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On the controllability of Hilfer–Katugampola
fractional differential equations

Mohamed I. Abbas

Abstract. By employing Kuratowski’s measure of noncompactness to-
gether with Sadovskii’s fixed point theorem, sufficient conditions for
controllability results of Hilfer–Katugampola fractional differential equa-
tions in Banach spaces are derived.

1. Introduction

In the last few years, Katugampola [5, 6] introduced the generalized frac-
tional integral ρIµ

0+
and derivative operator ρDµ

0+
, which contain an extra

parameter ρ > 0. Taking ρ→ 0, the operators ρIµ
0+

and ρDµ
0+

reduce to the
Hadamard fractional operators, and for ρ = 1 become the Riemann–Liouville
fractional operators. These operators have applications in probability theory
[2], Langevin equations [12], and theory of inequalities [13].

Oliveira et al. [10] introduced a new generalized fractional derivative,
called the Hilfer–Katugampola fractional derivative, which interpolates the
well-known fractional derivatives such as the Hilfer, Hilfer–Hadamard,
Katugampola, and Riemann–Liouville derivatives. They studied the exis-
tence and uniqueness of solutions of fractional differential equations involv-
ing this generalized Katugampola derivative.

On the other hand, controllability is one of the fundamental notions of
modern control theory, which enables one to steer the control system from an
arbitrary initial state to an arbitrary final state, using the set of admissible
controls, where the initial and final state may vary over the entire space.
The problem of controllability of nonlinear systems represented by fractional
differential equations has been extensively studied by several authors (see,
for example, [1, 9, 14]).
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In this paper, we study the controllability of the Hilfer–Katugampola
fractional differential equation

ρDµ,ν
0+
x(t) = f(t, x(t)) +Bu(t), t ∈ J = [0, b],

ρI1−γ
0+

x(t)|t=0 = x0, µ ≤ γ = µ+ ν(1− µ) < 1,
(1.1)

in a Banach space (X, ‖ · ‖), where ρDµ,ν
0+

denotes the Hilfer–Katugampola

fractional derivative of order µ (0 < µ < 1) and type ν (0 ≤ ν < 1), ρI1−γ
0+

is
the left-sided Katugampola fractional integral of order 1− γ, the function x
takes values in X, B is a bounded linear operator from a Banach space U
into X, the control function u(·) is given in L2(J, U) (the Banach space of
functions u : J → U which are Bochner integrable endowed with the norm

‖u‖L2(J,U) =
(∫ b

0 ‖u(t)‖2U dt
) 1

2
<∞), and f : J ×X→ X is a Carathéodory

function. Our results are motivated by those in [12, 14].

2. Preliminaries

In this section, we collect some definitions and lemmas which will be useful
in the sequel. Let Xp

c (a, b) be the normed space of complex-valued Lebesgue
measurable functions h on [a, b] for which c ∈ R, 1 ≤ p <∞, and

‖h‖Xp
c

=

(∫ b

a
|tch(t)|pdt

t

) 1
p

<∞.

If c = 1/p, then the space Xp
c (a, b) coincides with the classical Lp(a, b)-space,

see Katugampola [5].

Let C(J,X) be the Banach space of all continuous functions g : J → X
with the supremum norm

‖g‖C = sup
t∈J
‖g(t)‖.

For 0 ≤ γ < 1 we define the weighted space C1−γ,ρ(J,X) of continuous
functions g on the finite interval J by

C1−γ,ρ(J,X) =

{
g : (0, b]→ X :

(
tρ

ρ

)1−γ
g(t) ∈ C(J,X)

}
,

and with the norm

‖g‖C1−γ,ρ =

∥∥∥∥∥
(
tρ

ρ

)1−γ
g(t)

∥∥∥∥∥
C

= max
t∈J

∥∥∥∥∥
(
tρ

ρ

)1−γ
g(t)

∥∥∥∥∥ .
Obviously, C1−γ,ρ(J,X) is a Banach space.
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Definition 2.1 (Katugampola fractional integral [5]). Let µ, c ∈ R
with µ > 0 and h ∈ Xp

c (a, b). The generalized left- and right-sided fractional
integrals ρIµ

a+
h(t), ρIµ

b−h(t) are defined, respectively, by

ρIµ
a+
h(t) =

ρ1−µ

Γ(µ)

∫ t

a

sρ−1h(s)

(tρ − sρ)1−µ ds, t > a,

and

ρIµ
b−h(t) =

ρ1−µ

Γ(µ)

∫ b

t

sρ−1h(s)

(tρ − sρ)1−µ ds, t < b,

where ρ > 0 and Γ(·) is the Gamma function.

Definition 2.2 (Katugampola fractional derivative [6]). Let µ, ρ ∈
R such that µ, ρ > 0, µ 6∈ N, and n = [µ]+1. The generalized left- and right-
sided fractional derivatives ρDµ

a+
h(t), ρDµ

b−h(t) are defined, respectively, by

ρDµ
a+
h(t) =

(
t1−ρ

d

dt

)n
ρIn−µ
a+

h(t)

=
ρµ−n+1

Γ(n− µ)

(
t1−ρ

d

dt

)n ∫ t

a

sρ−1h(s)

(tρ − sρ)µ−n+1
ds

and

ρDµ
b−h(t) =

(
−t1−ρ d

dt

)n
ρIn−µ
b− h(t)

=
ρµ−n+1

Γ(n− µ)

(
−t1−ρ d

dt

)n ∫ b

t

sρ−1h(s)

(tρ − sρ)µ−n+1
ds,

if the integrals exist.

Definition 2.3 (The Hilfer–Katugampola fractional derivative).
Let the order µ and the type ν satisfy n−1 < µ < n and 0 ≤ ν < 1, where n ∈
N. The Hilfer–Katugampola fractional derivative (left-sided/right-sided) of
a function φ ∈ C1−γ,ρ(J,X), ρ > 0, is defined by

ρDµ,ν
a± φ(t) =

(
±ρ Iν(n−µ)

a±

(
t1−ρ

d

dt

)n
ρI

(1−ν)(n−µ)
a± φ

)
(t). (2.1)

In this paper we consider only the case n = 1.

Remark 2.4. It is useful to mention that Definition 2.3 was introduced in
[10] for complex valued functions from Xp

c (a, b). In this paper, the function h
in Definitions 2.1 and 2.2 has values in a Banach space, and the integrals
there are taken in Bochner’s sense.

Definition 2.5. A solution x ∈ C1−γ,ρ of the Hilfer–Katugampola frac-
tional differential equation (1.1) is a measurable function satisfying the initial

condition ρI1−γ
0+

x(t)|t=0 = x0 and the equation ρDµ,ν
0+
x(t) = f(t, x(t))+Bu(t)

on J .
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According to Theorem 4.1 in [10], we conclude the following lemma.

Lemma 2.6. Let γ = µ + ν(1 − µ), where 0 < µ < 1, 0 ≤ ν < 1, and
ρ > 0. Let f : J × X → X be a function such that f(·, x(·)) ∈ C1−γ,ρ(J,X)
for any x ∈ C1−γ,ρ(J,X). Then x is a solution the Hilfer–Katugampola
fractional differential equation (1.1) if and only if it satisfies the Volterra
integral equation

x(t) =
x0

Γ(γ)

(
tρ

ρ

)γ−1

+
1

Γ(µ)

∫ t

0
sρ−1

(
tρ − sρ

ρ

)µ−1

(f(s, x(s)) +Bu(s)) ds.

Definition 2.7. The Hilfer–Katugampola fractional differential equation
(1.1) is said to be controllable on J if, for any initial and final one x0, x1 ∈ X,
there exists a control function u ∈ L2(J, U) such that the solution of (1.1)
satisfies x(b) = x1.

3. Kuratowski’s measure of noncompactness

The notion of the measure of noncompactness (α-measure, or set measure)
was first introduced by Kuratowski [7] in 1930.

Definition 3.1. Let Q be a bounded subset of a seminormed linear
space E. The Kuratowski measure of noncompactness (the set-measure of
noncompactness, or α-measure) of Q, denoted by α(Q), is the infimum of
the set of all numbers ε > 0 such that Q can be covered by a finite number
of sets with diameters less than ε, that is

α(Q) = inf

{
ε > 0 : Q ⊂

n⋃
i=1

Si, Si ⊂ E, diam(Si) < ε

}
.

Lemma 3.2. Let Q1 and Q2 be two bounded sets in a Banach space X.
Then

(i) α(Q1) = 0 if and only if Q1 is compact (Q1 is relatively compact),
(ii) α(Q1) = α(Q1),
(iii) Q1 ⊂ Q2 implies α(Q1) ≤ α(Q2),
(iv) α(Q1 +Q2) ≤ α(Q1) + α(Q2).

For more properties of Kuratowski’s measure of noncompactness, we refer
to [3].

Theorem 3.3 (Sadovskii’s fixed point theorem [11]). Let K be a con-
densing operator on a Banach space X, i.e., K is continuous, maps bounded
sets into bounded sets, and α(K(D)) < α(D) for every bounded subset D of
X with α(D) > 0. If K(S) ⊂ S for a convex, closed, and bounded subset S
of X, then K has a fixed point in S.
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4. Controllability results

In this section we investigate sufficient conditions for the controllability
of the Hilfer–Katugampola fractional differential equation (1.1). Thereat we
use the notation

∆(t, s) =

(
tρ − sρ

ρ

)µ−1

.

We also need to impose the following definitons and conditions:

(A1) Let f : J × X → X be a Carathéodory function, i.e., for each t ∈ J
the function f(t, ·) : X → X is continuous and for each x ∈ X the
function f(·, x) : J → X is measurable.

(A2) There exists a continuous function Φ : J → [0,∞[ such that

‖f(t, x)‖ ≤ Φ(t)‖x‖ for all t ∈ J and x ∈ X

with

Φ∗ = sup
t∈J

Φ(t) <∞.

(A3) The linear operator W : L2(J, U)→ X, defined by

Wu =
1

Γ(µ)

∫ b

0
sρ−1∆(b, s)Bu(s) ds,

has an induced inverse operator W−1 which takes values in the space
L2(J, U)/ kerW, where the kernel space of W is defined by kerW =
{x ∈ L2(J, U) : Wx = 0}, and there exist constants M1,M2 > 0 such
that ‖B‖ ≤M1 and ‖W−1‖ ≤M2 (see [4]).

(A4) Let Bk = {y ∈ C1−γ,ρ(J,X) : ‖y‖C1−γ,ρ ≤ k} with

k ≥

M1M2
Γ(µ+1)

(
bρ
ρ

)1−γ+µ
(
‖x1‖+ ‖x0‖

Γ(γ)

(
bρ
ρ

)γ−1
)

1−
(
M1M2Φ∗

(Γ(µ+1))2

(
bρ
ρ

)1−γ+2µ
) .

Define the control function u ∈ L2(J, U) by

u(t) = W−1

[
x1 −

x0

Γ(γ)

(
bρ

ρ

)γ−1

− 1

Γ(µ)

∫ b

0
sρ−1∆(b, s)f(s, x(s))ds

]
(t).

We need the following lemma.

Lemma 4.1. If x ∈ Bk and t ∈ J , then

‖u(t)‖ ≤M2

(
‖x1‖+

‖x0‖
Γ(γ)

(
bρ

ρ

)γ−1

+
Φ∗

Γ(µ+ 1)

(
bρ

ρ

)µ
k

)
.
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Proof. One has

‖u(t)‖ ≤ ‖W−1‖

(
‖x1‖+

‖x0‖
Γ(γ)

(
bρ

ρ

)γ−1

+
1

Γ(µ)

∫ b

0
sρ−1∆(b, s)‖f(s, x(s))‖ ds

)
≤M2

(
‖x1‖+

‖x0‖
Γ(γ)

(
bρ

ρ

)γ−1

+
1

Γ(µ)

∫ b

0
sρ−1∆(b, s) Φ(s)‖x(s)‖ ds

)

≤M2

(
‖x1‖+

‖x0‖
Γ(γ)

(
bρ

ρ

)γ−1

+
kΦ∗

Γ(µ)

∫ b

0
sρ−1∆(b, s) ds

)

≤M2

(
‖x1‖+

‖x0‖
Γ(γ)

(
bρ

ρ

)γ−1

+
Φ∗

Γ(µ+ 1)

(
bρ

ρ

)µ
k

)
.

�

Now we are ready to prove our main theorem.

Theorem 4.2. Under the assumptions (A1) – (A4), let

Φ∗

Γ(µ+ 1)

(
bρ

ρ

)1−γ+µ

≤ 1. (4.1)

Then the Hilfer–Katugampola fractional differential equation (1.1) is con-
trollable on J .

Proof. Using the control function u, we define the operator K : C1−γ,ρ(J,X)
→ C1−γ,ρ(J,X) by

(Kx)(t) =
x0

Γ(γ)

(
tρ

ρ

)γ−1

+
1

Γ(µ)

∫ t

0
sρ−1∆(t, s) f(s, x(s)) ds

+
1

Γ(µ)

∫ t

0
sρ−1∆(t, s)Bu(s) ds.

The operator K is well defined and the fixed points of K are solutions to
(1.1). Indeed, x ∈ Bk is a solution of (1.1) if and only if x is a solution of the
operator equation x = Kx. Therefore, the existence of a solution of (1.1)
is equivalent to determining a positive constant k such that K has a fixed
point on Bk.

We decompose the operator K into two operators K1 and K2 (K = K1 +
K2) on Bk, where

(K1x)(t) =
1

Γ(µ)

∫ t

0
sρ−1∆(t, s)Bu(s) ds, t ∈ J,
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and

(K2x)(t) =
x0

Γ(γ)

(
tρ

ρ

)γ−1

+
1

Γ(µ)

∫ t

0
sρ−1∆(t, s) f(s, x(s)) ds, t ∈ J.

In order to apply Theorem 3.3, the proof is divided into four steps.

Step 1. The operator K1 maps Bk into itself.
For each t ∈ J and x ∈ Bk, by Lemma 4.1 we have∥∥∥∥∥
(
tρ

ρ

)1−γ
(K1x)(t)

∥∥∥∥∥
C

= max
t∈J

∥∥∥∥∥ 1

Γ(µ)

(
tρ

ρ

)1−γ ∫ t

0
sρ−1∆(t, s)Bu(s) ds

∥∥∥∥∥
≤ 1

Γ(µ)

(
bρ

ρ

)1−γ ∫ t

0
sρ−1∆(t, s) ‖B‖ ‖u(s)‖ ds

≤ M1M2

Γ(µ+ 1)

(
bρ

ρ

)1−γ+µ
(
‖x1‖+

‖x0‖
Γ(γ)

(
bρ

ρ

)γ−1

+
Φ∗

Γ(µ+ 1)

(
bρ

ρ

)µ
k

)
≤ k,

which implies ‖(K1x)‖C1−γ,ρ ≤ k. Thus K1 maps Bk into itself.

Step 2. The operator K2 is continuous.
Let {xn} be a sequence in Bk satisfying xn → x as n → ∞. Then, for

each t ∈ J , we have∥∥∥∥∥
(
tρ

ρ

)1−γ
(K2xn)(t)−

(
tρ

ρ

)1−γ
(K2x)(t)

∥∥∥∥∥
C

= max
t∈J

∥∥∥∥∥ 1

Γ(µ)

(
tρ

ρ

)1−γ ∫ t

0
sρ−1∆(t, s) (f(s, xn(s))− f(s, x(s))) ds

∥∥∥∥∥
≤ 1

Γ(µ+ 1)

(
bρ

ρ

)1−γ+µ

‖f(·, xn(·))− f(·, x(·))‖.

By the Lebesgue dominated convergence theorem, we get

‖(K2xn)− (K2x)‖C1−γ,ρ → 0 as n→∞.
This means that K2 is continuous.

Step 3. We show that K2(Bk) ⊂ Bk.
We prove this by contradiction, supposing that there exists a function

η(·) ∈ Bk such that ‖(K2η)‖C1−γ,ρ > k. Thus, for each t ∈ J , we have

k <

∥∥∥∥∥
(
tρ

ρ

)1−γ
(K2η)(t)

∥∥∥∥∥
C

≤ ‖x0‖
Γ(µ)

+
1

Γ(µ)

(
tρ

ρ

)1−γ ∫ t

0
sρ−1∆(t, s) ‖f(s, η(s))‖ ds
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≤ ‖x0‖
Γ(µ)

+
1

Γ(µ)

(
tρ

ρ

)1−γ ∫ t

0
sρ−1∆(t, s) Φ(s)‖η(s)‖ ds

≤ ‖x0‖
Γ(µ)

+
kΦ∗

Γ(µ)

(
tρ

ρ

)1−γ ∫ t

0
sρ−1∆(t, s) ds

≤ ‖x0‖
Γ(µ)

+
Φ∗

Γ(µ+ 1)

(
bρ

ρ

)1−γ+µ

k.

Dividing both sides by k, and taking the limit as k →∞, we get

Φ∗

Γ(µ+ 1)

(
bρ

ρ

)1−γ+µ

≥ 1,

which contradicts (4.1). This shows that K2(Bk) ⊂ Bk.

Step 4. K2(Bk) is bounded and equicontinuous.
From Step 3, it is clear that K2(Bk) is bounded. It remains to show that

K2(Bk) is equicontinuous.
Let t1, t2 ∈ J, t1 < t2. For each x ∈ Bk we have∥∥∥∥∥
(
tρ2
ρ

)1−γ
(K2x)(t2)−

(
tρ1
ρ

)1−γ
(K2x)(t1)

∥∥∥∥∥
C

= max
t∈J

∥∥∥∥∥ 1

Γ(µ)

(
tρ2
ρ

)1−γ ∫ t2

0
sρ−1∆(t2, s) f(s, x(s)) ds

− 1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t1

0
sρ−1∆(t1, s) f(s, x(s)) ds

∥∥∥∥∥
≤

∥∥∥∥∥ 1

Γ(µ)

((
tρ2
ρ

)1−γ
−
(
tρ1
ρ

)1−γ
)∫ t2

0
sρ−1∆(t2, s) f(s, x(s)) ds

∥∥∥∥∥
+

∥∥∥∥∥ 1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t2

t1

sρ−1∆(t2, s) f(s, x(s)) ds

∥∥∥∥∥
+

∥∥∥∥∥ 1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t1

0
sρ−1 (∆(t2, s)−∆(t1, s)) f(s, x(s)) ds

∥∥∥∥∥
= I1 + I2 + I3,

where

I1 =

∥∥∥∥∥ 1

Γ(µ)

((
tρ2
ρ

)1−γ
−
(
tρ1
ρ

)1−γ
)∫ t2

0
sρ−1∆(t2, s) f(s, x(s)) ds

∥∥∥∥∥ ,
I2 =

∥∥∥∥∥ 1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t2

t1

sρ−1∆(t2, s) f(s, x(s)) ds

∥∥∥∥∥ ,
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I3 =

∥∥∥∥∥ 1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t1

0
sρ−1 (∆(t2, s)−∆(t1, s)) f(s, x(s)) ds

∥∥∥∥∥ .
By the assumptions (A2) and (A4) we have

I1 ≤
1

Γ(µ)

((
tρ2
ρ

)1−γ
−
(
tρ1
ρ

)1−γ
)∫ t2

0
sρ−1∆(t2, s) ‖f(s, x(s))‖ ds

≤ kΦ∗

Γ(µ)

((
tρ2
ρ

)1−γ
−
(
tρ1
ρ

)1−γ
)∫ t2

0
sρ−1∆(t2, s) ds

=
kΦ∗

Γ(µ+ 1)

(
tρ2
ρ

)µ((
tρ2
ρ

)1−γ
−
(
tρ1
ρ

)1−γ
)
→ 0 as t2 → t1,

I2 ≤
1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t2

t1

sρ−1∆(t2, s) ‖f(s, x(s))‖ ds

≤ kΦ∗

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t2

t1

sρ−1∆(t2, s) ds

=
kΦ∗

Γ(µ+ 1)

(
1

ρ

)µ
(tρ2 − t

ρ
1)
µ → 0 as t2 → t1,

I3 ≤
1

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t1

0
sρ−1 (∆(t2, s)−∆(t1, s)) ‖f(s, x(s))‖ ds

≤ kΦ∗

Γ(µ)

(
tρ1
ρ

)1−γ ∫ t1

0
sρ−1 (∆(t2, s)−∆(t1, s)) ds

=
kΦ∗

Γ(µ+ 1)

(
1

ρ

)µ (
(tρµ2 − t

ρµ
1 )− (tρ2 − t

ρ
1)
µ)

≤ kΦ∗

Γ(µ+ 1)

(
1

ρ

)µ
(tρµ2 − t

ρµ
1 )→ 0 as t2 → t1.

Combining these estimations of I1, I2, and I3, we deduce that

‖(K2x)(t2)− (K2x)(t1)‖C1−γ,ρ → 0 as t2 → t1.

Hence K2(Bk) is equicontinuous.
As a consequence of Steps 2 – 4, together with the Arzelà–Ascoli theorem,

we deduce that K2 is compact. Hence, from Steps 1 – 4 and Lemma 3.2,
we conclude that K = K1 + K2 is continuous and takes bounded sets into
bounded sets. Also, one can verify the validity of α(K2(Bk)) = 0 since
K2(Bk) is relatively compact.

It follows from the inclusion K1(Bk) ⊂ Bk and the equality α(K2(Bk)) = 0
that

α(K(Bk)) ≤ α(K1(Bk)) + α(K2(Bk)) ≤ α(Bk)
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for every bounded set Bk of C1−γ,ρ(J,X) with α(Bk) > 0.
Since K(Bk) ⊂ Bk for a convex, closed, and bounded set Bk of C1−γ,ρ(J,X),

all conditions of Theorem 3.3 are satisfied, and we conclude that the oper-
ator K has a fixed point x ∈ Bk which, in the same time, is a solution
of the Hilfer–Katugampola fractional differential equation (1.1) such that
x(b) = x1. Therefore, the Hilfer–Katugampola fractional differential equa-
tion (1.1) is controllable on J . �
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