
Å. Lima from 1984, in the proof of the Harmand�Lima theorem: ifX is a non-

re�exive M -ideal in its bidual X∗∗, then X contains almost isometric copies

of c0. The Harmand�Lima theorem has been re�ned in [1] as follows: every
ASQ space X contains almost isometric copies of c0, and every non-re�exive

X which is M -ideal in X∗∗, is ASQ. To complement [1], let us remark that
the result [1, Corollary 2.3] that every LASQ space contains almost isometric

copies of `2∞, is present in the Harmand�Lima proof.
The LASQ property was �rst isolated and used in 2014 in [14] under the

notation of points of uniformly non-squareness.

Recall that a set S(x∗, α) = {x ∈ BX : x∗(x) > 1 − α} (where x∗ ∈ SX∗
and α > 0) is called a slice of BX . According to [2], a Banach space X has
the local diameter 2 property (LD2P) if every slice of BX has diameter 2, and
the strong diameter 2 property (SD2P) if every �nite convex combination of
slices has diameter 2.

If, for a �nite family of slices S1, . . . , Sn of BX , and for a number ε > 0,
there exist elements xi ∈ Si (i = 1, . . . , n) and an element y ∈ BX with
‖y‖ > 1 − ε such that xi ± y ∈ Si for all i, then X is said to have the
symmetric strong diameter 2 property (SSD2P). This property was de�ned
in [4] and was considered in [2, Lemma 4.1]. Very recently, SSD2P has been
further characterized and investigated [11].

In 1988, Deville [9] investigated the following property that for the case
d = 2 is equivalent to SD2P.

De�nition 1.3. Let d ∈ (0, 2]. A Banach space X has the strong diameter
d property (SD(d)P) if the diameter of every convex combination of slices of
BX is greater than or equal to d.

The respective generalization of LD2P is the following.

De�nition 1.4. Let d ∈ (0, 2]. A Banach space X has the local diameter
d property (LD(d)P) if the diameter of every slice of BX is greater than or
equal to d.

The symmetric version of SD(d)P is the following.
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De�nition 1.5. Let d ∈ (0, 2]. A Banach space X has the symmetric
strong diameter d property (SSD(d)P) if whenever n ∈ N, S1, . . . , Sn are
slices of BX , and ε > 0, there exist elements xi ∈ Si (i = 1, . . . , n) and an
element x ∈ BX , ‖x‖ > 1− ε, such that xi ± d

2x ∈ Si for every i = 1, . . . , n.

The relations between these properties are as follows. (The case d = 2 was
treated already in [2, Lemma 4.1].)

Proposition 1.6. The property SSD(d)P implies SD(d)P, which, in turn,
implies LD(d)P.

Proof. For the �rst implication, let a set S =
∑n

i=1 λiSi be a convex com-
bination of slices Si = S(x∗i , αi). By SSD(d)P, for every i ∈ {1, . . . , n} and
ε > 0, there exist elements xi ∈ Si and x ∈ BX such that ‖x‖ > 1 − ε and
xi ± d

2x ∈ Si. Therefore

diamS >

∥∥∥∥∥
n∑
i=1

λi

(
xi +

d

2
x

)
−

n∑
i=1

λi

(
xi −

d

2
x

)∥∥∥∥∥ > d(1− ε),

implying that diamS > d.
The second implication is clear from the de�nitions. �

The LD2P/SD2P case of the following result is known due to [14] (see also
[1, Proposition 2.5]).

Proposition 1.7. Let X be a Banach space. Let s ∈ (0, 1].

(a) If X has the s-LASQ property, then X has the LD(2s)P.
(b) If X has the s-ASQ property, then X has the SSD(2s)P.

Proof. First, we prove (b).
Let Si = S(x∗i , αi) (in this proof, we always have i = 1, . . . , n) be slices of

BX and let ε > 0. Denote δ = min
{

1
4α1, . . . ,

1
4αn, ε

}
. For every functional

x∗i there exists an element yi ∈ SX such that x∗i (yi) > 1− δ. By the s-ASQ
property of X, for the �nite family of elements ±y1, . . . ,±yn ∈ SX there
exists y ∈ SX such that ‖yi ± sy‖ < 1 + δ.

Note that

±xi∗(sy) = −x∗i (yi) + x∗i (yi ± sy) < (δ − 1) + (1 + δ) = 2δ.

Therefore, for the elements xi = yi
1+δ and x = y

1+δ we have

‖x‖ = ‖xi‖ =
1

1 + δ
< 1

and
‖x‖ > 1

1 + ε
> 1− ε.

Now, the elements xi ± sx belong to the respective slices Si. Indeed,

x∗(xi ± sx) >
(1− δ)− 2δ

1 + δ
> 1− 4δ > 1− αi.
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The conditions of the SSD(2s)P for X have been ful�lled.
For the assertion (a), we read the last proof with n = 1. After that,

we read the proof of (�rst implication of) Proposition 1.6 with n = 1 and
λ1 = 1. �

2. Some results

In this section we rewrite some results on the ASQ property in the s-ASQ
setting.

Let r, s ∈ (0, 1]. Recall that a closed subspace Y of X is called anM(r, s)-
ideal in X if there exists a norm one projection P on X∗ with kerP = Y ⊥ =
{x∗ ∈ X∗ : x∗|Y = 0} and r‖Px∗‖+ s‖x∗ − Px∗‖ 6 ‖x∗‖ for all x∗ ∈ X∗.
M(r, s)-ideals were introduced by Cabello and Nieto [7] in 1998.

M -ideals are precisely M(1, 1)-ideals. A number of examples of M(r, s)-
ideals can be found in [8].

It is said that Y is an almost isometric ideal (ai-ideal) in X [3] if for
every �nite dimensional subspace E of X and every δ > 0 there exists a
linear operator U : E → Y such that Ue = e for every e ∈ E ∩ Y and
(1 + δ)−1‖e‖ 6 ‖Ue‖ 6 (1 + δ)‖e‖ for all e ∈ E.

Note that a Banach space Y is always an ai-ideal in its bidual Y ∗∗.

The following result is a quantitative version of [1, Theorem 4.2].

Theorem 2.1. Let Y be a proper ai-ideal in an in�nite-dimensional
Banach space X, and let s ∈ (0, 1]. If Y is an M(1, s)-ideal in X, then
Y is s-ASQ.

Proof. We follow the scheme of the proof for M -ideals due to Harmand and
Lima [12, proof of Theorem 3.5], formalized in [1, Theorem 4.2]. However,
we do it in a bit smoother way.

Assuming that Y is an M(1, s)-ideal in X, let P be a corresponding ideal
projection on X∗. Then ‖P‖ = 1, kerP = Y ⊥, and X∗ = ranP ⊕kerP with

‖Px∗‖+ s‖x∗ − Px∗‖ 6 ‖x∗‖, x∗ ∈ X∗.
Hence X∗∗ = kerP ∗ ⊕ ranP ∗ with ranP ∗ = (kerP )⊥ = (Y ⊥)⊥ = Y ⊥⊥.
Since Y 6= X, we have that kerP ∗ 6= {0}. Choose any x∗∗ ∈ SkerP ∗ .

Let y1, . . . , yn ∈ SY and let ε > 0. Choose δ > 0 such that (1 + δ)2 6
1 + ε. Applying �rst the principle of local re�exivity to the subspace E =
span{y1, . . . , yn, x

∗∗} of X∗∗ provides us a local re�exivity operator S : E →
X. Applying then the de�nition of an ai-ideal to the subspace S(E) of X
provides us an operator T : S(E) → Y such that U = TS : E → Y satis�es
the conditions

Ue = e, e ∈ E ∩ Y
and

(1 + δ)−1‖e‖ 6 ‖Ue‖ 6 (1 + δ)‖e‖, e ∈ E.
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Put y = Ux∗∗

‖Ux∗∗‖ . Then y ∈ SY . We shall verify that ‖yi + sy‖ 6 1 + ε for all
i = 1, . . . , n.

Firstly, let us show that ‖yi + sx∗∗‖ 6 1. Let x∗ ∈ X∗ be arbitrary. Since
yi ∈ SY ⊂ ranP ∗ and x∗∗ ∈ SkerP ∗ , we have

|(yi + sx∗∗)(x∗)| = |(Px∗)(yi) + sx∗∗(x∗ − Px∗)|
6 ‖Px∗‖+ s‖x∗ − Px∗‖ 6 ‖x∗‖

as needed.
Secondly, using that 1 + δ > ‖Ux∗∗‖−1 > (1 + δ)−1 > 1− δ, we have∥∥∥∥ x∗∗

‖Ux∗∗‖
− x∗∗

∥∥∥∥ =

∣∣∣∣ 1

‖Ux∗∗‖
− 1

∣∣∣∣ 6 δ.
Putting these inequalities together implies that

‖yi + sy‖ =

∥∥∥∥U (yi + s
x∗∗

‖Ux∗∗‖

)∥∥∥∥
6 (1 + δ)

(
‖yi + sx∗∗‖+ s

∥∥∥∥ x∗∗

‖Ux∗∗‖
− x∗∗

∥∥∥∥)
6 (1 + δ)(1 + sδ) 6 (1 + δ)2 6 1 + ε.

�

The s-ASQ analogues of [1, Lemma 2.2] and [1, Theorem 2.4] go as follows.

Lemma 2.2. If x, y ∈ SX are such that ‖x ± sy‖ 6 1 + ε, then for all
scalars α, β the following estimate holds:(

1

2− s
− ε
)

max{|α|, |β|} 6 ‖αx+ βy‖ 6 (2− s+ ε) max{|α|, |β|}.

Theorem 2.3. If X has the s-ASQ property, then for every �nite dimen-
sional subspace E ⊆ X and every ε > 0 there exists y ∈ SX such that for all
scalars λ and all x ∈ E(

1

2− s
− ε
)

max{‖x‖, |λ|} 6 ‖x+ λy‖ 6 (2− s+ ε) max{‖x‖, |λ|}.

In Remark 3.4, we shall see that the bounds in Lemma 2.2 (hence also in
Theorem 2.3) cannot, in general, be improved.

Proof of Lemma 2.2. We may assume s < 1 since s = 1 has already been
treated in [1]. We can also assume that ε is small enough.

First note that

2 = ‖(x+ sy) + (x− sy)‖ 6 ‖x± sy‖+ 1 + ε,

hence
‖x± sy‖ > 1− ε. (1)
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It is clear that if α = 0 or β = 0 the lemma holds.
Case |β| > |α| > 0. We need to show that

1

2− s
− ε 6 ‖γx± y‖ 6 2− s+ ε,

where γ =
∣∣∣αβ ∣∣∣ ∈ (0, 1]. By the triangle inequality, we get

‖γx± y‖ = ‖γ(x± sy)± (1− γs)y‖ 6 γ(1 + ε− s) + 1 6 2− s+ ε.

For γ > 1
2−s we have (due to (1))

‖γx± y‖ =
1

s
‖γsx± sy‖ =

1

s
‖x± sy − (1− γs)x‖

>
1

s
(1− ε− (1− γs)) = γ − 1

s
ε >

1

2− s
− ε.

The last inequality holds as it is equivalent to

ε 6
s

1− s

(
γ − 1

2− s

)
.

For γ 6 1
2−s we have

‖γx± y‖ = ‖(1 + γs)y ± γ(x∓ sy)‖ > 1 + γs− γ(1 + ε) >
1

2− s
− γε.

Case |α| > |β| > 0. Denote δ =
∣∣∣βα ∣∣∣ ∈ (0, 1). We shall show that

1

2− s
− ε 6 ‖x± δy‖ 6 2− s+ ε.

We have

‖x± δy‖ = ‖δ(x± sy) + (1− δ)x± δ(1− s)y‖
6 δ(1 + ε− 1 + 1− s) + 1 6 2− s+ ε

and

‖x± δy‖ =
δ

s

∥∥∥(1 +
s

δ

)
x− (x∓ sy)

∥∥∥ > δ

s

(
1 +

s

δ
− 1− ε

)
> 1− ε

s
>

1

2− s
− ε.

The last inequality holds as it is equivalent to ε 6 s
2−s . �

Proof of Theorem 2.3. The argumentation is an adapted version of that in
[1]. We take an ε

2 -net {x1, . . . , xN} of SE . Due to the s-ASQ-ness of X, we
can �nd y ∈ SX such that

1− ε

2
6 ‖xi ± sy‖ 6 1 +

ε

2
.

Now, for a x ∈ SE , �nd i such that ‖x− xi‖ 6 ε
2 , hence

1− ε 6 ‖xi ± sy‖ − ‖x− xi‖ 6 ‖x± sy‖ 6 ‖xi ± sy‖+ ‖x− xi‖ 6 1 + ε.
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By using Lemma 2.2 we obtain the result. �

Remark 2.4. Arguing analogously to [1, Theorem 2.4], one can prove more
in Theorem 2.3: we can have that, for any �nite dimensional subspace F ⊆
X∗ the element y can be taken so that s|f(y)| 6 (1 − s + ε)‖f‖ for every
f ∈ F .

(Unlike in the 1-ASQ case, in the general s-ASQ case such reasoning does
not allow |f(y)|

‖f‖ to be arbitrarily small.)

A slight generalization of the argument in [1, Lemma 5.5] yields the fol-
lowing result.

Proposition 2.5. Let X and Y be nontrivial Banach spaces. Then X⊕1Y
fails the s-ASQ property for any s ∈ (0, 1].

Proof. Let Z = X ⊕1 Y , x ∈ SX , y ∈ SY . Consider the elements z1 =
(−tx, (1 − t)y) and z2 = ((1 − t)x,−ty) from SZ where the exact value of
t ∈ (0, 1) will be clari�ed later. Assume that there is a w = (wx, wy) ∈ SZ
with ‖zi ± sw‖ 6 1 + ε for a certain small ε. Then

s‖wx‖+ ‖(1− t)y‖ 6 1

2
‖ − tx+ swx‖+

1

2
‖tx+ swx‖

+
1

2
‖(1− t)y − swy‖+

1

2
‖(1− t)y + swy‖

6 max{‖z1 + sw‖, ‖z1 − sw‖} 6 1 + ε.

Hence s‖wx‖ 6 1 + ε− (1− t) = t+ ε. Similarly s‖wy‖ 6 t+ ε, giving

s‖w‖ 6 2(t+ ε).

A contradiction has been reached if

2(t+ ε) < s.

It su�ces to take, e.g., t = ε = s
5 . �

The following proposition is a s-LASQ version of [1, Proposition 5.7(i),(iii)].

Proposition 2.6. Let X and Y be nontrivial Banach spaces. The direct
sum Z = X⊕∞ Y is s-ASQ (s-LASQ) if and only if either X or Y is s-ASQ
(s-LASQ).

Proof. We only prove the s-ASQ case � the s-LASQ case follows similarly.
Necessity. Assume that the sum Z = X ⊕∞ Y is s-ASQ. Suppose to

the contrary that neither X nor Y is s-ASQ. Thus there are �nite families
x1, . . . , xn ∈ SX , y1, . . . , ym ∈ SY , and ε > 0 such that for every x ∈ SX
there exists an index k ∈ {1, . . . , n} and for every y ∈ SY there exists an
index l ∈ {1, . . . ,m} such that

‖xk + sx‖ > 1 + ε (2)
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and
‖yl + sy‖ > 1 + ε. (3)

Suppose that m > n. Denote xi = 0 for i = n+ 1, . . . ,m. Consider a family
zi = (xi, yi), i = 1, . . . ,m. By our assumption, there is a z = (u, v) ∈ SZ
such that

‖zi + sz‖ 6 1 + ε (4)

for every i = 1, . . . ,m. The condition z ∈ SZ implies u ∈ SX or v ∈ SY . In
the case u ∈ SX the inequality (4) is in contradiction with condition (2). In
the case v ∈ SY we get contradiction with (3).

Su�ciency. Suppose that X is s-ASQ. Let zi = (xi, yi) ∈ SZ for i =
1, . . . , N and let ε > 0. We may assume that xi 6= 0 for i = 1, . . . , N . As
X is s-ASQ, there exists u ∈ SX such that

∥∥∥ xi
‖xi‖ + su

∥∥∥ 6 1 + ε for every
i = 1, . . . , N . Then

‖xi + su‖ =

∥∥∥∥‖xi‖( xi
‖xi‖

+ su

)
+ su(1− ‖xi‖)

∥∥∥∥ 6 ‖xi‖(1 + ε) + s(1−‖xi‖)

= (1 + ε− s)‖xi‖+ s 6 1 + ε.

Put z = (u, 0) ∈ SZ . Now we have

‖zi + sz‖ 6 max{‖xi + su‖, 1} 6 1 + ε

for every i = 1, . . . , N and Z is s-ASQ. �

Every (non-separable) s-ASQ space is saturated with separable s-ASQ
subspaces, as is shown by the next result.

Proposition 2.7. Let X have the s-ASQ property. For every separable
subspace Y of X there exists a separable subspace Z having property s-ASQ
such that Y ⊂ Z ⊂ X.

We omit the proof as it is an almost verbatim copy of the proof of [1,
Proposition 6.5] (only s must be added in front of every y).

3. Examples

Let λ ∈ (0, 1); we denote s = 1− λ. We consider an equivalent renorming
of c0 due to Johnson and Wolfe [13]: let

‖(ak)‖ = sup

{
|a1|
λ
, |a1 − a2|, |a1 − a3|, . . .

}
, (ak) ∈ c0, (5)

and denote c0 with respect to the norm (5) by c0,λ.
Note that the information from [8, Example 4.3] together with [8, Corollary

2.4] and Theorem 2.1 shows that c0,λ has the 1−λ
1+λ -ASQ property. However,

we can say more.
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Proposition 3.1. The space c0,λ has the s-ASQ property.

Proof. Take elements xi ∈ Sc0,λ , i = 1, . . . , n, and a number ε > 0. Now there
exists a natural number N such that ‖xi − PNxi‖ 6 ε for all i = 1, . . . , n
where Pn, n ∈ N, are the partial sum projections associated to the unit vector
basis (en)∞n=1 of c0,λ.

Denote y = eN+1, then ‖y‖ = 1 and ‖PNxi + sy‖ 6 1 for all i = 1, . . . , n.
Indeed, let xi = (ξik)

∞
k=1, then |ξi1| 6 λ and |ξi1 − ξik| 6 1 for all k ∈ N and

i = 1, . . . , n, and PNxi + sy = (ξi1, . . . , ξ
i
N , s, 0, 0, . . .). Now

‖PNxi + sy‖ = max

{
|ξi1|
λ
, |ξi1 − ξi2|, . . . , |ξi1 − ξiN |, |ξi1 − s|, |ξi1|

}
6 max{1, λ} = 1

since |ξi1 − s| 6 λ+ s = 1. �

Proposition 3.2. The space c0,λ fails the s̃-LASQ property for any s̃ ∈
(s, 1].

Proof. Fix a number s̃ ∈ (s, 1]. Consider an element x = (λ, 0, 0, . . .) ∈ c0,λ,
then ‖x‖ = 1. Fix a number ε > 0 such that ε < s̃ − s. Assume that there
exists an element y = (ηn) ∈ c0,λ, ‖y‖ = 1, such that ‖x± s̃y‖ 6 1 + ε. Since
x± s̃y = (λ± s̃η1,±s̃η2,±s̃η3, . . .), we have∣∣∣∣1± s̃

λ
η1

∣∣∣∣ =
|λ± s̃η1|

λ
6 1 + ε,

therefore |η1|λ 6 ε
s̃ < s̃−s

s̃ < 1. Now, as ‖y‖ = 1, |η1|λ < 1, and |η1 −
ηn|→n |η1| < λ, there exists an index m such that |η1−ηm| = 1. If η1−ηm =
1, then

1 + ε > ‖x+ s̃y‖ > |λ+ s̃η1 − s̃ηm| = λ+ s̃ = 1− s+ s̃ > 1 + ε,

a contradiction. The case ηm− η1 = 1 is treated similarly, using the element
x− s̃y. �

Remark 3.3. Propositions 3.1 and 3.2 show that the Johnson�Wolfe spaces
c0,λ o�er exact examples in the full scale of the s-ASQ property (where
s ∈ (0, 1)). (An example for 1-ASQ=ASQ is, of course, c0.) Also note that
if s̃ ∈ (0, 1) is such that s̃ > s, then the space c0,1−s has the s-ASQ property,
but fails even the s̃-LASQ property, hence fails the s̃-ASQ property, hence
fails the (L)ASQ property.

Remark 3.4. Due to the spaces c0,λ, the bounds 1
2−s and 2− s in Lemma

2.2 and Theorem 2.3 cannot be improved. Indeed, take x = (λ, 0, 0, . . .) and
y = (0, 1, 0, 0, . . .). Clearly x, y ∈ Sc0,λ and ‖x± sy‖ = 1. Now,

‖x− y‖ = ‖(λ,−1, 0, . . .)‖ = max{1, 1 + λ} = 1 + λ = 2− s,
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‖x+ (2− s)y‖ = ‖(λ, 1 + λ, 0, . . .)‖ = 1 =
1

2− s
·max{1, 2− s}.

Proposition 1.7 yields that the space c0,λ also has the SSD(2(1−λ))P. The
following result shows that it even has the SSD2P, hence also the SD2P.

Proposition 3.5. The space c0,λ has the SSD2P.

Proof. We are going to use [11, Theorem 2.1 (a)⇔(d)]: a Banach space X
has the SSD2P i�, for every n ∈ N and every x1, . . . , xn ∈ X, there exist
nets (yiα) ⊂ SX and (zα) ⊂ SX such that yiα → xi weakly, zα → 0 weakly,
and ‖yiα ± zα‖ → 1 for all i = 1, . . . , n.

So we have the elements xi = (ξik)
∞
k=1 ∈ c0,λ, i = 1, . . . , n. Denote yiN =

xi+(ξi1−ξiN )eN . Choose an index N ′ such that, for all i, we have |ξiN | <
1−λ

2

if N > N ′. Hence, if N > N ′, then |ξi1 − ξiN | < λ + 1−λ
2 < 1, therefore the

equality

‖xi‖ = sup

{
|ξi1|
λ
, |ξi1 − ξi2|, . . . , |ξi1 − ξiN |, . . .

}
= 1

implies

‖yiN‖ = sup

{
|ξi1|
λ
, |ξi1 − ξi2|, . . . , |ξi1 − ξiN−1|, 0, |ξi1 − ξiN+1|, . . .

}
= 1.

We also have that eN → 0 weakly, yiN → xi weakly, and

‖yiN ± eN‖ = 1

because
∣∣ξi1 − (ξi1 ± 1

)∣∣ = 1.
We have veri�ed that the nets (yiN )N>N ′ and (eN )N>N ′ suit to the role of

(yiα) and (zα), respectively. �

The paper [8] o�ers yet another equivalent renorming of c0. Fix a µ ∈ (0, 1)
such that µ =

∑
n µn where µn > 0 for every n. Denote č0 = (c0, ‖ · ‖) where

‖(an)‖ = sup
n

(
|an|+

n∑
k=1

µk|ak|

)
.

The �s-LASQ� analysis of č0 remains inconclusive here, but some remarks
will be made. We denote

s = 1−
∑
k

µk
1 + µk

∈ (0, 1).

Let the unit vector basis of č0 be denoted by (en)∞n=1 where

en =

(
0, . . . , 0,

1

1 + µn
, 0, . . .

)
.
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Note that the information from [8, Example 4.4] together with [8, Corollary
2.4] and Theorem 2.1 shows that č0 has the (1−µ)-ASQ property. However,
we can say more.

Proposition 3.6. The space č0 has the s-ASQ property.

Proof. We follow the scheme of the proof of Proposition 3.1. Take elements
x1, . . . , xn ∈ Sč0 and a number ε > 0. There exists a natural number N such
that ‖xi − PNxi‖ 6 ε for all i = 1, . . . , n where Pm, m ∈ N, are the partial
sum projections associated to the unit vector basis em, m ∈ N, of č0.

Denote y = eN+1, then ‖y‖ = 1 and ‖PNxi + sy‖ 6 1 for all i = 1, . . . , n.
Indeed, let xi = (ξik)

∞
k=1, then ‖PNxi + sy‖ is the maximum of numbers (we

let j = 1, . . . , N)

(1 +µj)|ξij |+
j−1∑
k=1

µk|ξik|,
1 + µN+1

1 + µN+1
s+

N∑
k=1

µk|ξik|,
µN+1

1 + µN+1
s+

N∑
k=1

µk|ξik|.

Since

s+

N∑
k=1

µk|ξik| 6 1− µ+

N∑
k=1

µk
1 + µk

< 1,

we have ‖PNxi + sy‖ 6 1. �

Proposition 3.7. For any k, for s̃ ∈
(

1
1+µk

, 1
]
, the space č0 fails the

s̃-LASQ property.

Proof. Let s̃ > 1
1+µk

for some index k. Take x = ek ∈ Sč0 . We denote
y = (an), ‖y‖ = 1, and prove that ‖x ± s̃y‖ 6 1 + ε for a small ε > 0 is
impossible.

Let m be an index, m > k, for which
m−1∑
j=1

µj |aj |+ (1 + µm)|am| > 1− ε.

Let ak > 0. Now

‖x+ s̃y‖ > µk
1 + µk

+ s̃akµk +
m−1∑
j=1
j 6=k

µj s̃|aj |+ (1 + µm)s̃|am|

>
µk

1 + µk
+ s̃(1− ε) > 1 + ε,

as the last inequality is equivalent to ε < 1
1+s̃ ·

(
s̃− 1

1+µk

)
.

For ak < 0, we analogously show that ‖x− s̃y‖ > 1 + ε. �

We do not have the answer on the s̃-ASQ-ness of č0 for any s̃ > s. However,
the next proposition pushes the lower bound towards s.
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Proposition 3.8. Let k and p be natural numbers such that k > p and

R(p, k) = 1− 1∏k
j=1(1 + µj)

−
p∑
i=1

µi
1 + µi

> 0.

Let

s̃ > 1−
p∑
j=1

µj
1 + µj

.

Then č0 fails the s̃-ASQ property.

Note that the su�cient condition in Proposition 3.8 is non-void, i.e., there
exist spaces č0, where R(p, k) > 0. Indeed, for every k ∈ N we have

k∏
j=1

(1 + µj) > 1 +
k∑
j=1

µj ,

therefore

R(p, k) > 1− 1

1 +
∑k

j=1 µj
−

p∑
j=1

µj >

∑k
j=1 µj

1 + µ
−

p∑
j=1

µj .

For example, if we put µn = µqn−1(1 − q) (0 < q < 1), then
∑n

j=1 µj =

µ(1− qn). In this case

R(p, k) >
µ

1 + µ
(qp − qk + µqp − µ).

Hence, the condition R(p, k) > 0 holds if µ, p, q and k satisfy the inequality

µ <
1− qk

1− qp
− 1.

Proof of Prop. 3.8. Assume that under these conditions the space č0 has the
s̃-ASQ property. We �x a number of �bad� elements x ∈ Sč0 and show that
if there is an element y = (an) such that ‖x + sy‖ 6 1 + ε holds for all of
these �bad� elements x (and for a suitably small ε > 0) then one cannot have
‖y‖ = 1.

Denote x1 = ±e1, . . . , xk = ±ek,

x0 =

 ±1

1 + µ1
,

±1

(1 + µ1)(1 + µ2)
, . . . ,±

k∏
j=1

1

1 + µj
, 0, 0, . . .


where all coordinates can take the + or the − sign independently.

Assume now that, for all choices of signs, ‖xj+ s̃y‖ 6 1+ε, j = 0, 1, . . . , k.
The norm ‖y‖ is the supremum of numbers

∑m−1
i=1 µi|ai| + (1 + µm)|am|,

m ∈ N.
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We have, for a suitable choice of signs in xm (where m = 1, . . . , k) that

1 + s̃

m−1∑
j=1

µj |aj |+ (1 + µm)|am|


=

m−1∑
j=1

s̃µj |aj |+
∣∣∣∣ 1

1 + µm
± s̃am

∣∣∣∣ (1 + µm)

6 ‖xm + s̃y‖ 6 1 + ε,

therefore, for ε < s̃/(1 + s̃),
m−1∑
j=1

µj |aj |+ (1 + µm)|am| <
ε

s̃
< 1− ε.

Let m > k. For a suitable choice of signs in x0,

k∑
j=1

µj∏j
i=1(1 + µi)

+ s̃

m−1∑
j=1

µj |aj |+ (1 + µm)|am|


=

k∑
j=1

∣∣∣∣∣ 1∏j
i=1(1 + µi)

± s̃aj

∣∣∣∣∣ · µj
+

m−1∑
j=k+1

s̃µj |aj |+ s̃(1 + µm)|am|

6 ‖x0 + s̃y‖ 6 1 + ε.

(6)

Since
k∑
j=1

µj∏j
i=1(1 + µi)

+
1∏k

j=1(1 + µj)
= ‖x0‖ = 1,

adding 1∏k
j=1(1+µj)

to the inequalities (6) yields that

s̃

m−1∑
j=1

µj |aj |+ (1 + µm)|am|

 6 1∏k
j=1(1 + µj)

+ ε.

If we had
∑m−1

j=1 µj |aj |+ (1 + µm)|am| > 1− ε, then

s̃(1− ε) < 1∏k
j=1(1 + µj)

+ ε

and, using that R(p, k) > 0, we would obtain

s̃(1− ε) < 1−
p∑
i=1

µi
1 + µi

+ ε
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which would be equivalent to

ε >

∑p
i=1

µi
1+µi

+ s̃− 1

s̃+ 1
> 0.

Therefore ε can not be made arbitrarily small, so č0 is not s̃-ASQ. �
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