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Continuous functions between sets with operations

Fumie Nakaoka and Nobuyuki Oda

Abstract. A set with an operation is a generalization of a topological
space. Two types of continuous functions are defined between sets with
operations. They are characterized making use of two types of closures
and interiors. Homeomorphisms between sets with operations are also
characterized. Variants of subspaces, connected spaces and compact
spaces are introduced in a set with an operation and some fundamental
properties of them are proved.

1. Introduction

In a previous paper [6] we introduced a set with an operation as a gener-
alization of a topological space (see Section 2); let P(X) be the power set
of a set X and F ⊂ P(X) such that F contains at least one non-empty set.
An operation κ on F is a function

κ : F → P(X)

such that U ⊂ Uκ for each U ∈ F , where Uκ = κ(U). We call the triple
(X,F , κ) a space. A topological space (X, τ) with a family τ of open sets is
regarded as a space (X, τ, id), where id : τ → P(X) is defined by id(U) = U
for any U ∈ τ (see Example 2.2). The κ-operation is a generalization of
the operations for topological spaces (called α- or γ-operations) studied by
Kasahara [4], Janković [3] and Ogata [7]. However, the κ-operation and the
space (X,F , κ) defined above are used to generalize the concept of “topo-
logical space” itself, that is, for a space (X,F , κ), variants of open set,
neighborhood, interior, closure etc. can be defined without assuming the
existence of topological spaces [6]. For example, for a space (X,F , κ), the
κ-open set is defined and the family of all κ-open sets is denoted by Fκ (see
Definition 2.1). The purpose of the present paper is to define two kinds
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of continuous functions f : (X,F , κ) → (Y,G, ψ) between sets with opera-
tion (X,F , κ) and (Y,G, ψ), that is, (κ, ψ)-continuous (Definition 3.1) and
(Fκ,Gψ)-continuous (Definition 3.2) functions and study their properties.
The functions f : (X, τ)→ (Y, τ ′) between topological spaces with operation
were studied by Kasahara [4], Janković [3], Ogata [7], Rosas and Vielma [8]
and Basu et al. [1], for example.

We defined two types of closures (Clκ, Fκ-Cl) and two types of interi-
ors (Intκ, Fκ-Int) for a space (X,F , κ) in [6] (see Section 2). The (κ, ψ)-
continuous functions f : (X,F , κ) → (Y,G, ψ) are characterized making use
of Clκ, Clψ, Intκ, Intψ by Theorem 3.6; the (Fκ,Gψ)-continuous functions
are characterized making use of Fκ-Cl,Gψ-Cl,Fκ-Int,Gψ-Int by Theorem 3.9.
Therefore, Theorem 3.7 shows that if f : (X,F , κ) → (Y,G, ψ) is (κ, ψ)-
continuous, then f is (Fκ,Gψ)-continuous. In Section 3.1 we study homeo-
morphisms between sets with operation.

In Section 4 we consider subspaces. Let (X,F , κ) be a space and S a
subset of X. Let Fκ|S = {U ∩S | U ∈ Fκ}. Since the relation U ∩S = V ∩S
does not always imply κ(U)∩ S = κ(V )∩ S (see Example 4.1), the function
κS : F|S → P(S) is not well defined by the formula κS(U ∩ S) = κ(U) ∩ S
for any U ∩ S ∈ F|S. Therefore, we define a subspace of a space (X,F , κ)
by the triple (S,Fκ|S, id) (see Definition 4.3) and prove standard results. In
the case of a topological space (X, τ), Rosas and Vielma [8] noticed that an
operation on a subspace αS : τS → P(S) satisfying αS(G ∩ S) = α(G) ∩ S
with G ∈ τ is not necessarily well defined in some cases and gave an example
(see Remark 4.2).

We define the Fκ-connected space (Definition 5.1) and Fκ-compact space
(Definition 6.1), and study the relations with (Fκ,Gψ)-continuous function
f : (X,F , κ)→ (Y,G, ψ) in Sections 5 and 6, respectively.

2. Sets with operations

In this section we recall some results from [6] which are necessary for the
subsequent discussions. Let P(X) be the power set of a set X and F ⊂ P(X)
such that F contains at least one non-empty set. An operation κ on F is a
function

κ : F → P(X)

such that U ⊂ Uκ for each U ∈ F , where Uκ = κ(U). We call the triple
(X,F , κ) a space. If (X,F , κ) is a space, then we call X a (F , κ)-space, or
simply, a κ-space.

Definition 2.1 (see [6], Definition 2.2). Let (X,F , κ) be a space. A
subset A of X is called a κ-open set of X if for each x ∈ A there exists a set
U ∈ F such that x ∈ U ⊂ Uκ ⊂ A. The family of all κ-open sets is denoted
by Fκ. A subset F of X is called a κ-closed set of X if its complement X−F
is a κ-open set in X.
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By [6, Proposition 2.4], a subset A of (X,F , κ) is κ-open if and only if
there exists an index set Λ and Uλ ∈ F for each λ ∈ Λ such that A =
∪λ∈ΛUλ = ∪λ∈ΛU

κ
λ .

Let x be any point of X. A set Uκ such that x ∈ U ∈ F is called a
κ-neighborhood of x. A κ-open set W such that x ∈ W is called a κ-open
neighborhood of x.

Example 2.2. Let (X, τ) be a topological space with the family τ of open
sets of X. Let F = τ and κ : F = τ → P(X) be defined by the function
κ(U) = U (the same set) for any U ∈ τ . Then Fκ = τ and a κ-open set is
an open set in τ . Moreover, κ-neighborhoods and κ-open neighborhoods of
a point x are usual open neighborhoods of x in the topological space (X, τ).
Therefore, we regard a topological space (X, τ) as the set X with F = τ and
the operation κ(U) = U so that Fκ = τ (if κ is not defined otherwise), that
is, a topological space (X, τ) is a space (X, τ, id), where id : τ → P(X) is
defined by id(U) = U for any U ∈ τ .

Definition 2.3 (see [6], Definition 3.2). Let (X,F , κ) be a space and let
A be a subset of X.

A point x of X is called a κ-interior point of A if there exists U ∈ F such
that x ∈ U ⊂ Uκ ⊂ A. The κ-interior of A is defined by

Intκ(A) = {x |x is a κ-interior point of A}.
A point x of X is called a Fκ-interior point of A if there exists V ∈ Fκ such
that x ∈ V ⊂ A. The Fκ-interior of A is defined by

Fκ-Int(A) = {x |x is a Fκ-interior point of A}.

The following hold for any subset A of (X,F , κ) by [6, Proposition 3.5].

(1) A ⊃ Intκ(A) ⊃ Fκ-Int(A).
(2) If A is a κ-open set, then A = Intκ(A) = Fκ-Int(A).

Definition 2.4 (see [6], Definition 3.7). Let A be a subset of (X,F , κ).
A point x of X is called a κ-adherent point of A if Uκ ∩ A 6= ∅ for any

U ∈ F with x ∈ U , or there exists no U ∈ F with x ∈ U . The κ-closure of
A is defined by

Clκ(A) = {x |x is a κ-adherent point of A}.
A point x of X is called a Fκ-adherent point of A if V ∩A 6= ∅ for any V ∈ Fκ
with x ∈ V , or there exists no V ∈ Fκ with x ∈ V . The Fκ-closure of A is
defined by

Fκ-Cl(A) = {x |x is a Fκ-adherent point of A}.

Although some points of (X,F , κ) may have no κ-neighborhoods or κ-
open neighborhoods, the inclusions A ⊂ Clκ(A) and A ⊂ Fκ-Cl(A) hold for
any A ⊂ X by Definition 2.4.
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We note that the following relations hold for any subset A of (X,F , κ):

Intκ(A) ⊂ ∪F and Fκ-Int(A) ⊂ ∪Fκ ;

Clκ(A) ⊃ X − ∪F and Fκ-Cl(A) ⊃ X − ∪Fκ.
The following hold for any subset A of (X,F , κ) by [6, Proposition 3.11]:

(1) A ⊂ Clκ(A) ⊂ Fκ-Cl(A);
(2) if A is a κ-closed set, then A = Clκ(A) = Fκ-Cl(A).

If A is a subset of (X,F , κ), then Fκ-Int(A) is a κ-open set and Fκ-Cl(A)
is a κ-closed set by [6, Proposition 3.14]. Moreover, we have the following
results for subsets A and B of (X,F , κ) by [6, Propositions 3.16 and 3.18].

(1) Fκ-Int(Fκ-Int(A))=Fκ-Int(A). If A⊂B, then Fκ-Int(A)⊂Fκ-Int(B).
(2) Fκ-Cl(Fκ-Cl(A))=Fκ-Cl(A). If A ⊂ B, then Fκ-Cl(A) ⊂ Fκ-Cl(B).
(3) If A ⊂ B, then Intκ(A) ⊂ Intκ(B) and Clκ(A) ⊂ Clκ(B).

The following statements are equivalent for any subset A of (X,F , κ) by
[6, Proposition 3.22].

(1) A is κ-open.
(2) A = Intκ(A).
(3) A = Fκ-Int(A).
(4) Clκ(X −A) = X −A.
(5) Fκ-Cl(X −A) = X −A.
(6) X −A is κ-closed.

Remark 2.5. Let (X,F , κ) be a space. Let U1, U2, V1, V2 ∈ F . We note
that

(1) an equality U1 ∪ U2 = V1 ∪ V2 does not always imply Uκ1 ∪ Uκ2 =
V κ

1 ∪ V κ
2 ;

(2) an equality U1 ∩ U2 = V1 ∩ V2 does not always imply Uκ1 ∩ Uκ2 =
V κ

1 ∩ V κ
2 ;

(3) the equality (U1 ∪ U2)κ = Uκ1 ∪ Uκ2 does not always hold;
(4) the equality (U1 ∩ U2)κ = Uκ1 ∩ Uκ2 does not always hold.

For example, let X = {a, b, c, d} and

F = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}, X}.
Let κ : F → P(X) be an operation defined by

∅κ = ∅, {a}κ = {a}, {b}κ = {c}κ = {b, c}κ = {b, c},
{a, b}κ = {a, b, d}, {a, c}κ = {a, c, d}, {a, b, c}κ = Xκ = X.

(1) Let U1 = {a}, U2 = {b, c}, V1 = {a, b}, V2 = {c} ∈ F . Then U1∪U2 =
{a} ∪ {b, c} = {a, b} ∪ {c} = V1 ∪ V2 and

Uκ1 ∪ Uκ2 = {a}κ ∪ {b, c}κ = {a} ∪ {b, c} = {a, b, c};
V κ

1 ∪ V κ
2 = {a, b}κ ∪ {c}κ = {a, b, d} ∪ {b, c} = {a, b, c, d} = X.

Therefore, we have Uκ1 ∪ Uκ2 6= V κ
1 ∪ V κ

2 .
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(2) Let U1 = {a}, U2 = {a, b}, V1 = {a, b}, V2 = {a, c} ∈ F . Then
U1 ∩ U2 = {a} ∩ {a, b} = {a, b} ∩ {a, c} = V1 ∩ V2 and

Uκ1 ∩ Uκ2 = {a}κ ∩ {a, b}κ = {a} ∩ {a, b, d} = {a};

V κ
1 ∩ V κ

2 = {a, b}κ ∩ {a, c}κ = {a, b, d} ∩ {a, c, d} = {a, d}.

Therefore, we have Uκ1 ∩ Uκ2 6= V κ
1 ∩ V κ

2 .
(3) Let U1 = {a}, U2 = {b, c} ∈ F as in (1). Then (U1 ∪ U2)κ =
{a, b, c}κ = X and Uκ1 ∪ Uκ2 = {a, b, c}. Therefore, we have (U1 ∪
U2)κ 6= Uκ1 ∪ Uκ2 .

(4) Let U1 = {a, b}, U2 = {a, c} ∈ F . Then (U1 ∩ U2)κ = {a}κ = {a}
and

Uκ1 ∩ Uκ2 = {a, b}κ ∩ {a, c}κ = {a, b, d} ∩ {a, c, d} = {a, d}.

Therefore, we have (U1 ∩ U2)κ 6= Uκ1 ∩ Uκ2 .

3. (κ, ψ)-continuous and (Fκ,Gψ)-continuous functions

In this section we consider functions between sets with operations. The
sets with operations are denoted by

(X,F , κ), (Y,G, ψ), (Z,H, η), . . . and so on.

Let (X,F , κ) and (Y,G, ψ) be spaces, that is, κ : F → P(X) and ψ : G →
P(Y ) are operations with F ⊂ P(X) and G ⊂ P(Y ), respectively.

Definition 3.1. A function f : (X,F , κ)→ (Y,G, ψ) is said to be (κ, ψ)-
continuous at x ∈ X if for each V ∈ G containing f(x) there exists U ∈ F
such that x ∈ U and f(Uκ) ⊂ V ψ. A function f : (X,F , κ) → (Y,G, ψ) is
said to be (κ, ψ)-continuous if it is (κ, ψ)-continuous at any point x of X.

Definition 3.2. A function f : (X,F , κ)→ (Y,G, ψ) is said to be (Fκ,Gψ)-
continuous at x ∈ X if for each ψ-open set V containing f(x) there exists
a κ-open set U such that x ∈ U and f(U) ⊂ V . A function f : (X,F , κ) →
(Y,G, ψ) is said to be (Fκ,Gψ)-continuous if it is (Fκ,Gψ)-continuous at any
point x of X.

Remark 3.3. Let f : (X,F , κ) → (Y,G, ψ) be a function and x ∈ X. If
there exists no V ∈ G containing f(x), then f is (κ, ψ)-continuous at x ∈ X.
If there exists no V ∈ Gψ containing f(x), then f is (Fκ,Gψ)-continuous at
x ∈ X.

More precisely, we have the following table.
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condition at x, the function f is

(i) x ∈ ∪F and f(x) ∈ ∪G (case by case)

(ii) x ∈ ∪F and f(x) 6∈ ∪G (κ, ψ)-continuous

(iii) x 6∈ ∪F and f(x) ∈ ∪G not (κ, ψ)-continuous

(iv) x 6∈ ∪F and f(x) 6∈ ∪G (κ, ψ)-continuous

condition at x, the function f is

(i) x ∈ ∪Fκ and f(x) ∈ ∪Gψ (case by case)

(ii) x ∈ ∪Fκ and f(x) 6∈ ∪Gψ (Fκ,Gψ)-continuous

(iii) x 6∈ ∪Fκ and f(x) ∈ ∪Gψ not (Fκ,Gψ)-continuous

(iv) x 6∈ ∪Fκ and f(x) 6∈ ∪Gψ (Fκ,Gψ)-continuous

Example 3.4. The identity function 1X : (X,F , κ) → (X,F , κ) is both
(κ, κ)-continuous and (Fκ,Fκ)-continuous for any space (X,F , κ).

Proposition 3.5. (1) If a function f : (X,F , κ) → (Y,G, ψ) is (κ, ψ)-
continuous and a function g : (Y,G, ψ)→ (Z,H, η) is (ψ, η)-continuous, then
the composite

g ◦ f : (X,F , κ)→ (Z,H, η)

is (κ, η)-continuous.
(2) If a function f : (X,F , κ) → (Y,G, ψ) is (Fκ,Gψ)-continuous and a

function g : (Y,G, ψ)→ (Z,H, η) is (Gψ,Hη)-continuous, then the composite

g ◦ f : (X,F , κ)→ (Z,H, η)

is (Fκ,Hη)-continuous.

Proof. (1) Assume that x ∈ X and there exists M ∈ H which contains
g(f(x)). Then there exists V ∈ G which contains f(x) and g(V ψ) ⊂ Mη.
Also there exists U ∈ F containing x such that f(Uκ) ⊂ V ψ. It follows that
(g ◦ f)(Uκ) ⊂Mη.

(2) Assume that x ∈ X and there exists M ∈ Hη which contains g(f(x)).
Then there exists V ∈ Gψ which contains f(x) such that g(V ) ⊂ M . Also
there exists U ∈ Fκ containing x such that f(U) ⊂ V . It follows that
(g ◦ f)(U) ⊂M . �

The following theorem is a generalization of 1 Theorem (p. 86) of Kelley
[5] or 2.6.2 (p. 36) of Brown [2], etc.

Theorem 3.6. The following conditions are equivalent for a function
f : (X,F , κ)→ (Y,G, ψ).

(1) f : (X,F , κ)→ (Y,G, ψ) is (κ, ψ)-continuous.
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(2) f(Clκ(A)) ⊂ Clψ(f(A)) for any subset A of (X,F , κ).
(3) Clκ(f−1(B)) ⊂ f−1(Clψ(B)) for any subset B of (Y,G, ψ).
(4) f−1(Intψ(D)) ⊂ Intκ(f−1(D)) for any subset D of (Y,G, ψ).

Proof. (1) =⇒ (2). Assume that f : (X,F , κ)→ (Y,G, ψ) is (κ, ψ)-continu-
ous. Let y ∈ f(Clκ(A)), then y = f(x) for some x ∈ Clκ(A). If there exists
V ∈ G such that y ∈ V , then there exists U ∈ F such that x ∈ U and
f(Uκ) ⊂ V ψ. Then we have Uκ ∩ A 6= ∅, and hence ∅ 6= f(Uκ ∩ A) ⊂
f(Uκ) ∩ f(A) ⊂ V ψ ∩ f(A). This implies y ∈ Clψ(f(A)). If there exists no
V ∈ G with y ∈ V , then y ∈ Clψ(f(A)) by definition. Therefore we obtain
f(Clκ(A)) ⊂ Clψ(f(A)).

(2) =⇒ (3). Let B be a subset of (Y,G, ψ). By (2), we have

f(Clκ(f−1(B))) ⊂ Clψ(f(f−1(B))) ⊂ Clψ(B).

It follows that Clκ(f−1(B)) ⊂ f−1(Clψ(B)).
(3) =⇒ (4). Let D be a subset of (Y,G, ψ). Then by [6, Proposition 3.13]

we have

X − Intκ(f−1(D)) = Clκ(X − f−1(D)) = Clκ(f−1(Y −D))

⊂ f−1(Clψ(Y −D)) = f−1(Y − Intψ(D)) = X − f−1(Intψ(D)).

It follows that Intκ(f−1(D)) ⊃ f−1(Intψ(D)).
(4) =⇒ (1). Let x ∈ X be any point and f(x) ∈ V for some V ∈ G. We see

that V ⊂ Intψ(V ψ) by the definition of Intψ(V ψ) and hence f(x) ∈ Intψ(V ψ).
By (4) we see that

x ∈ f−1(Intψ(V ψ)) ⊂ Intκ(f−1(V ψ)).

Hence there exists U ∈ F such that x ∈ U ⊂ Uκ ⊂ f−1(V ψ). It follows that
f(Uκ) ⊂ V ψ. Therefore, f is (κ, ψ)-continuous at x ∈ X. �

Theorem 3.7. Let f : (X,F , κ)→ (Y,G, ψ) be a (κ, ψ)-continuous func-
tion. Then the following hold :

(1) f−1(G) is κ-open in (X,F , κ) for any ψ-open set G in (Y,G, ψ);
(2) f−1(K) is κ-closed in (X,F , κ) for any ψ-closed set K in (Y,G, ψ).

Proof. (1) Let G be a ψ-open set in Y . For any x ∈ f−1(G), we see
that f(x) ∈ G, and hence there exists V ∈ G such that f(x) ∈ V ⊂ V ψ ⊂
G. Since f is (κ, ψ)-continuous, there exists U ∈ F such that x ∈ U and
f(Uκ) ⊂ V ψ ⊂ G. It follows that x ∈ U ⊂ Uκ ⊂ f−1(G). Hence f−1(G) is
κ-open.

(2) Let K be a ψ-closed set in (Y, ψ), namely, Clψ(K) = K by [6, Propo-
sition 3.22]. By Theorem 3.6, the relation

f(Clκ(f−1(K)) ⊂ Clψ(f(f−1(K)) ⊂ Clψ(K) = K
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holds. Then we have Clκ(f−1(K)) ⊂ f−1(K) and hence f−1(K) =
Clκ(f−1(K)), that is, f−1(K) is κ-closed set in (X,κ) by [6, Proposition 3.22].

�

Remark 3.8. Conditions (1) and (2) in Theorem 3.7 are equivalent by
Theorem 3.9.

The following theorem is also a generalization of 1 Theorem (p. 86) of
Kelley [5] or 2.6.2 (p. 36) of Brown [2], etc.

Theorem 3.9. The following conditions are equivalent for a function
f : (X,F , κ)→ (Y,G, ψ).

(1) f : (X,F , κ)→ (Y,G, ψ) is (Fκ,Gψ)-continuous.
(2) f−1(G) is κ-open in (X,F , κ) for any ψ-open set G of (Y,G, ψ).
(3) f−1(K) is κ-closed in (X,F , κ) for any ψ-closed set K of (Y,G, ψ).
(4) f(Fκ-Cl(A)) ⊂ Gψ-Cl(f(A)) for any subset A of (X,F , κ).
(5) Fκ-Cl(f−1(B)) ⊂ f−1(Gψ-Cl(B)) for any subset B of (Y,G, ψ).
(6) f−1(Gψ-Int(D)) ⊂ Fκ-Int(f−1(D)) for any subset D of (Y,G, ψ).

Proof. (1) =⇒ (2). Assume that f : (X,F , κ) → (Y,G, ψ) is (Fκ,Gψ)-
continuous and G is a ψ-open set in (Y,G, ψ). For any x ∈ f−1(G), we have
f(x) ∈ G, and there exists U ∈ Fκ such that x ∈ U and f(x) ∈ f(U) ⊂ G
by (1). It follows that x ∈ U ⊂ f−1(G) and hence there exists V ∈ F such
that x ∈ V ⊂ V κ ⊂ U ⊂ f−1(G). Hence f−1(G) is κ-open in (X,F , κ).

(2) ⇐⇒ (3) is obtained by the definitions since K is ψ-closed if and only
if X −K is ψ-open.

(3) =⇒ (4). Let A be a subset of (X,F , κ). Then Gψ-Cl(f(A)) is ψ-closed
in (Y,G, ψ) by Proposition 3.14 of [6]. Hence f−1(Gψ-Cl(f(A))) is κ-closed
in (X,F , κ) by (3) and we have

Fκ-Cl(f−1(Gψ-Cl(f(A)))) = f−1(Gψ-Cl(f(A))) ⊃ f−1(f(A)) ⊃ A.
It follows by Proposition 3.16(2) of [6] that

Fκ-Cl(A) ⊂ Fκ-Cl(f−1(Gψ-Cl(f(A)))) = f−1(Gψ-Cl(f(A))).

We conclude that f(Fκ-Cl(A)) ⊂ Gψ-Cl(f(A)).
(4) =⇒ (5). Let B be a subset of (Y,G, ψ). By (4) we have

f(Fκ-Cl(f−1(B))) ⊂ Gψ-Cl(f(f−1(B))) ⊂ Gψ-Cl(B).

Therefore we have Fκ-Cl(f−1(B)) ⊂ f−1(Gψ-Cl(B)).
(5) =⇒ (6). Let D be a subset of (Y,G, ψ). Then by [6, Proposition 3.13]

and (5) we have

X −Fκ-Int(f−1(D)) = Fκ-Cl(X − f−1(D))

= Fκ-Cl(f−1(Y −D)) ⊂ f−1(Gψ-Cl(Y −D))

= f−1(Y − Gψ-Int(D)) = X − f−1(Gψ-Int(D)).
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It follows that Fκ-Int(f−1(D)) ⊃ f−1(Gψ-Int(D)).
(6) =⇒ (1). Let x ∈ X be any point and f(x) ∈ V for some V ∈ Gψ.

We see that Gψ-Int(V ) = V by [6, Proposition 3.22] since V is a ψ-open set.
Then by (6) we have

f−1(V ) = f−1(Gψ-Int(V )) ⊂ Fκ-Int(f−1(V )).

It follows that f−1(V ) = Fκ-Int(f−1(V )), that is, f−1(V ) is a κ-open set by
[6, Proposition 3.22]. If we set U = f−1(V ), then we have x ∈ U = f−1(V )
and f(U) ⊂ V . Therefore, f is (Fκ,Gψ)-continuous at any point x ∈ X. �

Remark 3.10. If f : (X,F , κ) → (Y,G, ψ) is (κ, ψ)-continuous, then f
is (Fκ,Gψ)-continuous by Theorems 3.7 and 3.9. But if f : (X,F , κ) →
(Y,G, ψ) is (Fκ,Gψ)-continuous, then f is not always (κ, ψ)-continuous. Con-
sider the following example. Let X = {a, b, c}.

(1) Let F = {{a}, {b}, {c}}. We define an operation κ : F → P(X) by
{a}κ = {b}κ = {c}κ = X. Then Fκ = {∅, X}.

(2) (Example 2.6(1) of [6]) Let G = {{a}, {b}, {a, b}}. We define an oper-
ation ψ : G → P(X) by {a}ψ = {a, c}, {b}ψ = {b, c} and {a, b}ψ = X.
Then Gψ = {∅}.

Then we see f = 1X : (X,F)→ (X,G) is (Fκ,Gψ)-continuous, but not (κ, ψ)-
continuous (at a and b).

3.1. Homeomorphisms between sets with operations.

Definition 3.11. Let (X,F , κ) and (Y,G, ψ) be spaces. A (κ, ψ)-continu-
ous function f : (X,F , κ) → (Y,G, ψ) is called a (κ, ψ)-homeomorphism if
there exists a (ψ, κ)-continuous function g : (Y,G, ψ) → (X,F , κ) such that
g ◦ f = 1X and f ◦ g = 1Y .

An (Fκ,Gψ)-continuous function f : (X,F , κ) → (Y,G, ψ) is called an
(Fκ,Gψ)-homeomorphism if there exists a (Gψ,Fκ)-continuous function
g : (Y,G, ψ)→ (X,F , κ) such that g ◦ f = 1X and f ◦ g = 1Y .

By Theorem 3.6 we have the following results. The proof is omitted since
they are obtained by standard arguments without difficulty.

Proposition 3.12. The following conditions are equivalent for a bijection
f : (X,F , κ)→ (Y,G, ψ).

(1) f : (X,F , κ)→ (Y,G, ψ) is a (κ, ψ)-homeomorphism.
(2) f(Clκ(A)) = Clψ(f(A)) for any subset A of (X,F , κ).
(3) Clκ(f−1(B)) = f−1(Clψ(B)) for any subset B of (Y,G, ψ).
(4) f−1(Intψ(D)) = Intκ(f−1(D)) for any subset D of (Y,G, ψ).

Making use of Theorem 3.9 we have the following results by standard
arguments and the proof is omitted.
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Proposition 3.13. The following conditions are equivalent for a bijection
f : (X,F , κ)→ (Y,G, ψ).

(1) f : (X,F , κ)→ (Y,G, ψ) is (Fκ,Gψ)-homeomorphism.
(2) f−1(G) is κ-open in (X,F , κ) if and only if G is ψ-open in (Y,G, ψ).
(3) f−1(K) is κ-closed in (X,F , κ) if and only if K is ψ-closed in (Y,G, ψ).
(4) f(Fκ-Cl(A)) = Gψ-Cl(f(A)) for any subset A of (X,F , κ).
(5) Fκ-Cl(f−1(B)) = f−1(Gψ-Cl(B)) for any subset B of (Y,G, ψ).
(6) f−1(Gψ-Int(D)) = Fκ-Int(f−1(D)) for any subset D of (Y,G, ψ).

4. Subspaces

Let (X,F , κ) be a space and let S be a subset of X. Let

F|S = {U ∩ S | U ∈ F}.
Then we try to define

κS : F|S → P(S)

by κS(U ∩ S) = κ(U) ∩ S for any U ∩ S ∈ F|S. However, it is not well
defined, since U ∩ S = V ∩ S does not always imply κ(U) ∩ S = κ(V ) ∩ S.

The following is an example which shows that κS : F|S → P(S) is not
well defined by κS(U ∩ S) = κ(U) ∩ S for any U ∩ S ∈ F|S.

Example 4.1. Consider the example in Remark 2.5.

(1) S = {b, c}: {b}, {a, b} ∈ F and {b} ∩ S = {b} = {a, b} ∩ S. But

κ({b}) ∩ S = {b, c} ∩ S = S ∩ S = S and
κ({a, b}) ∩ S = {a, b, d} ∩ S = {b}.

(2) S = {a, d}: {a}, {a, b} ∈ F and {a} ∩ S = {a} = {a, b} ∩ S. But

κ({a}) ∩ S = {a} ∩ S = {a} and
κ({a, b}) ∩ S = {a, b, d} ∩ S = {a, d} = S.

Remark 4.2. Let (X, τ) be a topological space, S a subset of X and α : τ →
P(X) an operation on τ . Let τS be the relative topology on S. Rosas and
Vielma [8] noticed that an operation (called operator in [8]) on a subspace
αS : τS → P(S) satisfying αS(G∩S) = α(G)∩S with G ∈ τ is not necessarily
well defined in some cases and gave an example just before Theorem 6 of
[8]. An operation α : τ → P(X) is said to be stable with respect to S if α
induces an operation αS : τS → P(S) satisfying αS(G ∩ S) = α(G) ∩ S for
every G ∈ τ (Definition1 of [8]).

Therefore, we adopt the following definition for “subspace”.

Definition 4.3. Let (X,F , κ) be a space and S a subset of X. Let
Fκ|S = {U ∩ S | U ∈ Fκ}. The triple (S,Fκ|S, id) is called a subspace of
(X,F , κ), where id : Fκ|S → P(S) is defined by id(U) = U for any U ∈ Fκ|S.
If U ∈ Fκ, then U ∩S is called an Fκ|S-open set of the subspace (S,Fκ|S, id)
and (X − U) ∩ S is called an Fκ|S-closed set of the subspace (S,Fκ|S, id).
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Let S and T be subsets of (X,F , κ) and (Y,G, ψ), respectively. A func-
tion f : (S,Fκ|S, id) → (T,Gψ|T, id) is said to be (Fκ|S,Gψ|T )-continuous if
f−1(V ) ∈ Fκ|S for any V ∈ Gψ|T .

Proposition 4.4. Let (X,F , κ) be a space and S a subset of X. Let
iS : S → X be the inclusion function. Then iS : (S,Fκ|S, id) → (X,F , κ) is
(Fκ|S,Fκ)-continuous.

Proof. Since (iS)−1(U) = U ∩ S ∈ Fκ|S for any U ∈ Fκ, we have the
result. �

Proposition 4.5. Let S,T and R be subsets of (X,F , κ), (Y,G, ψ) and
(Z,H, η), respectively. Let f : (S,Fκ|S, id) → (T,Gψ|T, id) be (Fκ|S,Gψ|T )-
continuous and g : (T,Gψ|T, id)→ (R,Hη|R, id) be (Gψ|T,Hη|R)-continuous.
Then, the composite

g ◦ f : (S,Fκ|S, id)→ (T,Gψ|T, id)→ (R,Hη|R, id)

is (Fκ|S,Hη|R)-continuous.

Proof. For any V ∈ Hη|R, we have g−1(V ) ∈ Gψ|T and therefore (g ◦
f)−1(V ) = f−1(g−1(V )) ∈ Fκ|S. Hence, g ◦ f is (Fκ|S,Hη|R)-continuous.

�

We have the following result by the definition of subspace and Propositions
4.4 and 4.5.

Proposition 4.6. Let (X,F , κ) and (Y,G, ψ) be spaces. Let S and T be
subsets of X and Y , respectively. Let iT : T → Y be the inclusion function
and f : S → Y a function with the image f(S) ⊂ T . We write fT = f : S →
T with the range T .
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Then the function fT : (S,Fκ|S, id)→ (T,Gψ|T, id) is (Fκ|S,Gψ|T )-continuous

if and only if the composite f = iT ◦fT : (S,Fκ|S, id)→ (Y,G, ψ) is (Fκ|S,Gψ)-
continuous.

5. Fκ-connected spaces

Definition 5.1. Let (X,F , κ) be a space. A subset S of X is said to be
Fκ-connected if κ-open sets U and V with the following properties do not
exist:

U ∩ S 6= ∅, V ∩ S 6= ∅, S ⊂ U ∪ V and U ∩ V ∩ S = ∅.
Remark 5.2. Let (X,F , κ) be a space and S a subset of X. Then S is

Fκ-connected if and only if the condition
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U ∩ S 6= ∅, V ∩ S 6= ∅ and (U ∩ S) ∪ (V ∩ S) = S

for κ-open sets U and V implies (U ∩ S) ∩ (V ∩ S) 6= ∅.

Example 5.3. Let (X,F , κ) be a space and S a subset of X. If S 6⊂ ∪Fκ,
then S is Fκ-connected. Especially, if S ∩ (X − ∪F) 6= ∅, then S is Fκ-
connected.

Remark 5.4. Let (X,F , κ) be a space and S a subset of X. If S is not
Fκ-connected, then S is a disjoint union of non-empty Fκ|S-open sets U ∩S
and V ∩ S: Assume that there exist κ-open sets U and V which satisfy the
following:

U ∩S 6= ∅, V ∩S 6= ∅ and (U ∩S)∪ (V ∩S) = S and (U ∩S)∩ (V ∩S) = ∅.
Then X − U and X − V are κ-closed sets and (X − U) ∩ S ⊂ V ∩ S and
(X − V ) ∩ S ⊂ U ∩ S.

Moreover, we see S ⊂ U ∪ V and S ⊂ X − (U ∩ V ). Then we have

((X−U)∩S)∪((X−V )∩S) = ((X−U)∪(X−V ))∩S = (X−(U∩V ))∩S = S;
((X−U)∩S)∩((X−V )∩S) = ((X−U)∩(X−V ))∩S = (X−(U∪V ))∩S = ∅.
It follows that (X − U) ∩ S = V ∩ S and (X − V ) ∩ S = U ∩ S. Therefore,
V ∩ S and U ∩ S are Fκ|S-open sets and Fκ|S-closed sets.

Theorem 5.5. Let f : (X,F , κ) → (Y,G, ψ) be (Fκ,Gψ)-continuous and
S ⊂ X. If S is Fκ-connected, then f(S) is Gψ-connected.

Proof. Assume that f(S) is not Gψ-connected. Then there exist ψ-open
sets U and V of (Y,G, ψ) which satisfy the following properties:

U ∩ f(S) 6= ∅, V ∩ f(S) 6= ∅, U ∩ V ∩ f(S) = ∅ and f(S) ⊂ U ∪ V .

The inverse images f−1(U) and f−1(V ) are κ-open in (X,F , κ) by Theorem
3.9 and satisfy the following properties:

f−1(U) ∩ S 6= ∅, f−1(V ) ∩ S 6= ∅, f−1(U) ∩ f−1(V ) ∩ S = ∅ and
S ⊂ f−1(U) ∪ f−1(V ).

This contradicts the assumption that S is Fκ-connected, and hence f(S)
must be Gψ-connected. �

Theorem 5.6. Let (X,F , κ) be a space. Let S and T be subsets of X. If
S is Fκ-connected and S ⊂ T ⊂ Fκ-Cl(S), then T is Fκ-connected.

Proof. The proof is done by a standard argument as follows. Assume that
T is not Fκ-connected. Then there exist κ-open sets U and V which satisfy
the following:

U ∩T 6= ∅, V ∩T 6= ∅ and (U ∩T )∪ (V ∩T ) = T and (U ∩T )∩ (V ∩T ) = ∅.
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If U ∩ S = ∅, then S ⊂ X − U and hence

T ⊂ Fκ-Cl(S) ⊂ Fκ-Cl(X − U) = X − U

by Proposition 3.22 of [6], which implies U ∩ T = ∅. Therefore, U ∩ S 6= ∅.
Similarly, we have V ∩S 6= ∅. Then S is not Fκ-connected, which contradicts
the assumption. Hence T must be Fκ-connected. �

Theorem 5.7. Let (X,F , κ) be a space and Sλ a subset of X for each
λ ∈ Λ. If Sλ is Fκ-connected for each λ ∈ Λ and

⋂
λ∈Λ Sλ 6= ∅, then

⋃
λ∈Λ Sλ

is Fκ-connected.

Proof. Let us write S =
⋃
λ∈Λ Sλ. Assume that S is not Fκ-connected.

Then there exist κ-open sets U and V which satisfy the following:

U ∩S 6= ∅, V ∩S 6= ∅ and (U ∩S)∪ (V ∩S) = S and (U ∩S)∩ (V ∩S) = ∅.

There exists an element x ∈
⋂
λ∈Λ Sλ ⊂ S. One of U ∩ S and V ∩ S, say

U ∩ S, contains x. Then x 6∈ V ∩ S and the relation V ∩ S 6= ∅ implies
that there exists λ ∈ Λ such that V ∩ Sλ 6= ∅. Moreover, x ∈ U ∩ Sλ 6= ∅,
(U ∩ Sλ) ∪ (V ∩ Sλ) = Sλ and (U ∩ Sλ) ∩ (V ∩ Sλ) ⊂ (U ∩ S) ∩ (V ∩ S) = ∅.
Therefore, Sλ is not Fκ-connected, which is a contradiction. �

Theorem 5.8. Let (X,F , κ) be a space and S a subset of X such that
S ⊂ ∪Fκ. Let ({1, 2}, δ) be a topological space of two points {1, 2} with the
discrete topology δ, which is regarded as a space ({1, 2}, δ, id) as in Example
2.2. Then S is Fκ-connected if and only if any (Fκ|S, δ)-continuous function
f : (S,Fκ|S, id)→ ({1, 2}, δ, id) is a constant function.

Proof. We note that any constant function f : (S,Fκ|S, id)→ ({1, 2}, δ, id)
is (Fκ|S, δ)-continuous by Theorem 3.9, since S is an Fκ|S-open set by the
assumption S ⊂ ∪Fκ (see Proposition 2.8 of [6]).

Assume that S is Fκ-connected and a (Fκ|S, δ)-continuous function
f : (S,Fκ|S, id)→ ({1, 2}, δ, id) is surjective. Let us notice that the domain
of f is the set S, so f−1({1}) ∩ S = f−1({1}). We know that f−1({1})
is Fκ|S-open by the continuity of f , so there exists U ∈ Fκ such that
f−1({1}) = U ∩S. We can do the same with f−1({2}). Therefore, f−1({1})
and f−1({2}) are disjoint Fκ|S-open sets of S, that is, S is not Fκ-connected.
Therefore, f : (S,Fκ|S, id)→ ({1, 2}, δ, id) must be a constant map.

Assume that S is not Fκ-connected. Then there exist κ-open sets U and
V which satisfy the following (see Remark 5.2):

U ∩S 6= ∅, V ∩S 6= ∅ and (U ∩S)∪ (V ∩S) = S and (U ∩S)∩ (V ∩S) = ∅.

We define a function f : (S,Fκ|S, id) → ({1, 2}, δ, id) by f(U ∩ S) = 1 and
f(V ∩ S) = 2. Then f is a surjective (Fκ|S, δ)-continuous function. �
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6. Fκ-compact spaces

Definition 6.1. Let (X,F , κ) be a space. A subset S of X is said to
be Fκ-compact if every κ-open cover of S has a finite subcover, that is, if
S ⊂

⋃
λ∈Λ Uλ and Uλ ∈ Fκ for any λ ∈ Λ then there exist a finite number of

λ1, λ2, . . . , λn ∈ Λ such that S ⊂ Uλ1 ∪ Uλ2 ∪ · · · ∪ Uλn .

Remark 6.2. Let (X,F , κ) be a space and S a subset of X. If there is no
κ-open cover of S, then S is Fκ-compact. Therefore, if S 6⊂ ∪U∈FκU , then
S is Fκ-compact. Especially, if S 6⊂ ∪U∈FU , then S is Fκ-compact.

Let (X,F , κ) be a space. We define:

κ(F) = {Uκ | U ∈ F}.
Definition 6.3. Let (X,F , κ) be a space. A subset S of X is said to

be κ(F)-compact if every κ(F)-cover of S has a finite subcover, that is, if
S ⊂

⋃
λ∈Λ Uλ and Uλ ∈ κ(F) for any λ ∈ Λ then there exist a finite number

of λ1, λ2, . . . , λn ∈ Λ such that S ⊂ Uλ1 ∪ Uλ2 ∪ · · · ∪ Uλn .

Proposition 6.4. Let (X,F , κ) be a space and S a subset of X. If S is
κ(F)-compact, then S is Fκ-compact.

Proof. Every κ-open set A is written as A = ∪λ∈ΛUλ = ∪λ∈ΛU
κ
λ where

Uλ ∈ F for each λ ∈ Λ by [6, Proposition 2.4], that is, any κ-open set is a
union of some sets in κ(F). Hence every κ-open cover of S is a κ(F)-cover
of S, and hence we have the result by standard arguments. �

Theorem 6.5. Let (X,F , κ) be a space and S a subset of X. If S is
Fκ-compact and K is a Fκ|S-closed subset of S, then K is Fκ-compact.

Proof. Since K is a Fκ|S-closed subset of S, there exist U ∈ Fκ such that
K = S∩(X−U). Then we have S−K = U ∩S. Assume that K ⊂

⋃
λ∈Λ Uλ

and Uλ ∈ Fκ for any λ ∈ Λ. Then

S = (S −K) ∪K ⊂ U ∪ (
⋃
λ∈Λ

Uλ).

Since S is Fκ-compact, there exist numbers λ1, λ2, . . . , λn ∈ Λ such that

S = (S −K) ∪K ⊂ U ∪ Uλ1 ∪ Uλ2 ∪ · · · ∪ Uλn .
If x ∈ K, then x 6∈ U and hence x ∈ Uλ1 ∪ Uλ2 ∪ · · · ∪ Uλn . It follows that
K ⊂ Uλ1 ∪ Uλ2 ∪ · · · ∪ Uλn . Hence K is Fκ-compact. �

Theorem 6.6. Let f : (X,F , κ) → (Y,G, ψ) be (Fκ,Gψ)-continuous and
S ⊂ X. If S is Fκ-compact, then f(S) is Gψ-compact.

Proof. Assume that f(S) ⊂
⋃
λ∈Λ Uλ and Uλ ∈ Gψ for any λ ∈ Λ. Then we

have S ⊂
⋃
λ∈Λ f

−1(Uλ). Since S is Fκ-compact and f−1(Uλ) is κ-open for
each λ ∈ Λ by Theorem 3.9, there exist a finite number of λ1, λ2, . . . , λn ∈ Λ
such that S ⊂ f−1(Uλ1)∪ f−1(Uλ2)∪ · · · ∪ f−1(Uλn). It follows that f(S) ⊂
Uλ1 ∪ Uλ2 ∪ · · · ∪ Uλn . �
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