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Refined forms of Oppenheim and Cusa–Huygens
type inequalities

Yogesh J. Bagul and Christophe Chesneau

Abstract. We refine Oppenheim’s inequality as well as generalized
Cusa–Huygens type inequalities established recently by some researchers.
One of the results where the bounds of sinx/x are tractable will be used
to obtain a sharp version of Yang’s inequality.

1. Introduction

The famous Cusa–Huygens inequality [7, 12,16–18] is known as

sinx

x
<

2 + cosx

3
, x ∈ (0, π/2).

Its hyperbolic version, sometimes called hyperbolic Cusa–Huygens inequality
[12], is stated as follows:

sinhx

x
<

2 + coshx

3
, x 6= 0. (1.1)

Obtaining extended and generalized sharp versions of the above inequalities
has been the interest among many researchers in recent years. In [5,16] the
following two sided inequality has been obtained:(

2 + cosx

3

)a
<

sinx

x
<

2 + cosx

3
, x ∈ (0, π/2), (1.2)

with the best positive constants a ≈ 1.11374 and 1.
Sándor and Oláh-Gál [18, Theorems 1 and 2] proved the inequalities

2 + cosx

π
<

sinx

x
<

2 + (π/2) cosx

π
, x ∈ (0, π/2). (1.3)
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For x ∈ (−π/2, π/2), the double inequality

p− 1 + cosx

p
<

sinx

x
<

2 + cosx

3
, (1.4)

where p ≈ 2.75194, is due to Bhayo et al. [3]. Left inequality in (1.4) is
sharper than the corresponding inequalities in (1.2) and (1.3). For x ∈
(0, π/2), the two sided inequality

p− 1 + cosx

p
<

sinx

x
<

2 + (4/π) cosx

π
, (1.5)

where p ≈ 2.75194, refines (1.3). It gives an optimal answer to the Oppen-
heim’s problem [13]. It is already discussed in [4] and proved by Qi et al. [15]
in a more general case.

On the other side, as a natural approach, Mortici [11] established trigono-
metric-polynomial bounds for sinx/x:

2 + cosx

3
− x4

180
<

sinx

x
<

2 + cosx

3
− x4

180
+

x6

3780
, x ∈ (0, π/2). (1.6)

Recently, Malešević et al. [9] extended and generalized (1.6) as follows. If
x ∈ (0, π/2) and n is a natural number, then

2 + cosx

3
+

2n∑
k=2

(−1)k+1B(k)x2k <
sinx

x

<
2 + cosx

3
+

2n+1∑
k=2

(−1)k+1B(k)x2k,

(1.7)

where B(k) = 2(k − 1)/[3(2k + 1)!].
Putting n = 1 in (1.7), the authors of the paper [9] obtain (1.6). Putting

n = 2, they obtain for x ∈ (0, π/2) the inequalities

2 + cosx

3
− x4

180
+

x6

3780
− x8

181440
<

sinx

x

<
2 + cosx

3
− x4

180
+

x6

3780
− x8

181440
+

x10

14968800
.

(1.8)

In this paper, we give simpler alternative proofs of (1.4) and (1.5) as well
as establish new extended refined forms of the inequalities listed above. We
also aim to improve Yang’s inequality [19] in the last section.

2. Preliminaries and lemmas

We start by recalling the power series expansions

sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1, x ∈ R, (2.1)
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and

cosx =
∞∑
k=0

(−1)k

(2k)!
x2k, x ∈ R. (2.2)

The following lemmas will be applied to prove the main results of this paper.

Lemma 1 (The l’Hôspital monotonicity rule [1]). Let f1, f2 : [p, q] → R
be two continuous functions which are derivable on (p, q) and f ′2(x) 6= 0 for
any x ∈ (p, q). Let

A(x) =
f1(x)− f1(p)
f2(x)− f2(p)

and B(x) =
f1(x)− f1(q)
f2(x)− f2(q)

.

If f ′1/f
′
2 is increasing (or decreasing) on (p, q), then the functions A(x) and

B(x) are also increasing (or decreasing) on (p, q). The strictness of the mono-
tonicity in the conclusion depends on the strictness of the monotonicity of
f ′/g′.

From Lemma 1 we immediately get the following result.

Lemma 2. For q > 0 and m > 1 let f1, f2 : (0, q) → R be continuous

and m-derivable functions such that f
(k)
i (i = 1, 2; k = 1, . . . ,m − 1) are

continuous. Suppose that f
(k)
2 (x) 6= 0 for k = 1, . . . ,m and x ∈ (0, q). If

fi(0) = f ′i(0) = · · · = f
(m−1)
i (0) = 0 (i = 1, 2) and f

(m)
1 /f

(m)
2 is increasing

(or decreasing) on (0, q), then the function f1(x)/f2(x) is also increasing (or
decreasing) on (0, q).

Lemma 3 (see [2], Lemma 2). The function H(x) = sinx−x cosx
x2 sinx

is strictly
positive increasing in (0, π/2).

Lemma 4. The function φ(x) = sinhx−x coshx
x2 sinhx

is strictly negative increas-
ing for x > 0.

Proof. The function φ(x) is clearly negative as sinhx/x < coshx for x > 0
(see [10]). Let us now set

φ(x) =
sinhx− x coshx

x2 sinhx
=
φ1(x)

φ2(x)
.

Here the functions φ1(x) = sinhx − x coshx and φ2(x) = x2 sinhx satisfy
the conditions of Lemma 2 with m = 2, and

φ′′1(x)

φ′′2(x)
=

− coshx

x sinhx+ 3 coshx
=

−1

x tanhx+ 3
.

It is well known that x tanhx is increasing, implying that x tanhx + 3 is
increasing. By Lemma 2, φ(x) is a strictly increasing function for x > 0. �
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3. Main results and proofs

We first give a simpler alternative proof of (1.4).

Theorem 1 (see [3], Theorem 1). If x ∈ (−π/2, π/2), then

2 + (π − 2) cosx

π
<

sinx

x
<

2 + cosx

3
.

Proof. It is enough to prove the result for x ∈ (0, π/2). Let us set

f(x) =
sinx
x − cosx

cosx− 1
=
f1(x)

f2(x)
,

where f1(x) = sinx/x− cosx and f2(x) = cosx− 1 satisfy f1(0+) = 0 and
f2(0) = 0. Since

f ′1(x)

f ′2(x)
=

x cosx−sinx
x2

+ sinx

− sinx
=

sinx− x cosx

x2 sinx
− 1,

by Lemmas 1 and 3, f(x) is strictly increasing in (0, π/2). We end the proof
with f(0+) = −2/3 and f(π/2) = −2/π. �

In the next result, we extend the inequality (1.1).

Theorem 2. If x ∈ (0, λ) with λ > 0, then

−δ + (1 + δ) coshx <
sinhx

x
<

2 + coshx

3
,

where δ = (sinhλ/λ− coshλ)/(coshλ− 1).

Proof. Let us consider

f(x) =
sinhx
x − coshx

coshx− 1
=
f1(x)

f2(x)
,

where f1(x) = sinhx/x− coshx and f2(x) = coshx−1 with f1(0+) = 0 and
f2(0) = 0. We have

f ′1(x)

f ′2(x)
=
x coshx− sinhx

x2 sinhx
− 1.

By Lemmas 1 and 4, f(x) is strictly decreasing in (0, λ). The desired result
follows from f(λ) = δ and f(0+) = −2/3. �

In the following theorem we present another simple proof of (1.5).

Theorem 3 (se [4, 15]). If x ∈ (0, π/2), then

2 + (π − 2) cosx

π
<

sinx

x
<

2 + (4/π) cosx

π
.
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Proof. Let us set

f(x) =
sinx
x −

2
π

cosx
=
f1(x)

f2(x)
,

where f1(x) = sinx/x − 2/π and f2(x) = cosx with f1(π/2) = 0 and
f2(π/2) = 0. The function

f ′1(x)

f ′2(x)
=

sinx− x cosx

x2 sinx

is strictly increasing in (0, π/2) by Lemma 3. So f(x) is also strictly increas-
ing in (0, π/2) by Lemma 1. Therefore, the proof of Theorem 3 follows with
f(0+) = (π − 2)/π and f(π/2−) = 4/π2 by l’Hôspital’s rule. �

Motivated by (1.6), we now establish trigonometric-polynomial bounds
for sinx/x with a different approach.

Theorem 4. If x ∈ (0, π/2), then

2 + cosx

3
− x4

a
<

sinx

x
<

2 + cosx

3
− x4

b
(3.1)

with the constants a = 180 and b ≈ 202.618886.

Proof. Let us set

f(x) =
−3x5

3 sinx− 2x− x cosx
=
f1(x)

f2(x)
.

It is not difficult to see that the functions f1(x) = −3x5 and f2(x) = 3 sinx−
2x − x cosx satisfy the conditions of Lemma 2 with q = π/2 and m = 3.
Here we have

f ′′′1 (x)

f ′′′2 (x)
= 180

x

sinx

which is clearly increasing in (0, π/2). Thus by Lemma 2, the function f(x) =
f1(x)/f2(x) is also increasing in (0, π/2). Since f(0+) = 180 and f(π/2) ≈
202.618886, we get (3.1). �

The hyperbolic version of (3.1) is given in next theorem.

Theorem 5. If x ∈ (0, λ), where λ > 0, then

2 + coshx

3
− x4

m
<

sinhx

x
<

2 + coshx

3
− x4

n

with the constants m = −3λ5/(3 sinhλ− 2λ− λ coshλ) and n = 180.

Proof. The proof is omitted since it is similar to the one of Theorem 4. �

A refinement of upper bounds of (1.3) and (1.5) can be seen below.



188 YOGESH J. BAGUL AND CHRISTOPHE CHESNEAU

Theorem 6. For x ∈ (0, π/2), one has

sinx

x
<

2 + (π − 2) cosx

π
+
π − 3

3π
x2. (3.2)

Proof. As in the proofs of previous theorems, let us set

f(x) =
π sinx− 2x− (π − 2)x cosx

πx3
=
f1(x)

f2(x)
.

Here f1(x) = π sinx − 2x − (π − 2)x cosx and f2(x) = πx3 satisfy the
conditions of Lemma 2 with q = π/2 and m = 3. We have

f ′′′1 (x)

f ′′′2 (x)
=
−π cosx+ (π − 2)(cosx− x sinx)

6π
=
f3(x)

6π
,

where
f3(x) = −π cosx+ (π − 2)(3 cosx− x sinx).

The derivative

f ′3(x) = (−3π + 8) sinx− (π − 2)x cosx < 0

implies that f3(x) is strictly decreasing in (0, π/2). Therefore, by Lemma 2
f(x) is also decreasing and hence

f(0+) >
π sinx− 2x− (π − 2)x cosx

πx3
.

With f(0+) = (π − 3)/(3π), the result is proved. �

Remark 1. There is no strict comparison between the corresponding
bounds of (1.5) and (3.2). However when x is close to zero, (3.2) is better
since the inequality becomes an equality for x = 0.

Combining (1.5) and (3.2) we have, for x ∈ (0, π/2), that

2 + (π − 2) cosx

π
<

sinx

x
<

2 + (π − 2) cosx

π
+
π − 3

3π
x2. (3.3)

In the following theorem, we extend and refine the bounds of (3.3).

Theorem 7. If n ∈ N (the set of natural numbers) and x ∈ (0, π), then
we have

M(x) <
sinx

x
< N(x) (3.4)

where

M(x) =
2 + (π − 2) cosx

π
+

2

π

2n∑
k=1

(−1)k+1 (kπ − 2k − 1)

(2k + 1)!
x2k

and

N(x) =
2 + (π − 2) cosx

π
+

2

π

2n+1∑
k=1

(−1)k+1 (kπ − 2k − 1)

(2k + 1)!
x2k.
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Proof. Let us set

f(x) =
sinx

x
−M(x).

Utilizing (2.1) and (2.2), we get

f(x) =
∞∑
k=0

(−1)k
x2k

(2k + 1)!
− 2

π
− π − 2

π

∞∑
k=0

(−1)k
x2k

(2k)!

− 2

π

2n∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k

=
2

π

∞∑
k=0

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k − 2

π
− 2

π

2n∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k

= − 2

π
R,

where

R =

∞∑
k=2n+1

(−1)k
kπ − 2k − 1

(2k + 1)!
x2k.

Hence R can be viewed as a rest of the alternating series S given by

S =
∞∑
k=2

(−1)kak,

with ak = [(kπ− 2k− 1)/(2k+ 1)!]x2k > 0. Now for k > 2 and x ∈ (0, π) we
have

(kπ − 2k − 1)(4k2 + 10k + 6− x2) > (2π − 5)(42− π2) > (π − 2)x2.

This gives

kπ − 2k − 1

(2k + 1)!
x2k >

(k + 1)π − 2(k + 1)− 1

(2k + 3)!
x2(k+1).

Hence |ak| > |ak+1|. Moreover, for x ∈ (0, π) we have

lim
k→∞

|ak| = lim
k→∞

kπ − 2k − 1

(2k + 1)!
x2k =

π − 2

2
lim
k→∞

x2k

(2k)!
= 0.

This implies that S is convergent and, by a special result on alternating
series, R has the same sign to the first term of its sum, i.e., (−1)2n+1a2n+1 <
0. So R < 0, implying that f(x) > 0, and

M(x) <
sinx

x
. (3.5)
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Similarly, set

g(x) = N(x)− sinx

x

=
2 + (π − 2) cosx

π
+

2

π

2n+1∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k − sinx

x
.

Using again (2.1) and (2.2) and proceeding as in the case of f(x), we obtain

g(x) =
2

π
R∗,

where

R∗ =
∞∑

k=2n+2

(−1)k
kπ − 2k − 1

(2k + 1)!
x2k.

Let us observe that R∗ is a rest of the alternating series S. By applying
similar arguments to R, we get R∗ > 0, implying that g(x) > 0 and hence

sinx

x
< N(x). (3.6)

The proof follows from (3.5) and (3.6). �

Some particular cases of Theorem 7 are presented below. If x ∈ (0, π),
then by putting n = 1 in (3.4) we get

2 + (π − 2) cosx

π
+

2

π

[
π − 3

3!
x2 − 2π − 5

5!
x4
]
<

sinx

x

<
2 + (π − 2) cosx

π
+

2

π

[
π − 3

3!
x2 − 2π − 5

5!
x4 +

3π − 7

7!
x6
]
.

By putting n = 2 in (3.4) we get

2 + (π − 2) cosx

π
+

2

π

[
π − 3

3!
x2 − 2π − 5

5!
x4 +

3π − 7

7!
x6 − 4π − 9

9!
x8
]

<
sinx

x
<

2 + (π − 2) cosx

π

+
2

π

[
(π − 3)

3!
x2 − 2π − 5

5!
x4 +

3π − 7

7!
x6 − 4π − 9

9!
x8 +

5π − 11

11!
x10
]
.

Next we claim that, the generalized extended bounds for sinx/x in the
following theorem are sharper than the corresponding bounds in (1.7).

Theorem 8. If m = 2n− 1, where n ∈ N and x ∈ (0, π), then we have

F (x) <
sinx

x
< G(x), (3.7)



OPPENHEIM AND CUSA–HUYGENS TYPE INEQUALITIES 191

where

F (x) =
2m+ cosx

2m+ 1
+

2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k

and

G(x) =
(2m+ 2) + cosx

2m+ 3
+

2

2m+ 3

m+2∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k.

Proof. Let us set

f(x) =
sinx

x
− F (x)

=
sinx

x
− 2m

2m+ 1
− 1

2m+ 1
cosx− 2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k.

Utilizing (2.1) and (2.2), after some calculations, we get

f(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k − 2m

2m+ 1
− 1

2m+ 1

∞∑
k=0

(−1)k

(2k)!
x2k

− 2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k

=
2

2m+ 1

∞∑
k=m+2

k −m
(2k + 1)!

(−1)k+1x2k =
2

2m+ 1
x2mT,

where

T =
∞∑
k=2

k

(2k + 2m+ 1)!
(−1)kx2k.

Then T can be viewed as a rest of the alternating series

U =
∞∑
k=1

(−1)kbk,

with bk = (k/(2k + 2m+ 1)!)x2k. Now, for k > 1 and x ∈ (0, π), we have

k[4(k +m)2 + 10(k +m) + 6]− kx2 > k(42− π2) > x2.

This gives
k

(2k + 2m+ 1)!
x2k >

k + 1

(2k + 2m+ 3)!
x2k+2.

Hence |bk| > |bk+1|. Moreover, for x ∈ (0, π), we have

lim
k→∞

|bk| = lim
k→∞

k

(2k + 2m+ 1)!
x2k =

1

2
lim
k→∞

x2k

(2k + 2m)!
= 0.
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This implies that U is convergent and (−1)2b2 > 0, so T > 0. Thus, f(x) > 0
and

F (x) <
sinx

x
. (3.8)

Similarly, by setting g(x) = G(x) − sinx
x , proceeding as in the case of f(x)

and applying the same arguments, we get

sinx

x
< G(x). (3.9)

The proof follows from (3.8) and (3.9). �

Some particular cases of Theorem 8 are presented below. If x ∈ (0, π),
then by putting n = 1 (so m = 1) in (3.7) we obtain

2 + cosx

3
− x4

180
<

sinx

x
<

4 + cosx

5
− x2

15
+

x6

12600
. (3.10)

By putting n = 2 (so m = 3) in (3.7) we get

6 + cosx

7
− 2x2

21
+

x4

420
− x8

1270080
<

sinx

x

<
8 + cosx

9
− x2

9
+

x4

270
− x6

22680
+

x10

179625600
.

(3.11)

For comparison between particular cases, it can be verified by any mathemat-
ical software that the bounds of sinx/x in (3.10) and (3.11) are sharper than
the corresponding bounds in (1.6) and (1.8), respectively. Moreover, all the
bounds are trigonometric-polynomial. Therefore, considering the number of
terms and the degrees of polynomials in respective bounds, we conclude that
our bounds are better.

4. An application

Well-known Yang’s inequality [19] can be stated as follows. If A1 >
0, A2 > 0, A1 +A2 6 π, and 0 6 λ 6 1, then

cos2 λA1 + cos2 λA2 − 2 cosλA1 cosλA2 cosλπ > sin2 λπ. (4.1)

Inequality (4.1) and its generalizations play an important role in the theory
of distribution of values. Therefore, many refinements of (4.1) are estab-
lished so far. For more details we refer the reader to [6, 8, 14, 20] and the
references therein.

Recently Chen and Elezović [6] obtained an improved form of Yang’s
inequality. Let Ai > 0 with

∑n
i=1Ai 6 π, n ∈ N, n > 1, and 0 6 µ 6 1.

Then

N(µ) 6
∑

16i<j6n

Hij 6M(µ), (4.2)
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where
Hij = cos2 µAi + cos2 µAj − 2 cosµAi cosµAj cosµπ,

N(µ) =
n(n− 1)

2
π2
[

1− (µ/2)2

1 + (µ/2)2

]2
µ2 cos2

µπ

2
,

and

M(µ) =
n(n− 1)

2
π2
[

1− (µ/2)3

1 + 2(µ/2)3

]2
µ2.

Here we refine the Yang’s inequality and hence (4.2) by using the tractable
bounds of sinx/x.

Theorem 9. Let Ai > 0 with
∑n

i=1Ai 6 π, n ∈ N, n > 1, and 0 6 µ 6 1.
Then

P (µ) 6
∑

16i<j6n

Hij 6 Q(µ), (4.3)

where

P (µ) = 2n(n− 1)

[
1 +

(π − 2)

2
cos

µπ

2

]2
µ2 cos2

µπ

2

and

Q(µ) = 2n(n− 1)

{[
1 +

(π − 2)

2
cos

µπ

2

]
+
µ2π2(π − 3)

24

}2

µ2.

Proof. We substitute x = µπ/2 in (3.3) to get

µ

[
1 +

(π − 2)

2
cos

µπ

2

]
< sin

µπ

2

and

sin
µπ

2
< µ

[
1 +

(π − 2)

2
cos

µπ

2

]
+
µ3π2(π − 3)

24
.

Using the inequality (2.13) from [20], for 1 6 i < j 6 n we have

4 sin2 µπ

2
cos2

µπ

2
6 Hij 6 4 sin2 µπ

2
.

We deduce that

4

[
1 +

(π − 2)

2
cos

µπ

2

]2
µ2 cos2

µπ

2
6 Hij

6 4

{[
1 +

(π − 2)

2
cos

µπ

2

]
+
µ2π2(π − 3)

24

}2

µ2.

(4.4)

Summing up all the inequalities in (4.4), we get (4.3). �
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