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On sound ranging in proper metric spaces

Sergij V. Goncharov

Abstract. We consider the sound ranging, or source localization, prob-
lem — find the source-point from the moments when the wave-sphere
of linearly, with time, increasing radius reaches the sensor-points — in
proper metric spaces (any closed ball is compact) and, in particular, in
the finite-dimensional normed spaces. We approximate the solution to
arbitrary precision by the iterative process with the stopping criterion.
Implementation of the proposed method in Julia language is included.

Introduction

Let (X; ρ) be a metric space with the metric ρ : X ×X → R+. Let s ∈ X
be an unknown “source”. At unknown moment t0 ∈ R of time the source
“emits the (sound) wave”, which is the sphere

{
x ∈ X | ρ(x; s) = v(t− t0)

}
for any moment t > t0. We assume that “sound speed” v = 1.

Let {ri}i∈I , ri ∈ X, be an indexed set of known “sensors”. For each sensor
we know the moment ti when it was reached by the expanding wave; that is,
ti = t0 + ρ(ri; s) are known. The sound ranging problem (SRP), also called
source localization, is to find s and t0 from known ({ri}; {ti}).

SRPs of this and more general forms, usually in Euclidean space, appear,
inter alia, in acoustics [38], geophysics [34], navigation [4], (wireless) sensor
networks [25]; there is an abundant literature on the subject and on the
proposed techniques, see, e.g., [9, Section 1], [2, Section 9.1] for further
references.

In [15] we investigated noiseless SRP in the infinite-dimensional separable
Hilbert space H. The method there was the “classical” one applied in Rm2 , —

solve the set of implied equations (ti− t0)2 = ρ2(ri; s) =
∑
j

(r
(i)
j −sj)2, where
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t0 and coordinates {sj}j∈N of s are unknowns, — with few technicalities
related to countability of the coordinates. It is a “solving” method: we

express exact values of sj through known ti and r
(i)
j , in closed form.

This time we look into another generalization of SRP, without Euclidicity
in general. The classical approach does not work anymore, because even if
there are coordinates, they are not so easily “extractable” from the equations
ti − t0 = ρ(ri; s), which become significantly nonlinear.

Instead, we describe the iterative process that “converges” to the source
in certain sense explained further; this is an “approximating” method. In
short, we cover the regions of the space by balls, and repeatedly refine the
cover by a) replacing every ball with its cover by the balls of halved radius,
then b) removing from the cover each ball such that certain “defect” at its
center is greater than its doubled radius. “Defect” at the source is 0.

It is presented as an algorithm. How practical such algorithm is depends
on its “executor”: what and how many elementary computations the execu-
tor is allowed to perform. If e.g. we had a “computer” U with cardX cores,
we would plainly assign to each core single x ∈ X to verify if x is a solution
(ti − ρ(ri; x) ≡ const, see below). But U is too “heavy”.

Our target executor is closer to the nowadays “general purpose” comput-
ing devices, whose natural limitations on memory and time make U-approach
infeasible. We concretize the computation model in Subsection 1.2. In
Appendix we provide the proof-of-concept copy-paste-execute implementa-
tion of the algorithm in Julia for X = Rmp .

Some examples show the “real world” problems to which the described
method can, in principle, be applied.

Disclaimer. The intent of this paper is not to proclaim the (dubious)
“novelty” of the method being proposed, but to develop the approach of
akin methods in more general context and watch how it works. On the
other hand, we have not found an algorithm to solve SRP in general metric
spaces in the literature available to us.

Focusing rather on rigour, we consider “empty” spaces without “physics”
— echoes, varying sound speed, noise (see Remark 3).

Root finding versus optimization. Searching for argmin f(x) (or for
argmax

(
−f(x)

)
) is the optimization problem that is part of the most of

approaches to solve SRPs, especially with noised measurements (f(x) is
“cost”/“plausibility” function there). It is performed either (1-stage) di-
rectly in the space of possible source positions to estimate the actual posi-
tion, or (2-stage) in the space of relative time-delays ti − tj between sensors
to estimate these delays, which then allow to obtain the source position in
closed form or, alternatively, estimate it as well (see [1], [5], [7], [14], [2]).
For example, in [1] the branch & bound technique is applied and compared
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to other ones. The maximum likelihood estimator is, too, one of common
approaches to such optimization, though there are issues with local minima
when the cost function is not strictly concave (see [2, Section 9.4]). The
Euclidicity of the space where the wave propagates is important in deriv-
ing the closed form solutions and in the least squares localizations (see [5,
Section 4] and [2, Section 9.5]).

In our simplified case the exact relative delays are known and a non-
negative function has a unique zero; we search for that zero, rather than
extremum, in the (non-Euclidean) space of possible source positions. This is
a root finding of “bracketing”, or “exclude & enclose”, type (see [6, Section
1.2]).

The bibliography with somewhat more emphasis on the practice of sound
ranging, including historical surveys, was given in [15], or better, see [37],
[9], [2, Chapter 9], [23, pp. 320–323].

The symbol ♣ indicates the assumptions, or constraints, that we require
to hold unless stated otherwise. But the symbol • is for the statements that
are considered to be well-known under given assumptions and included for
the sake of completeness, without proofs or references.

1. SRP in proper metric spaces

1.1. Preliminaries.
• “2nd 4-inequality”: for any x,y, z ∈ X

∣∣ρ(x; z)− ρ(z; y)
∣∣ 6 ρ(x; y).

As usual, xk −−−→
k→∞

y means the convergence ρ(xk; y) −−−→
k→∞

0.

• Continuity of metric: xk −−−→
k→∞

y implies ρ(xk; z) −−−→
k→∞

ρ(y; z).

B(c; r) = {x ∈ X | ρ(x; c) < r} and B[c; r] = {x ∈ X | ρ(x; c) 6 r}
denote the open and closed balls with center c and of radius r.
• For any B[c; r] and any a ∈ X such that ρ(a; c) = d, we have d − r 6

ρ(x; a) 6 d+ r for any x ∈ B[c; r].
The set A ⊆ X is said to be compact if for any sequence {xk}k∈N ⊆ A

there exists a subsequence {xkl}l∈N such that xkl −−−→
l→∞

x0 ∈ A.

• If A is compact, then any closed subset of A is compact too.
The family of sets {Cj}j∈J , Cj ⊆ X, is said to be a cover of A ⊆ X if

A ⊆
⋃
j∈J

Cj .

• The closed A ⊆ X is compact if and only if any open cover of A has a
finite subcover.

The set A ⊆ X is called bounded if diamA = sup
x,y∈A

ρ(x; y) <∞.

♣M1. (X; ρ) is proper : any closed ball is compact.
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Such spaces are also called finitely compact or having the Heine–Borel
property ([10, Section 1.5, p. 43], [31, Section 1.4, p. 32]; in addition, see
also [40]).

• In ♣M1, “any closed ball” can be replaced with “any closed and bounded
subset”.
• A proper metric space is complete: any fundamental sequence converges.
In fact, it would suffice that δ > 0 exists such that, for any x ∈ X, B[x; δ]

is compact. We remark that the converse fails: the infinite-dimensional
separable Hilbert space is complete, but not proper. Moreover, any infinite-
dimensional normed space is not proper (F. Riesz, [22, Section 6.24]).

Now we proceed to the SRP.
The source s ∈ X and the emission moment t0 ∈ R are unknown.

♣1. The set of sensors is finite: {ri}ni=1, ri ∈ X, and ri 6= rj if i 6= j.
These sensors and the moments

ti = t0 + ρ(ri; s), i = 1, n (1)
define the SRP

(
{ri}; {ti}

)
. Each pair (s′; t′) satisfying the set of equations

ti = t′ + ρ(ri; s
′), i = 1, n (2)

is a solution of this SRP. Since t′ is defined uniquely from any such equation
for given s′, the source s′ itself can be called a solution too.

♣2. The solution s of the SRP
(
{ri}; {ti}

)
is unique.

Obviously, ♣2 is not true in general. For n = 1 any y ∈ X is a solution,
with t′ = t1− ρ(y; r1). In R2

2 we can place “true” and “false” sources, s and
s′ respectively, at the two foci of a hyperbola, and place 3 sensors on the
same branch of that hyperbola. Then ρ(ri; s)−ρ(ri; s

′) ≡ d, thus s′ emitting
the wave at the moment t′ = t0 + d is another solution.

The solution in Rm2 is unique if we take m+ 2 sensors such that {r2 − r1;
. . . ; rm+1 − r1} is a basis of Rm and rm+2 = 2r1 − r2 (see [15, Proposition
4]).

Definition 1.1. For any x ∈ X the backward moments are
τi(x) := ti − ρ(x; ri), i = 1, n.

τi(x) is the moment when the wave must be emitted from x to reach ri
at the moment ti.

Definition 1.2. For any x ∈ X the defect is

D(x) := 1
n

n∑
i=1

∣∣τi(x)− 1
n

n∑
j=1

τj(x)
∣∣.

(Compare with [5, Section 3] or [33, Section 2.4].) We rewrite

D(x) = 1
n2

n∑
i=1

∣∣ n∑
j=1

[
τi(x)− τj(x)

] ∣∣ 6 1
n2

n∑
i=1

n∑
j=1

∣∣τi(x)− τj(x)
∣∣.

The elementary properties of D(·) follow (Propositions 1.1–1.4).
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Proposition 1.1. An element s′ ∈ X is a solution of the SRP if and only
if D(s′) = 0.

Proof. If s′ is a solution, then ti = t′+ρ(ri; s
′), τi(s

′) ≡ t′. So τi(s
′)−τj(s′) ≡

0, thus D(s′) = 0. Contrariwise, D(s′) = 0 implies τi(s
′) ≡ t′ = 1

n

n∑
j=1

τj(s
′),

and (s′; t′) is a solution. �

Corollary 1.1. D(x) has exactly one zero in X, at x = s′.

Proposition 1.2. For any x ∈ X, |τi(x)− τj(x)| > D(x) for some i, j.

Proof. Assuming the contrary, we have D(x) < 1
n2

n∑
i=1

n∑
j=1

D(x) = D(x)

which is a contradiction. �

Proposition 1.3. For any x,y ∈ X,
∣∣D(x)−D(y)

∣∣ 6 2ρ(x; y).

Proof. We have∣∣D(x)−D(y)
∣∣ 6 1

n2

n∑
i=1

∣∣∣ n∑
j=1

[
τi(x)− τj(x)− {τi(y)− τj(y)}

] ∣∣∣
6

1

n2

n∑
i=1

n∑
j=1

∣∣∣[τi(x)− τi(y)
]
−
[
τj(x)− τj(y)

] ∣∣∣
6

1

n2

∑
i,j

[ ∣∣τi(x)− τi(y)
∣∣+
∣∣τj(x)− τj(y)

∣∣ ]
=

1

n2

∑
i,j

[ ∣∣ρ(x; ri)− ρ(y; ri)
∣∣+
∣∣ρ(x; rj)− ρ(y; rj)

∣∣ ]
6

1

n2

∑
i,j

[
ρ(x; y) + ρ(x; y)

]
= 2ρ(x; y).

�

It should be noted that D(·) is a Lipschitz function (see [17, Chapter 6], [35,
Section 9.4]).

Corollary 1.2. D(x) is uniformly continuous on X.

Proposition 1.4. Let s ∈ B = B[c; r]. For any δ > 0, there exists
ε = ε(δ) > 0 such that if x ∈ B and D(x) < ε, then ρ(x; s) < δ.

Proof. Let S =
{
x ∈ B | ρ(x; s) > δ

}
and ε = inf

x∈S
D(x). We claim that S is

compact. Indeed, S ⊂ B and S is closed due to continuity of metric. Since
for all x ∈ S, D(x) > 0 due to Corollary 1.1, we have ε > 0 (otherwise for any
k ∈ N there exists xk ∈ S with D(xk) <

1
k , and it follows from compactness
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of S that there exists {xkl}l∈N such that xkl −−−→
l→∞

x0 ∈ S. Then, since D(x)

is continuous, so D(xkl) −−−→
l→∞

D(x0), but 0 6 D(xkl) <
1
kl
6 1

l implies

D(x0) = lim
l→∞

D(xkl) = 0 – a contradiction).

Now, if x ∈ B and D(x) < ε, then x /∈ S, which means ρ(x; s) < δ. �

Test for a ball. Consider arbitrary B = B[c; r] ⊆ X. If s ∈ B, then
ρ(ri; c)− r 6 ρ(ri; s) 6 ρ(ri; c) + r, i = 1, n, which is equivalent to
t0 = ti − ρ(ri; s) ∈

[
ti − ρ(ri; c)− r; ti − ρ(ri; c) + r

]
, i = 1, n.

Hence t0 ∈ C =
n⋂
i=1

[
τi(c)− r; τi(c) + r

]
6= ∅.

It is easy to see that C 6= ∅ if and only if the following inequality holds:
2r > max

i
τi(c)−min

i
τi(c) = max

i,j

∣∣τi(c)− τj(c)
∣∣ =: I(c).

Thus we have the inference: if s ∈ B[c; r], then 2r > I(c). Conversely,
2r < I(c) implies s /∈ B[c; r].

Since |τi(c)− τj(c)| 6 I(c), we have D(c) 6 1
n2

∑
16i,j6n

I(c) = I(c). So

if 2r < D(c), then s /∈ B[c; r] (3)
and the condition “2r < D(c)” divides the family of all closed balls in X
into 2 families:

1) N (egative) — the balls that satisfy it and thus do not contain s,
2) S (uspicious) — the balls that do not satisfy it.
Of course, even if B ∈ S, more “advanced” tests may prove that s /∈ B.

Proposition 1.5. If D(x) > 0, x ∈ B = B[y; r], and r < 1
4D(x), then

B ∈ N .

Proof. By Proposition 1.3, it follows from ρ(y; x) 6 r < 1
4D(x) that |D(y)−

D(x)| < 1
2D(x). Thus D(y) > 1

2D(x) > 0. Since r < 1
4D(x) < 1

2D(y), (3)
implies B ∈ N . �

If D(x) > 0, then small enough suspicious balls do not contain x.

Refining cover. Consider any B = B[z; r]. A0 =
{
B(c; r2) | c ∈ B

}
is

a cover of B by open sets. From ♣M1 it follows that there exists a finite
subcover A1 =

{
B(ci;

r
2) | i = 1, N

}
⊆ A0, which also covers B. Clearly,

B =
{
B[ci;

r
2 ] | i = 1, N

}
is a finite cover of B too. Thus we have obtained

Proposition 1.6. For any B = B[z; r] there exists a finite cover B =
B(B) =

{
B[ci;

r
2 ] | i = 1, N

}
of B, and for any B[c; r2 ] ∈ B, ρ(c; z) 6 r.

Naturally, we want N to be as small as possible; however, the time spent
in the (intricate) positioning of less balls can exceed the time gained by
not testing more balls. We omit this topic here; see [11], [16, Chapter 2]. If
Nd ∈ N exists such that any B[z; r] can be covered by at most Nd closed balls
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of radius r
2 , then (X; ρ) is called doubling, and Nd is its doubling constant

(see [17, p. 81]).

For the method at hand we can weaken ρ(c; z) 6 r to
ρ(c; z) 6 K1r, K1 > 1. (4)

When, for example, points of X are provided with coordinates, we can
make B in a more “constructive” way. In particular, next section describes
this procedure in the finite-dimensional normed spaces. Other examples are
Riemannian manifolds with intrinsic metric (see [10, Sections 7.1, 8.1], [32,
Section 3.3]), optionally immersed in Rm2 , and some graphs whose edges have
lengths.

Let B0 = {B[z; r]}, B1 = B(B[z; r]). Then let B2 be the union of covers of
all balls from B1, . . . , Bk be the union of covers of all balls from Bk−1, . . . .

It is evident that the balls in Bk are of radius r
2k

and
⋃

B∈Bk
B ⊆

⋃
B∈Bk+1

B.

Proposition 1.7. Let B∞ =
∞⋃
k=0

Bk. Then⋃
B∈B∞

B ⊆ B[z;Kr],

where K = 2K1 + 1.

Proof. For any B′ = B[zk;
r
2k

] ∈ Bk there is B′′ = B[zk−1;
r

2k−1 ] ∈ Bk−1 such

that B′ ∈ B(B′′) (by construction). So by (4), ρ(zk; zk−1) 6 K1 · r
2k−1 =

2K1r · 1
2k

. Therefore,

ρ(zk; z) 6 ρ(zk; zk−1) + ρ(zk−1; z) 6 2K1r ·
1

2k
+ ρ(zk−1; z)

6 2K1r

(
1

2k
+

1

2k−1

)
+ ρ(zk−2; z) 6 . . .

6 2K1r
k∑
i=1

2−i + ρ(z; z) 6 2K1r.

Now, for any x ∈
⋃

B∈B∞
B: B[zk;

r
2k

] exists that contains x for some k, hence

ρ(x; z) 6 ρ(x; zk) + ρ(zk; z) 6 r
2k

+ 2K1r 6 (2K1 + 1)r. �

1.2. Method.
First, we construct the sequence of points that converges to s, using

({ri}; {ti}). Then we add the criterion to halt this process when required
precision is attained. Finally, we describe the “real world” computer able to
compute the sequence up to the halt.

We add one more assumption for the sake of simplicity:

♣3. At least one ball B0,1 = B[c0,1; r] 3 s is known.
(B0,1 is a “big enough” ball that contains all possible source positions.)
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Step 0. Let k = 0, C0 = {B0,1}, and r0 = r.

Step 1. Let Ck+1 = ∅.
For each ball B = B[y; rk] ∈ Ck, rk = r

2k
, there is the cover B of B, which

consists of the balls B′ = B[c; rk+1], rk+1 = 1
2rk = r

2k+1 .

Consider each B′ and apply test (3) to it. If B′ ∈ S, then add B′ to Ck+1.

Step 2. Let zk+1 be the center of the arbitrarily chosen ball from Ck+1.

Step 3. k := k + 1, goto Step 1.

It follows from s ∈ B0,1 ⊆
⋃

B∈B(B0,1)

B that at least one ball from B(B0,1)

contains s, this ball belongs to S and therefore C1 6= ∅. Similarly, at least
one ball from

⋃
B∈C1

B(B) contains s, implying C2 6= ∅, and so on: for any

k ∈ Z+ Ck 6= ∅. Hence these steps define the infinite sequence of the covers
{Ck}∞k=0 and the infinite sequence of the ball centers {zk}∞k=1.

Proposition 1.8. One has zk −−−→
k→∞

s.

Proof. By Proposition 1.7, {zk}k∈N ⊆ B̂ = B[c0,1;Kr] and s ∈ B0,1 ⊆ B̂.
Take any δ > 0. By Proposition 1.4, there exists ε > 0 such that if

x ∈ B̂ and D(x) < ε, then ρ(x; s) < δ. Since rk = r
2k
−−−→
k→∞

0, for any

k > k0 = 2 + blog2
r
εc, rk <

1
2ε. By construction, for any B = B[c; rk] ∈ Ck:

B ∈ S, so D(c) 6 2rk < ε. Hence ρ(c; s) < δ; in particular, ρ(zk; s) < δ. �

In practice, however, we would like to know when to halt this process.
We need a discernible “sign” that zk is close enough to s, ρ(zk; s) < δ for
the preselected precision δ. And we do not rely on the condition rk <

1
2ε,

because ε is, in a sense, unknown — defined “not constructively enough”;
put differently, the convergence rate is unknown.

Therefore, we add the stopping criterion to Step 3, replacing it by

Step 3’. k := k+ 1. Let dk = rk + max
B[c;rk]∈Ck

ρ(zk; c). If dk < δ, then halt;

else goto Step 1.

By Proposition 1.4, there exists ε > 0: if x ∈ B̂ and D(x) < ε, then
ρ(x; s) < 1

4δ. When rk = r
2k
< 1

2ε, for two balls B[zk; rk], B[c; rk] to be in
Ck ⊆ S it is necessary that D(zk), D(c) 6 2rk < ε, thus ρ(zk; c) 6 ρ(zk; s) +
ρ(s; c) < 1

2δ, — for large enough k the condition max
B[c;rk]∈Ck

ρ(zk; c) < 1
2δ

holds.
Obviously, the condition rk <

1
2δ holds when k > log2

2r
δ .

As soon as the process reaches k such that both conditions hold, dk < δ
and it halts. Whenever it halts (maybe even for smaller k), zk is the sought
approximation of s: suppose s ∈ B[c; rk] ∈ Ck, then

ρ(zk; s) 6 ρ(zk; c) + ρ(c; s) 6 dk < δ.
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We call the 0-1-2-3’ algorithm “refining cover by defect”, RCD.
We would be glad to know (and thank everyone who will point out) who

and when has proposed it already, especially in general metric spaces. Per-
haps it happened as early as 1920–40s?

Computation model. Consider the computer C that:
a) performs 4 operations of arithmetic on R with high enough precision;
b) is able to store in its memory a reasonably large number N ∈ N of X

points (perhaps in coordinate form);
c) calculates ρ(x′; x′′) for any given x′,x′′ ∈ X and builds the finite cover

B of any given ball B in a time not greater than T ∈ R+.
(Nothing beyond Turing machine with finite tape and its equivalents, see

[18, Section 8.6.2].)
We claim that C executes RCD in a finite time; indeed, the steps 0, 1, 2, 3’

involve only a finite number of cover building, distance calculation, and real
arithmetic. The exact amount of this time and the actual error ρ(zk; s) < δ
depend on properties (for example, dimensionality) of X, arrangement of
sensors, and so on.

We do not claim that RCD is optimal for C (“classical” approach, for
one, is faster in Rm2 ); however, as soon as X is infinite (cardX > ℵ0) and
unbounded, “test every point in X” becomes infeasible on C, while RCD can
be implemented. In other words, RCD lessens the complexity of computation
from infinite to finite (and makes it more “directed”). The readers concerned
with actual practicality are invited to run the code from Appendix.

Speaking of optimality, in certain proper metric spaces, with certain ar-
rangement of sensors, provably more efficient methods may exist. We also
remark that Step 1 is straightforwardly parallelizable.

2. SRP in finite-dimensional normed spaces

Now we denote by (X; ‖·‖) a normed space over the field R of real numbers,
θ is the zero of X as a vector space.

We apply RCD method to approximate s, only the RC itself becomes
more “constructible” due to the usage of bases and coordinates. Most of the
reasonings above for metric spaces remain, with usual ρ(x; y) = ‖x− y‖.

We keep the constraints ♣1–3. As for ♣M1, it is provided by

♣N1. X is finite-dimensional: dimX = m ∈ N.

• X is a complete (Banach) space.
• If A ⊆ X is closed and bounded (A ⊆ B[θ;R]), then A is compact.
In particular, any closed ball is compact — ♣M1.
• If L is a (linear) subspace of X (L < X), then L is a closed subspace.
• If L < X and x /∈ L, then ρ(x;L) = inf

u∈L
‖x − u‖ > 0 and h ∈ L exists

such that ‖x− h‖ = ρ(x;L).
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We could take any normalized basis E = {ej}mj=1 of X (that is, ‖ej‖ ≡ 1,

E is linearly independent, and X = L(E) =
{ m∑
j=1

xjej | xj ∈ R
}

); however,

for the sake of optimization of the RC we prefer the so-called Auerbach bases.
We denote by X∗ the dual, or adjoint, space of X, that is, the space of all

linear bounded functionals f : X → R. ‖ · ‖∗ is the norm of X∗.
• For any f ∈ X∗ and any x ∈ X, |f(x)| 6 ‖f‖∗ · ‖x‖.

Auerbach theorem (see [3] and [20], Proposition 20.12). There exist
{ej}mj=1 ⊂ X and {fj}mj=1 ⊂ X∗ such that ‖ej‖ = ‖fj‖∗ = 1 for j = 1,m

(normality) and fi(ej) = δij for i, j = 1,m (biorthogonality).

Let E = {ej}mj=1 from Auerbach theorem. For any ej and any u =∑
i 6=j

uiei ∈ L−j = L(E\{ej}) we have

1 = |δjj−0| = |fj(ej)−
∑
i 6=j

uifj(ei)| = |fj(ej−u)| 6 ‖fj‖∗·‖ej−u‖ = ‖ej−u‖.

Thus ρ(ej ;L−j) > 1. On the other hand, θ ∈ L−j and ‖ej − θ‖ = 1, so
ρ(ej ;L−j) = ‖ej‖ = 1, j = 1,m, (5)

— in addition to being the normalized basis of X (E is linearly independent
and |E| = dimX) this Auerbach basis E has the “orthogonality” property.

See also [28, Section 11.1.3, pp. 517–519]. If we have some non-Auerbach
basis E of X and want to “construct”, or approximate, the Auerbach one E
(i.e., calculate the coordinates of ej ∈ E in E) using the referenced “canon-
ical” Ruston’s proof, which involves the maximization of the determinant,
then we can search for that maximum in the m2-dimensional space of the
coordinates of the m-tuples of the points on {x ∈ X : ‖x‖ = 1} — a com-
plicated task as m increases; on the other hand, we perform it only once for
given (X; ‖ · ‖).

Refining cover. We describe (or just recall) the cover of B = B[θ; 1] by
the “lattice” of the closed balls of radius 1

2 (compare with [13, Sections 2.2,
6.3]).

Let x ∈ B and x =
m∑
j=1

xjej . For xj 6= 0

1 > ‖x‖ = |xj | · ‖ej +
∑
i 6=j

xi
xj

ei‖.

Since
(
−
∑
i 6=j

xi
xj

ei
)
∈ L−j = L

(
{e1; . . . ; ej−1; ej+1; . . . ; em}

)
, we obtain

1 > |xj | · ρ(ej ;L−j).
By construction of E, we have (5): ρ(ej ;L−j) = 1, therefore |xj | 6 1.

Let ci = −1 + i
m , i = 0, 2m: break [−1; 1] into [ci; ci+1] of length 1

m .
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Consider the set of the balls

B =
{
B[c;

1

2
] | c =

m∑
j=1

cijej , ij = 0, 2m, j = 1,m
}
.

There are (2m+ 1)m of them, and we remove from B the balls B′ = B[c; 1
2 ]

such that ‖c‖ > 3
2 , because B′ ∩ B = ∅ (if x ∈ B′ ∩ B, then ‖c‖ 6

‖c− x‖+ ‖x‖ 6 1
2 + 1).

We claim that, for any x ∈ B, c exists such that x ∈ B[c; 1
2 ] ∈ B. To

obtain such c, we take cij that is closest to xj (ij = rnd(m(1 + xj)), where

rnd(x) = bxc+ b2{x}c = b2xc − bxc). Then |xj − cij | 6 1
2m and

‖x− c‖ 6
m∑
j=1
|xj − cij | · ‖ej‖ 6

m∑
j=1

1
2m = 1

2 .

Thus B is the cover of B. Scaled and translated B̆ = z + rB =
{
B[z +

c; r2 ] : B[c; 1
2 ] ∈ B

}
is the sought cover of B[z; r], at that for any B[z′; r2 ] ∈ B̆:

‖z′ − z‖ 6 3
2r (compare with Proposition 1.6).

Non-Euclidean SR examples1

1. In a city on a plain whose streets form a rectangular grid, water-main
breach occurs at some address and the water begins to spread along the
streets, flooding the city. We know when the water reached some points (e.g.,
few CCTVs are scattered at the crossroads) and want to locate the breach.
In this example X is the set of addresses and ρ(a; b) ≈ |xa − xb|+ |ya − yb|,
which is the so-called “Manhattan distance”. See [8], [12].

2. In a social network (graph), some users (vertices) are connected by
“friend”-like links (edges). One user shares a “sensation” with “friends”, who
in turn spread it among theirs, etc. Assuming that we know when certain
users learnt the “sensation”, we seek who caused a big stir. X consists of
all users and ρ(a; b) is the shortest time needed by an information to travel
between a and b (multiplied by the speed of spreading). See [24], [36].

3. In a desert hilly place with a scarce but connected vegetation, where
the wind is absent or faint, the fire starts due to the arson. Few inhabitants
have reported the time when the fire reached their dwellings. Knowing these
points in time and the coordinates of the dwellings, we want to find where
and when the arson happened. X is the vegetated area, and ρ(a; b) is the
length of the shortest path through this area from a to b. See [26], [27].

4. In a number system X, e.g., N, GF(pn), Qp, Z[ζ] (see [19, Chapter 7],
[29, Sections II.1, I.6]), when the entity E with given computational power
establishes a property P, say, (non)primality, of the number a, it takes
certain amount of time for E to establish P for another number b, and vice

11st and 2nd examples were provided by the referee who suggested this section.
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versa. We know that E began from a single number s and the moments
when it established P for other numbers, which are known as well. What is
s? See [21], [39].

Remarks

1. Defects. Other defect functions

D1(x) = 2
n2

∑
16i<j6n

∣∣τi(x)− τj(x)
∣∣, D2(x) = 1

n

n∑
i=1

[
τi(x)− 1

n

n∑
j=1

τj(x)
]2

,

D∞(x) = I(x) = max
i
τi(x)−min

i
τi(x) = max

16i<j6n

∣∣τi(x)− τj(x)
∣∣, . . .

have properties similar to those of D(·). For instance,∣∣D2(x)−D2(y)
∣∣ 6 8 max

i,j
ρ(ri; rj) · ρ(x; y).

2. Issues with gradient method (GM) of searching for the minima of
the defect function fD(x), which starts at the initial point x0 and “moves” in
the direction of the steepest descent (another name of this method) of fD(x)
(see [6, Section 16.3], [30, Chapter 25]). Obviously, s is a local (and global)
minimum, locmin, of fD(·). However, in general, there can be more than
one locmin, even without noise (compare with [9, Section 5.2], [2, Section
9.4]).

Example 2.1. Consider the defect D2(·) — the variance of the random
variable with equiprobable values τi(x). Let (X; ρ) = R2

2, s = (0; 0), and 5
sensors: r1 = (8; 6), r2 = (5; 5), r3 = (−2; 6), r4 = (−6; 4), r5 = (−10; 2).

C Numerical experiments show that there is the locmin of D2(x) at b ≈
(−3.6901; 21.5627), at that D2(b) ≈ 0.69044. Therefore we cannot start
GM at arbitrary initial point to search for the solution. We remark that [15,
Proposition 4] implies uniqueness of the solution s, since r5 = 2r4 − r3. B

Similar configurations exist for higher dimensionalities.

Moreover, GM that starts at the sensor nearest to s can converge to the
locmin b 6= s.

Example 2.2. Let (X; ρ) = R2
2, s = (0; 0), and 5 sensors: r1(1.885; 0.014),

r2(2.523;−0.76), r3(2.552;−0.756), r4(2.94;−0.78), r5(2.081; 0.986)

C GM with the initial point r1, which is nearest to s, converges to the
locmin of D2(x) at b ≈ (2.039; 0.253), D2(b) ≈ 0.00318. B

Again, similar behaviour can occur in Rm2 for m > 2.

3. Towards Noise. When, instead of exact ti, we know only “shifted”
t̂i = ti + ξi and τ̂i(x) = t̂i − ρ(x; ri) (noises ξi are supposed to be random

variables with certain properties), D̂ = 1
n2

∑
i

∣∣∑
j

(
τ̂i − τ̂j

)∣∣ is “distorted”;
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we lose Proposition 1.1, Proposition 1.4, and what is built on top of them.

Maybe D̂ has a continuum of zeros, maybe none.
If we opt to keep using the root finding approach rather than the opti-

mization one, then the following “trick” may be applied, assuming |ξi| 6 γ

for small enough γ: consider D̃ = |D̂ − 2γ|.
It is easy to see that |D̂ − D| 6 2γ, thus D̂(s) − 2γ 6 0, while at some

distant x presumably D̂(x)−2γ > 0; D̃ has zeros. Like D̂, D̃ is a “distortion”

of D, but due to γ ≈ 0 D̃ should be small enough for the (continuum of) zeros

of D̃ to be “not too far” from s. These zeros form the closed (topologically

and geometrically) “surface(s)” Z = {x ∈ X | D̃(x) = 0} around or near s;
in a sense, the distortion “inflates” single zero, turning it into surface(s).

Proposition 1.3 remains valid for D̃, and instead of Proposition 1.4 we
shall have its analogue with ρ(x; s) replaced by ρ(x;Z). We use the test

“2rk < D̃(c)”, and the refining cover {Ck}∞k=0 consisting of B[c; rk] that
do not satisfy this inequality “converges” to Z, which stays mostly within
the union of the balls from Ck. At some iteration we halt and take some
point “between” the centers of these balls (their mean in normed space, for
instance). . . and rely on this point being close enough to s.

The locmins cause one of evident drawbacks of this trick: false, or “ghost”,
solutions can appear near such minima, relatively far from the true source s.
At least they should not appear, and Ck should not break into the disjoint
groups of the balls as k → ∞, if 2γ < µ, where µ is the minimal value of

D̂(b) at the locmins b that are not the “descendants” of s.

Meta-refinement: we run, in parallel, several instances of |D̂ − λ|-trick
with different λ (e.g., λij = ± i

2j−1γ), compare how the respective covers
behave, and spawn new instances if needed.

Conclusions

We have considered the SRP in proper metric spaces and, under some
assumptions, described the algorithm to approximate its solution to pre-
selected precision. The method can be implemented on a general purpose
computer (see Appendix), although we do not claim that it is optimal in
all such spaces. In the finite-dimensional normed spaces, the cover that the
algorithm uses is built in a more constructive way. The algorithm can be
adjusted for noised measurements.

Future work: obtain estimates of the time in which the algorithm ex-
ecutes based on properties of the space, e.g., the doubling constant; look
into optimal arrangement of sensors; estimate memory requirements; study
robustness more thoroughly; consider non-proper spaces.
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Appendix

The implementation of RCD algorithm with the defect D∞(·) for Rmp ,
where m ∈ N, 1 6 p <∞, in Julia language (see julialang.org).

space.jl

module Space

## Primary constants

const DIM = 2 # m

const POW = 5.6789 # p

## Derived constants

# We cover ball or radius 1 by balls of radius 1/2.

# Their centers are at nodes of (hyper)cubic lattice.

# The number N of small cubes along each axis must be big enough

# so that the longest diagonal of a small cube is not longer than 1.

const COVER_AXIS_STEP_NUM = Int(ceil( 2.0 / ((1.0 / DIM)^(1 / POW)) ))

const COVER_AXIS_STEP_LEN = 2.0 / COVER_AXIS_STEP_NUM

struct Point

x::Array{Float64,1}

end

struct Coverand

center::Point

radius::Float64

end

struct CoverandIndex

i::Array{Int,1}

end

export Point, Coverand

distance(p1, p2) = (sum( (abs.(p1.x - p2.x)).^POW ))^(1.0 / POW)

newZeroPoint() = Point(zeros(Float64, DIM))

newRandomPoint(rad=1.0) = Point(rad * (1.0 .- 2.0 * rand(Float64, DIM)))

newCoverandIndex() = CoverandIndex(zeros(Int, DIM))

# Increment d-digit number in base COVER_AXIS_STEP_NUM+1

# (i-th digit is the index of cubic lattice node along i-th axis)

function nextCoverandIndex(index)

next = deepcopy(index)

carry, dim = 1, 1

while (carry == 1) && (dim <= DIM)

next.i[dim] += carry

if (next.i[dim] > COVER_AXIS_STEP_NUM)

next.i[dim], carry = 0, 1

else
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carry = 0

end

dim += 1

end

is_last = (carry == 1) # overflow

return next, is_last

end

function makeUnitCover()

cover = []

zeroPoint = newZeroPoint()

index = newCoverandIndex()

is_last = false

while !is_last

found, coverand = false, nothing

while (!found) && (!is_last)

coverand = Coverand(Point([- 1.0 + index.i[dim] *

COVER_AXIS_STEP_LEN for dim = 1:DIM]), 0.5)

index, is_last = nextCoverandIndex(index)

# Exclude halved balls that do not intersect with unit ball

found = (distance(coverand.center, zeroPoint) <= 1.5)

end

if found

append!(cover, [coverand])

end

end

return cover

end

transcaleUnitCoverand(baseCoverand, unitCoverand) =

Coverand(Point([baseCoverand.center.x[dim] + baseCoverand.radius *

unitCoverand.center.x[dim] for dim = 1:DIM]), baseCoverand.radius *

unitCoverand.radius)

export distance, newZeroPoint, newRandomPoint, makeUnitCover,

transcaleUnitCoverand

end

sr ms rcd.jl

include("space.jl")

using .Space

const SENSOR_NUM = 64

const SOURCE_SCATTER_SIZE = 10.0

const SENSOR_SCATTER_SIZE = 100.0

const INIT_COVERAND_RADIUS = 20.0

const PRECISION = 0.1
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struct Sensor

p::Point

t::Float64

end

function makeProblem()

source = newRandomPoint(SOURCE_SCATTER_SIZE)

t_0 = randn()

sensors = []

for i = 1:SENSOR_NUM

p = newRandomPoint(SENSOR_SCATTER_SIZE)

t = t_0 + distance(source, p)

append!(sensors, [Sensor(p, t)])

end

return sensors, source

end

function defect(sensors, x)

taus = [s.t - distance(x, s.p) for s in sensors]

return maximum(taus) - minimum(taus)

end

test(sensors, coverand) = (defect(sensors, coverand.center) <=

2 * coverand.radius)

let

sensors, source = makeProblem()

unitCover = makeUnitCover()

# Step 0

cover = [Coverand(newZeroPoint(), INIT_COVERAND_RADIUS)]

k = 0

r = cover[1].radius

approx = cover[1].center

t1 = time_ns()

halt = false

while !halt

# Step 1

next_cover = []

for c in cover # Longing for parallelization

for u in unitCover

sub = transcaleUnitCoverand(c, u)

if test(sensors, sub)

append!(next_cover, [sub])

end

end

end

cover = next_cover
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n = length(cover)

r *= 0.5

println("Iteration ", k+1, ": ", n, " balls")

# Step 2

approx = cover[(1+n)>>1].center

# Step 3’

k += 1

halt = (r + maximum([distance(approx, c.center)

for c in cover]) < PRECISION)

end

t2 = time_ns()

println("Approximated source: ", approx)

println("Real source: ", source)

println("Distance error: ", distance(approx, source))

println("Time: ", 1e-9 * (t2-t1), " sec")

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical execution result for m = 2, p = 5.6789, 64 sensors, and δ = 0.1 is

shown below. Note that (+) the distance error is smaller than the precision δ
and (−) the number of balls in a cover does not decrease.

julia sr_ms_rcd.jl

Iteration 1: 1 balls

Iteration 2: 2 balls

Iteration 3: 4 balls

Iteration 4: 4 balls

Iteration 5: 12 balls

Iteration 6: 12 balls

Iteration 7: 48 balls

Iteration 8: 192 balls

Iteration 9: 576 balls

Approximated source: Point([7.734374999999999, -9.348958333333337])

Real source: Point([7.701565893029412, -9.36462698238313])

Distance error: 0.032895472278787335

Time: 1.59940107 sec
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