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Poisson distribution series on a general class of
analytic functions

B. A. Frasin

Abstract. The main object of this paper is to find necessary and suf-
ficient conditions for the Poisson distribution series to be in a general
class of analytic functions with negative coefficients. Further, we con-
sider an integral operator related to the Poisson distribution series to
be in this class. A number of known or new results are shown to follow
upon specializing the parameters involved in our main results.

1. Introduction and definitions

Let A denote the class of the normalized functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}. Further, let
T be a subclass of A consisting of functions

f(z) = z −
∞∑
n=2

|an| zn, z ∈ U. (2)

Let p(n) = t3n
3 + t2n

2 + t1n + t0 be a polynomial of degree 3 with
real coefficients t3, t2, t1 and t0. Then a function f of the form (2) is in
Sk(t3, t2, t1, t0, µ), if and only if

∞∑
n=2

nkp(n) |an| ≤ µ (k ∈ N0 = N ∪ {0}, µ > 0). (3)

The class Sk(t3, t2, t1, t0, µ) was introduced by the author in [11].
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Remark 1.1. By suitably specializing the real constants t3, t2, t1, t0, k and
µ, the class Sk(t3, t2, t1, t0, µ) includes as its special cases various classes of
analytic functions with negative coefficients that were considered, for exam-
ple, in [2–8, 14, 16, 21–24, 29, 32, 35, 36].

Let γ ∈ C\{0}, 0 < β ≤ 1, 0 ≤ λ ≤ 1, and z ∈ U. A function f of the
form (2) is in the class M(γ, λ, β) if∣∣∣∣1γ

(
zf ′(z) + λz2f ′′(z)

λzf ′(z) + (1− λ)f(z)
− 1

)∣∣∣∣ < β,

and in the class R(γ, λ, β) if∣∣∣∣1γ (f ′(z) + λzf ′′(z)− 1
)∣∣∣∣ < β.

Altintaş et al. [5] introduced the classes M(γ, λ, β) and R(γ, λ, β). They
proved that a function f of the form (2) is in the classes M(γ, λ, β) and
R(γ, λ, β) if and only if

∞∑
n=2

(λ(n− 1) + 1)(n+ β |γ| − 1) |an| ≤ β |γ|

and
∞∑
n=2

n(λ(n− 1) + 1) |an| ≤ β |γ| ,

respectively. These classes are special cases of Sk(t3, t2, t1, t0, µ), where k =
0, t3 = 0, t2 = λ, t1 = 1−2λ+λβ |γ| , t0 = (1−λ)(β |γ|−1), µ = β |γ| for
the classM(γ, λ, β), and k = 1, t3 = t2 = 0, t1 = λ, t0 = 1− λ, µ = β |γ|
for R(γ, λ, β).

Let P(C,D) denote the class of analytic function in U which are of the
form (1 + Cw(z)) / (1 +Dw(z)), where −1 < C < D ≤ 1 and w(z) is an
analytic function with w(0) = 0, |w(z)| < 1 in U. Define

S∗(C,D) = {f ∈ A:
zf ′(z)

f(z)
∈ P(C,D)}

and

K(C,D) = {f ∈ A:zf ′(z) ∈ S∗(C,D)}.
Shukla and Shukla [31] (see also [15]) gave the following necessary and
sufficient conditions for functions f of the form (2) to be in the classes
T ∗(C,D) = S∗(C,D) ∩ T and C(C,D) = K(C,D) ∩ T :

∞∑
n=2

(n(1 +D)− (1 + C)) |an| ≤ D − C
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and
∞∑
n=2

n(n(1 +D)− (1 + C)) |an| ≤ D − C,

respectively. These classes are also special cases of Sk(t3, t2, t1, t0, µ), with
k = 0, t3 = t2 = 0, t1 = 1 + D, t0 = −(1 + C), µ = D − C for the
class T ∗(C,D), and with k = 1, t3 = t2 = 0, t1 = 1 + D, t0 = −(1 + C),
µ = D − C for C(C,D).

For 0 ≤ α < 1 and γ, β ≥ 0, let W(α, γ, β) denote the class of functions
f ∈ A such that

R{(1− γ + 2β)
f(z)

z
+ (γ − 2β)f ′(z) + βzf ′′(z)} > α, (z ∈ U).

For some details about this class, see [30]. We can easily prove that a function
f of the form (2) is in the class WT (α, γ, β) =W(α, γ, β) ∩ T if and only if

∞∑
n=2

[n(n− 1)β + (γ − 2β)n+ (1− γ + 2β)] |an| ≤ 1− α.

We note that

S0(0, β, γ − 3β, 1− γ + 2β, 1− α) =WT (α, γ, β).

The Poisson distribution, derived in 1837 by the French mathematician
Siméon Denis Poisson, is a discrete probability distribution that is used to
express the probability of observing a number of events in a given inter-
val of time or space if these events occur with a known average rate and
independently of the time since the last event.

A variable X is said to be Poisson distributed if it takes the values
0, 1, 2, . . . with probabilities e−m, me−m/1!, m2e−m/2!, . . . , respectively,
where m is called the parameter. Thus

P (X = r) =
mre−m

r!
, r = 0, 1, 2, . . . .

In [28], Porwal (see also [21, 23]) introduced a power series whose coeffi-
cients are probabilities of Poisson distribution

K(m)(z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U,

where m > 0. By ratio test the radius of convergence of the above series is
infinity. Also, Porwal [28] defined the series

F(m)(z) = 2z −K(m)(z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn, z ∈ U.
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Using the Hadamard product, Porwal and Kumar [29] introduced a new
linear operator I(m) : A → A defined by

I(m)(z)f = K(m)(z) ∗ f(z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−manz

n, z ∈ U,

where ∗ denotes the convolution (or Hadamard product) of two series.
Motivated by several earlier results on connections between various sub-

classes of analytic and univalent functions by using hypergeometric func-
tions (see, for example, [9, 18, 33, 34]) and by the recent investigations of
Porwal [28, 29, 27], in the present paper we determine necessary and suffi-
cient conditions for F(m)(z) to be in our new class S0(t3, t2, t1, t0, µ). Finally,
we give conditions for the integral operator G(m)(z)=

∫ z
0 ζ
−1F(m)(ζ)dζ to

be in the class S1(t3, t2, t1, t0, µ).

2. Necessary and sufficient conditions

First we obtain necessary and sufficient conditions for F(m)(z) to be in
S0(t3, t2, t1, t0, µ).

Theorem 2.1. If m > 0 and µ > 0, then F(m)(z) is in S0(t3, t2, t1, t0, µ)
if and only if

t3m
3 +(t2 +6t3)m

2 +(t1 +3t2 +7t3)m+(t0 + t1 + t2 + t3)(1−e−m) ≤ µ. (4)

Proof. Since

F(m)(z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

according to (3) we must show that

σ1 :=
∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
mn−1

(n− 1)!
≤ emµ.

Writing

n = (n− 1) + 1, n2 = (n− 1)(n− 2) + 3(n− 1) + 1, (5)

and

n3 = (n− 1)(n− 2)(n− 3) + 6(n− 1)(n− 2) + 7(n− 1) + 1, (6)

we have

σ1 = t3

∞∑
n=4

mn−1

(n−4)!
+ (t2 + 6t3)

∞∑
n=3

mn−1

(n−3)!

+ (t1 + 3t2 + 7t3)

∞∑
n=2

mn−1

(n−2)!
+ (t0 + t1 + t2 + t3)

∞∑
n=2

mn−1

(n−1)!
.
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Using the facts that
∞∑
n=2

mn−1

(n− 1)!
= em − 1 and

∞∑
n=j

mn−1

(n− j)!
= mj−1em, j ≥ 2,

we immediately have

σ1 = t3m
3em + (t2 + 6t3)m

2em + (t1 + 3t2 + 7t3)me
m

+ (t0 + t1 + t2 + t3)(e
m − 1).

But this last expression is bounded above by µem if and only if (4) holds. �

Theorem 2.2. If m > 0 and µ > 0, then F(m)(z) is in S1(t3, t2, t1, t0, µ)
if and only if

t3m
4 + (10t3 + t2)m

3 + (25t3 + 6t2 + t1)m
2 + (15t3

+ 7t2 + 3t1 + t0)m+ (t0 + t1 + t2 + t3)(1− e−m) ≤ µ.
(7)

Proof. In view of (3) we must show that

∞∑
n=2

n(t3n
3 + t2n

2 + t1n+ t0)
mn−1

(n− 1)!
≤ emµ,

or, equivalently,

σ2 :=
∞∑
n=2

(t3n
4 + t2n

3 + t1n
2 + t0n)

mn−1

(n− 1)!
≤ emµ.

Using (5) and (6), and writing

n4 = (n− 1)(n− 2)(n− 3)(n− 4) + 10(n− 1)(n− 2)(n− 3)

+ 25(n− 1)(n− 2) + 15(n− 1) + 1,

we have

σ2 = t3

∞∑
n=2

mn−1

(n− 5)!
+ (10t3 + t2)

∞∑
n=2

mn−1

(n− 4)!
+ (25t3

+ 6t2 + t1)

∞∑
n=2

mn−1

(n− 3)!
(15t3 + 7t2 + 3t1 + t0)

∞∑
n=2

mn−1

(n− 2)!

+ (t3 + t2 + t1 + t0)
∞∑
n=2

mn−1

(n− 1)!

= t3m
4em + (10t3 + t2)m

3em + (25t3 + 6t2 + t1)m
2em

+ (15t3 + 7t2 + 3t1 + t0)me
m + (t3 + t2 + t1 + t0)(e

m − 1).

Therefore, we see that the last expression is bounded above by emµ if and
only if (7) is satisfied. �
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3. Inclusion properties

A function f ∈ A is said to be in the class Rτ (A,B), τ ∈ C\{0}, −1 ≤
B < A ≤ 1, if ∣∣∣∣ f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1, z ∈ U.

This class was introduced by Dixit and Pal [10].

Lemma 3.1 (see [10]). If f ∈ Rτ (A,B), then

|an| ≤ (A−B)
|τ |
n
, n ∈ N− {1}.

The result is sharp.

Making use of Lemma 3.1, we will study the action of the Poisson distri-
bution series on the classes S0(t3, t2, t1, t0, µ) and S1(t3, t2, t1, t0, µ).

Theorem 3.2. Let m > 0, µ > 0, and f ∈ Rτ (A,B). Then I(m)(z)f
is in S0(t3, t2, t1, t0, µ) if

(A−B) |τ | [t3m2 + (3t3 + t2)m+ (t1 + t2 + t3)(1− e−m)

+
t0
m

(1− e−m −me−m)] ≤ µ.
(8)

Proof. In view of (3) it suffices to show that

σ3 :=
∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
mn−1

(n− 1)!
|an| ≤ µem.

Since f ∈ Rτ (A,B), by Lemma 3.1 we have

σ3 ≤ (A−B) |τ |
∞∑
n=2

(t3n
2 + t2n+ t1)

mn−1

(n−1)!
+ (A−B)c0 |τ |

∞∑
n=2

mn−1

n!
.

Thus, using (5), we get

σ3 ≤ (A−B) |τ |

[
t3

∞∑
n=3

mn−1

(n− 3)!
+ (3t3 + t2)

∞∑
n=2

mn−1

(n− 2)!

+(t1 + t2 + t3)

∞∑
n=2

mn−1

(n− 1)!
+ t0

∞∑
n=2

mn−1

n!

]
≤ (A−B) |τ | [t3m2em + (3t3 + t2)me

m

+ (t1 + t2 + t3)(e
m − 1) +

t0
m

(em − 1−m)].

But this last expression is bounded above by µem if (8) holds. �
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Theorem 3.3. Let m > 0, µ > 0, and f ∈ Rτ (A,B). Then I(m)(z)f
is in S1(t3, t2, t1, t0, µ) if

(A−B) |τ |
[
t3m

3 + (t2 + 6t3)m
2 + (t1 + 3t2 + 7t3)m

+(t0 + t1 + t2 + t3)(1− e−m)
]
≤ µ.

Proof. In view of (3) it suffices to show that

σ4 :=

∞∑
n=2

n(t3n
3 + t2n

2 + t1n+ t0)
mn−1

(n− 1)!
|an| ≤ µem.

Since f ∈ Rτ (A,B), by Lemma 3.1 we have

σ4 ≤ (A−B) |τ |
∞∑
n=2

(t3n
3 + t2n

2 + t1n+ t0)
mn−1

(n− 1)!
.

The remaining part of the proof is similar to that of Theorem 2.1, and so we
omit the details. �

4. An integral operator

In this section we obtain necessary and sufficient conditions for the integral
operator

G(m)(z)=

∫ z

0

F(m)(ζ)

ζ
dζ (9)

to be in S1(t3, t2, t1, t0, µ).

Theorem 4.1. If m > 0 and µ > 0, then the integral operator G(m)(z)
is in S1(t3, t2, t1, t0, µ) if and only if the condition (4) is satisfied.

Proof. Since

G(m)(z) = z −
∞∑
n=2

e−mmn−1

n!
zn,

in view of (3) we only need to show that σ1 ≤ µem.
The remaining part of the proof is similar to that of Theorem 2.1, and so

we omit the details. �

The proof of the following theorem is much akin to that of Theorem 4.1,
and so the details have been omitted.

Theorem 4.2. If m > 0 and µ > 0, then the integral operator G(m)(z)
is in S0(t3, t2, t1, t0, µ) if and only if

t3m
2 + (3t3 + t2)m+ (t1 + t2 + t3)(1− e−m) +

t0
m

(1− e−m −me−m) ≤ µ.
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5. Corollaries and consequences

In this section, we apply our main results in order to deduce each of the
following new results.

Corollary 5.1. Let m > 0, γ ∈ C\{0}, 0 < β ≤ 1, and 0 ≤ λ ≤ 1.

(1) F(m)(z) is in M(γ, λ, β) if and only if

em[λm2 + (1 + λ+ λβ |γ|)m] ≤ β |γ| .
(2) F(m)(z) is in R(γ, λ, β) if and only if

λm2 + 4(1− λ)m+ (1− e−m) ≤ β |γ| .
(3) If f ∈ Rτ (A,B), then I(m)(z)f is in M(γ, λ, β) if

(A−B) |τ | [λm+ (1− λ+ λβ |γ|)(1− e−m)

+
(1− λ)(β |γ| − 1)

m
(1− e−m −me−m)] ≤ β |γ| .

(4) If f ∈ Rτ (A,B), then I(m)(z)f is in R(γ, λ, β) if

(A−B) |τ | [λm+ (1− e−m)] ≤ β |γ| .
(5) The integral operator G(m)(z) is in R(γ, λ, β) if and only if

λm+ 1− e−m ≤ β |γ| .
(6) The integral operator G(m)(z) is in M(γ, λ, β) if and only if

λm+(1−λ+λβ |γ|)(1−e−m)+
(1− λ)(β |γ| − 1)

m
(1−e−m−me−m) ≤ β |γ| .

Corollary 5.2. Let m > 0 and −1 < C < D ≤ 1.

(1) F(m)(z) is in T ∗(C,D) if and only if

em(1 +D)m ≤ D − C. (10)

(2) F(m)(z) is in C(C,D) if and only if

em[(1 +D)m2 + (3D − C + 2)m] ≤ D − C.
(3) I(m)(z)f is in T ∗(C,D) if

(A−B) |τ | [(1 +D)(1− e−m)− (1 + C)

m
(1− e−m −me−m)] ≤ D − C.

(4) For f ∈ Rτ (A,B), I(m)(z)f is in C(C,D) if

(A−B) |τ | [(1 +D)m+ (D − C)(1− e−m)] ≤ D − C.
(5) The integral operator G(m)(z) is in C(C,D) if and only if condition

(10) is satisfied.
(6) The integral operator G(m)(z) is in T ∗(C,D) if and only if

(1 +D)(1− e−m)− (1 + C)

m
(1− e−m −me−m) ≤ D − C.
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Corollary 5.3. Let m > 0, 0 ≤ α < 1, and γ, β ≥ 0.

(1) F(m)(z) is in WT (α, γ, β) if and only if

em[βm2 + γm] ≤ 1− α.
(2) For f ∈ Rτ (A,B), I(m)(z)f is in WT (α, γ, β) if

(A−B) |τ | [βm+(γ−2β)(1−e−m)+
1− γ + 2β

m
(1−e−m−me−m)] ≤ 1−α.

(3) The integral operator G(m)(z) is in WT (α, γ, β) if and only if

βm+ (γ − 2β)(1− e−m) +
1− γ + 2β

m
(1− e−m −me−m) ≤ 1− α.

Remark 5.4. By suitably specializing the real constants t3, t2, t1, t0, k and
µ in Theorems 2.1, 2.2, 3.3, and 4.1, we have the corresponding results
obtained for various classes in [1, 12, 13, 17, 20, 21, 23, 28, 29].

Further, our main results can lead to several additional new results by
suitably specializing the real constants t3, t2, t1, t0, k and µ in other subclasses
of analytic functions with negative coefficients introduced and studied by
several authors as stated in Remark 1.1.

Acknowledgements. The author would like to thank the referee for his
helpful comments and suggestions.
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[2] O. Altintaş, A subclass of analytic functions with negative coefficients, Bull. Sci. Eng.
Hacet. Univ. 19 (1990), 15–24.
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91–100.

[21] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving
Poisson distribution series, Afr. Mat. 28 (2017), 1357–1366.

[22] G. Murugusundaramoorthy and N. Magesh, On certain subclasses of analytic func-
tions associated with hypergeometric functions, Appl. Math. Lett. 24 (2011), 494–500.

[23] G. Murugusundaramoorthy, K. Vijaya, and S. Porwal, Some inclusion results of
certain subclass of analytic functions associated with Poisson distribution series,
Hacettepe J. Math. Stat. 45(4) (2016), 1101–1107.

[24] G. Murugusundaramoorthy, K. Vijaya, and K. Uma, Subordination results for a class
of analytic functions involving the Hurwitz-Lerch zeta function, Int. J. Nonlinear Sci.
10(4) (2010), 430–437.

[25] S. Owa, On certain classes of univalent functions in the unit disc, Kyungpook Math.
J. 24(2) (1984), 127–136.

[26] K. S. Padmanabhan, On certain classes of starlike functions in the unit disc, J. Indian
Math. Soc. 32 (1968), 89–103.

[27] S. Porwal, Mapping properties of generalized Bessel functions on some subclasses of
univalent functions, An. Univ. Oradea Fasc. Mat. 20(2) (2013), 51–60.

[28] S. Porwal, An application of a Poisson distribution series on certain analytic func-
tions, J. Complex Anal. (2014), Art. ID 984135, 3 pp.

[29] S. Porwal and M. Kumar, A unified study on starlike and convex functions associated
with Poisson distribution series, Afr. Mat. 27(5) (2016), 1021–1027.

[30] C. Ramachandran L. Vanitha, Certain aspect of subordination for a class of analytic
functions, Int. J. Math. Anal. 9(20) (2015), 979–984.

[31] N. Shukla and P. Shukla, Mapping properties of analytic function defined by hyperge-
ometric function, II, Soochow J. Math. 25(1) (1999), 29–36.

[32] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc.
51 (1975), 109–116.

[33] H. Silverman, Starlike and convexity properties for hypergeometric functions, J. Math.
Anal. Appl. 172 (1993), 574–581.



POISSON DISTRIBUTION SERIES 251

[34] H. M. Srivastava, G. Murugusundaramoorthy, and S. Sivasubramanian, Hypergeomet-
ric functions in the parabolic starlike and uniformly convex domains, Integral Trans-
forms Spec. Funct. 18 (2007), 511–520.

[35] H. M. Srivastava, T. N. Shanmugam, C. Ramachandran, and S. Sivasubramanian,
A new subclass of k-uniformly convex functions with negative coefficients, JIPAM. J.
Inequal. Pure Appl. Math. 8(2) (2007), Article 43, 14 pp.

[36] K. G. Subramanian, T. V. Sudharsan, P. Balasubrahmanyam, and H. Silverman,
Classes of uniformly starlike functions, Publ. Math. Debrecen 53(3-4) (1998), 309–
315.

Faculty of Science, Department of Mathematics, Al al-Bayt University,
Mafraq, Jordan

E-mail address: bafrasin@yahoo.com


