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Generalized topologies with associating function
and logical applications

Tomasz Witczak

Abstract. The whole universe of a generalized topological space may
not be open. Hence, some points may be beyond any open set. In
this paper we assume that such points are associated with certain open
neighbourhoods by means of a special function F . We study various
properties of the structures obtained in this way. We introduce the
notions of F-interior and F-closure and we discuss issues of convergence
in this new setting. It is possible to treat our spaces as a semantical
framework for modal logic.

1. Introduction

In some sense, the whole idea of generalized topological spaces is not new.
In fact, it traces back to the beginning of twentieth century, when Moore
[15] introduced families of subsets (later known as Moore families) which
were closed under intersections and contained the whole universe. McKin-
sey and Tarski [21] used so-called closure operator to describe very natural
properties of logical consequence. There is a strict correspondence between
such operators and Moore families. Moreover, one can discuss operators and
families which are dual to the ones in question. These dual notions can be
considered as weak forms of topological interior and open set. If we say
“weak”, then it means two things. First, such family does not need to be
closed under finite intersections (but still has to be closed under arbitrary
unions). Second, the whole universe may not be open.
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This concept of generalization came back from time to time1. For ex-
ample, in 1960s several authors (N. Levine among them) contributed to the
theory of α-, semi-, pre-, b- and β-open sets (see [17]). Each of these families
(when considered in the context of ordinary topological spaces) behaves like
a generalized topology. In 1980s Masshour et al. [14] introduced supratopo-
logical spaces which seem to be identical with strong generalized topological
spaces, defined few years later by Császár in [6] and [5].

Probably it was Császár, who has started very systematic investigation
of generalized spaces (at least under this name). Many authors followed
this line of research. As a result, nowadays we have generalized analogues
of almost all basic topological notions: separation axioms (see [7], [9] and
[19]), filters (see [16]), convergence (see [2], [3] and [18]) or topological groups
(see [11]). Moreover, these spaces are applied in other branches of science
(like formal concept analysis and data clustering), where they are known as
extensional abstractions (see [20]) or knowledge spaces (see [10]). In addi-
tion, a group of Polish authors used the fact that two definitions of nowhere
density2, which are equivalent in (ordinary) topological spaces, are not equiv-
alent in the generalized framework. This distinction was helpful for them in
their research about Banach games and Baire spaces (see [13]).

Recently, we have prepared generalized topological semantics for certain
weak modal and subintuitionistic logics (see [22]). One thing should be
noted to avoid confusion. Tarski used generalized notion (of closure) to
speak about consequence. It means that if we have a set F of formulas
then ϕ ∈ Cl(F) if and only if there is a finite subset {γ1, . . . , γn} ⊆ F such
that {γ1, . . . γn} |= ϕ (where |= means semantic consequence but we can
also use the syntactic consequence symbol `). On the other hand, he used
standard topological interior in the context of modal logic. But in this case
he referred not to the “structure of deduction”, but to the valuation of 2ϕ.
Namely, he assumed that if topological space is a model for modal logic, then
V (2ϕ) = Int(V (ϕ)). And this is what interests us primarily: to replace this
kind of interior by the generalized one.

While working on this topic, we have developed some purely topologi-
cal tools which seemed to be interesting and quite natural but beyond the
primary scope of our logical research. Hence, they are investigated in the
present paper. We assume that each point w which is beyond the maximal
open set

⋃
µ can be associated with certain (possibly non-empty) family Fw

1It should be noted that there are various ways of understanding the notion of gen-
eralization. For example, Grothendieck topologies have almost nothing to do with our
considerations. Also we do not deal with Császár syntopogenous spaces or Száz’s relator
spaces, at least not directly or openly. So-called minimal structures and (generalized) weak
structures are closer to our intuition but more vague.

2The first one assumes that Int(Cl(A)) = ∅. The second one says that A is nowhere
dense if and only if for any G ∈ µ there is H ∈ µ such that H ⊆ G and A ∩H = ∅.
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of open neighbourhoods. This approach allows us to speak about new types
of convergence and “openess”. In conclusion, we state that each GTF -space
(in which Fw 6= ∅ for any w ∈W ) corresponds to some generalized topology
in which W is open.

The reader should remember that this particular paper contains auxilliary
results and does not deal directly with logic (except Section 3 which rather
has a survey character).

2. General overview of GTF -spaces

2.1. Basic notions. First of all, we repeat the very definition of generalized
topological space (see [5] and [6]).

Definition 2.1. Assume that W is a non-empty set (universe) and µ ⊆
P (W ). We say that µ is a generalized topology on W if ∅ ∈ µ and µ is
closed under arbitrary unions, i.e., if J 6= ∅ and for each i ∈ J , Xi ∈ µ, then⋃
i∈J Xi ∈ µ.
In such a case we say that 〈W,µ〉 is a generalized topological space. The

elements of µ are named µ-open sets (or just open sets, if there is no risk of
confusion) and for any A ⊆ W , we define Int(A) as the union of all open
sets contained in A.

Sometimes we shall say that all points from W \
⋃
µ are orphaned. As

for the notion of closed set, we say that the set A ⊆ W is closed if its
complement is open. We define Cl(A) (closure of A) as the smallest closed
set containing A. It is easy to show that Cl(A) = W \ Int(W \A) (see [8]).
Also w ∈ Cl(A) if and only if for any G ∈ µ such that w ∈ G, G ∩A 6= ∅.

Below we have three examples of infinite GT -spaces (taken from [19], [2]).

(1) W is arbitrary, ∅ 6= X ⊆W , µ = {A ⊆W ;A ⊆W \X}.
(2) W = R, µ = {∅} ∪ {A ⊆ R;A \ {w} ⊆ A for certain w ∈ R}.
(3) |W | > ω0, v /∈ W , W ∗ = W ∪ {v}, µ = {∅, {v} ∪ {W \ A};A ⊆

W, |A| ≤ ω0}, our space is 〈W ∗, µ〉.
The second thing to do is to establish our new structure, equipped with

an additional function which connects orphaned points with open neighbour-
hoods.

Definition 2.2. We define GTF -structure as a triple Mµ = 〈W,µ,F〉
such that µ is a generalized topology on W and F is a function from W into
P (P (

⋃
µ)) such that:

• if w ∈
⋃
µ, then [X ∈ Fw ⇔ X ∈ µ and w ∈ X] [Fw is a shortcut

for F(w)];
• if w ∈W \

⋃
µ, then [X ∈ Fw ⇒ X ∈ µ].

One can say that F is an arbitrary extension (on the whole W ) of the
map that associates with any w ∈

⋃
µ the principal filter generated by w.
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The next definition is just a useful shortcut.

Definition 2.3. Assume that 〈W,µ,F〉 is a GTF -structure and A ∈ µ.
Then we introduce the following notation: A−1 = {z ∈W ;A ∈ Fz}.

Below we shall discuss a simple example of GTF -structure. Its basic
form is based strictly on Example 3.1 from [2].

Example 2.4. Consider 〈W,µ,F〉, where:
W = Z, µ = {∅, {1}, {1, 3}, {1, 3, 5}, {1, 3, 5, 7}, . . . }, Fn = ∅ for any n ∈

2Z. Note that if n is odd, then (by means of general definition) Fn is just a
collection of its open neighbourhoods.

Of course, this is a GTF -structure, but undoubtedly it is a rather degen-
erated case. However, we may replace F by:

(1) F ′. Consider γ : 2Z→ 2Z+1, where γ(x) = max{m;m ∈ 2Z+1,m <
x}. Assume that:

- if n ∈ 2Z + 1, then G ∈ F ′m ⇔ G ∈ µ and m ∈ G;
- if n ∈ 2Z, then G ∈ F ′n ⇔ G ∈ F ′γ(n).
For example, F ′8 = F ′γ(8) = F ′7 = {{1, 3, 5, 7}, {1, 3, 5, 7, 9}, {1, 3, 5,

7, 9, 11}, . . . }.
(2) F ′′. It is just like F ′ but instead of γ we use δ(x) = min{m;m ∈

2Z + 1,m > x}. Then F ′′8 = {{1, 3, 5, 7, 9}, {1, 3, 5, 7, 9, 11}, . . . }.
(3) F ′′′. We use γ again and if n ∈ 2Z, then we define

G ∈ F ′′′n ⇔ G ∈ µ, G 6= ∅ and G /∈ F ′′′γ(n)+2.

Now F ′′′8 = {{1}, {1, 3}, {1, 3, 5}, {1, 3, 5, 7}}.

F can be very arbitrary but the most interesting cases are those with
certain regularities. Later (when discussing themes of logic and convergence)
we shall come back to this question. It is fruitful to assume that each point
from W \

⋃
µ is associated with a certain point from

⋃
µ and inherits its

neighbourhoods.

2.2. F-interiors and F-open sets. The notions of F-interior and F-
closure are based on the intuition arising from the typical understanding
of openness and closedness. However, one must note that there will be no
full analogy. This situation can be considered both as a limitation and a
strength.

Definition 2.5. Let 〈W,µ,F〉 be a GTF and w ∈ W . Assume that
A ⊆W . We say that w ∈ FInt(A) if there is G ∈ Fw such that G ⊆ A.

The basic properties of FInt are summarized in the following lemmas (we
omit most of the proofs because they are simple).

Lemma 2.6. Assume that A,B ⊆ W and A ⊆ B. Then FInt(A) ⊆
FInt(B).
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Lemma 2.7. Assume that A ⊆ W . Then Int(A) ⊆ FInt(A). In partic-
ular, if A ∈ µ, then A ⊆ FInt(A).

Lemma 2.8. If A ⊆W , then FInt(A) ∩
⋃
µ = Int(A).

Proof. (⊆) If v ∈ FInt(A) ∩
⋃
µ, then there is G ∈ Fv such that G ⊆ A.

Of course, v ∈ G (because v ∈
⋃
µ). Hence, v ∈ Int(A).

(⊇) If v ∈ Int(A), then v ∈ FInt(A) (by means of Lemma 2.7). But if
v ∈ Int(A), then v ∈

⋃
µ. Hence, v ∈ FInt(A) ∩

⋃
µ. �

Lemma 2.9. Assume that A ⊆ FInt(A) ⊆
⋃
µ. Then A ∈ µ.

Lemma 2.10. If A ⊆W , then FInt(FInt(A)) ∩
⋃
µ ⊆ FInt(A).

Lemma 2.11. Assume that A ∈ µ. Then A−1 ⊆ FInt(A).

Lemma 2.12. FInt(W ) = W ⇔ for any w ∈W, Fw 6= ∅.

Proof. (⇒) Assume that there is v ∈ W such that Fv = ∅. Then v /∈
FInt(W ).

(⇐) Assume that v /∈ FInt(W ). This means that for any G ∈ Fv, G *W .
Clearly, this is possible only if there are no any sets in Fv. �

Lemma 2.13. FInt(∅) = ∅ ⇔ for any w ∈W , ∅ /∈ Fw.

Proof. The proof is similar to the former one. �

Lemma 2.14. Assume that for certain X ⊆ W and for any A ∈ µ: if
A 6= ∅, then A * X. Then FInt(X) = ∅ or FInt(X) ⊆ Z = {z ∈ W ; ∅ ∈
Fz}.

Note that if there is at least one X ⊆W such that FInt(X) = ∅, then Z
(defined as above) must be empty.

As for the Definition 2.5, it is modeled after the standard definition of
interior in (generalized or not) topological spaces. Note, however, that in
general we cannot say that FInt(A) ⊆ A. To see this3, it is sufficient
to consider any A ∈ µ and w ∈ W \

⋃
µ such that A ∈ Fw. Clearly, w ∈

FInt(A) but w /∈ A. What is less surprising is that sometimes A * FInt(A).
Note that in such situation A \ FInt(A) ⊆ A ∩ (W \

⋃
µ).

For the reasons above, it is sensible to consider at least three concepts
related to the notion of openness.

Definition 2.15. Let 〈W,µ〉 be a GTF and A ⊆W . We say that A is:

• F-open (Fo.) if A = FInt(A);
• dF-open (dFo.) if FInt(A) ⊆ A;
• uF-open (uFo.) if A ⊆ FInt(A).

3Sometimes our examples and counter-examples will be presented only in a sketchy
form.
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The next two lemmas give us certain information about arbitrary unions
and intersections of F-interiors.

Lemma 2.16. Suppose that J 6= ∅ and {Xi}i∈J is a family of subsets
of W . Then

⋃
i∈J FInt(Xi) ⊆ FInt(

⋃
i∈J Xi). If each Xi is uFo., then⋃

i∈J Xi ⊆ FInt(
⋃
i∈J Xi).

Proof. Let v ∈
⋃
i∈J FInt(Xi). Hence, there is k ∈ J such that v ∈

FInt(Xk). Then there is G ∈ Fv such that G ⊆ Xk. But then G ⊆ Xk ⊆⋃
i∈J Xi. Therefore, we can say that v ∈ FInt(

⋃
i∈J Xi). �

Note that we can easily imagine the following situation: there is v ∈ W
such that for any G ∈ Fv and for each i ∈ J , G * FInt(Xi) but at the
same time there is H ∈ Fv such that H ⊆

⋃
i∈J FInt(Xi). Hence, v ∈

FInt(
⋃
i∈J Xi) but v /∈

⋃
i∈J FInt(Xi). For example, consider W = R2

with standard (hence, in particular, generalized) topology µ limited only to
the ball K[(0, 0), r], r > 0 (i.e., K =

⋃
µ). Then we may take any v outside

K, two arbitrary sets X1, X2 (both contained in K) and any set B contained
in X1∪X2 but not in X1 nor in X2. Now it is enough to assume that B ∈ Fv
and for any set C ∈ µ: if C ⊆ X1 or C ⊆ X2, then C /∈ Fv.

Lemma 2.17. Suppose that J 6= ∅ and {Xi}i∈J is a family of subsets
of Wµ. Then FInt(

⋂
i∈J Xi) ⊆

⋂
i∈J FInt(Xi). If each Xi is dFo., then

FInt(
⋂
i∈J Xi) ⊆

⋂
i∈J Xi.

Proof. The proof is similar to the former one. Also we can find a coun-
terexample for the opposite inclusion. �

As we said, F-open sets do not have all the properties of open sets, even
in Császár’s sense. Nonetheless, the following theorem can be considered as
useful. In fact, it will be useful in our further investigations.

Theorem 2.18. Let 〈W,µ,F〉 be a GTF -structure and w ∈ W . Then
Fw 6= ∅ if and only if there is Fo. set G ⊆W such that w ∈ G.

Proof. Necessity. Since Fw 6= ∅, there is at least one A ∈ Fw. Of course,
w ∈ FInt(A). If A = FInt(A), then we can finish our proof. If not, then it
means that FInt(A) * A. Let us define G as A ∪ FInt(A). We show that
G is open, i.e., that FInt(G) = G.

(⊆) Let v ∈ FInt(G). Hence v ∈ FInt(A ∪ FInt(A)). Now there is
U ∈ Fv such that U ⊆ A∪FInt(A). In fact, it means that U ⊆ A (because
U ⊆

⋃
µ and FInt(A)∩

⋃
µ = Int(A) = A). Thus v ∈ FInt(A). From this

we infer that v ∈ G.
(⊇) Let v ∈ G. Hence v ∈ A or v ∈ FInt(A). If v ∈ A, then A ∈ Fv

(because A ∈ µ). Therefore v ∈ FInt(G). If v ∈ FInt(A), then there is
U ∈ Fv such that U ⊆ A ⊆ G. Thus v ∈ FInt(G).
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Sufficiency. Suppose that G ⊆ W is Fo., w ∈ G and Fw = ∅. Of course
FInt(G) = G, so w ∈ FInt(G). Hence there is H ∈ Fw such that H ⊆ G,
a contradiction. �

Note that in the case of⇐-direction it is enough to assume that G is uFo.

2.3. F-closures and F-closed sets. Any sensible definition of “openess”
should be dual to certain understanding of “closedness”. We propose the
following notion, based on the very well known property of closed (and gen-
eralized closed) sets.

Definition 2.19. Let 〈W,µ,F〉 be a GTF and w ∈ W . Assume that
A ⊆W . We say that w ∈ FCl(A) if for any G ∈ Fw, G ∩A 6= ∅.

Now we can define F-closed sets.

Definition 2.20. Let 〈W,µ,F〉 be a GTF and A ⊆ W . We say that A
is:

• F-closed (Fc.) if FCl(A) = A;
• dF-closed (dFc.) if FCl(A) ⊆ A;
• uF-closed (uFc.) if A ⊆ FCl(A).

This definition makes sense because it gives us expected dualism.

Theorem 2.21. Let 〈W,µ,F〉 be a GTF . Assume that A ⊆ W is F-
open. Then the set −A is F-closed.

Proof. We know that FInt(A) = {z ∈W ; there is G ∈ Fz such that G ⊆
A} = A. Let us consider −A = {z ∈W ; for each G ∈ Fz, G * A}. We shall
show that FCl(−A) = −A.

(⊆) Assume that w ∈ FCl(−A). Hence, for any G ∈ Fw, G ∩ −A 6= ∅.
Now G * A and for this reason w ∈ −A.

(⊇) Suppose that w ∈ −A and assume that there is H ∈ Fw such that
H ∩ −A = ∅. It means that H ⊆ A. But then w ∈ FInt(A) = A which
gives us a plain contradiction. �

As in the case of interiors, properties of FCl are rather weak. For example,
we may ask if A ⊆ FCl(A). The answer is (in general) negative. We
may easily imagine the following situation: A ⊆ W , A ∩ (W \

⋃
µ) 6= ∅,

w ∈ A ∩ (W \
⋃
µ) and there is G ∈ Fw such that G ∩A = ∅. On the other

hand, it is also possible that FCl(A) * A.
We have the following lemmas (with respect to an arbitrary 〈W,µ,F〉).

Lemma 2.22. FCl(∅) = ∅ ⇔ for any z ∈W, Fz 6= ∅.

Lemma 2.23. FCl(W ) = W ⇔ for any z ∈W, ∅ /∈ Fz.

Clearly, these statements are analogous to the corresponding ones for F-
interiors. The same can be said about the following one.
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Lemma 2.24. Suppose that J 6= ∅ and {Xi}i∈J is a family of subsets
of W . Then

⋃
i∈J FCl(Xi) ⊆ FCl(

⋃
i∈J Xi). If each Xi is uFc., then⋃

i∈J Xi ⊆ FCl(
⋃
i∈J Xi).

Proof. Let v ∈
⋃
i∈J FCl(A). It means that there is k ∈ J such that

v ∈ FCl(Xk). Hence, for any G ∈ Fv, G ∩Xk 6= ∅. Clearly, Xk ⊆
⋃
i∈J Xi.

Thus G ∩
⋃
i∈J Xi 6= ∅. For this reason, v ∈ FCl(

⋃
i∈J Xi). �

Similarily to the case of F-interiors, we can find a counter-example for
the opposite inclusion. As for the next lemma, it is about intersections.

Lemma 2.25. Suppose that J 6= ∅ and {Xi}i∈J is a family of subsets
of Wµ. Then FCl(

⋂
i∈J Xi) ⊆

⋂
i∈J FCl(Xi). If each Xi is dFc., then

FCl(
⋂
i∈J Xi) ⊆

⋂
i∈J Xi.

As earlier, the converse is not true (in general). Finally, we should prove
quite simple but important lemma (which will be used later).

Lemma 2.26. Assume that 〈W,µ,F〉 is a GT -frame and A ⊆W . Then
FCl(A) ⊆ Cl(A).

Proof. Let us assume that w ∈ FCl(A). Hence, for any G ∈ Fw, G∩A 6=
∅. If w ∈

⋃
µ, then for each G ∈ Fw, G ∈ µ and w ∈ G. Hence w ∈ Cl(A).

If w ∈W \
⋃
µ, then for each G ∈ µ, w /∈ G. Thus our conclusion is trivially

true. �

Figure 1. w /∈ FCl(A) but w ∈ Cl(A)

The converse is not true, as Figure 1 pictures it. Clearly, w ∈W \Int(W \
A) = Cl(A) but at the same time there are some sets in Fw which have empty
intersection with A.



GENERALIZED TOPOLOGIES WITH ASSOCIATING FUNCTION 261

3. Some logical applications

In [22] we have used GT -frames and GTF -frames as semantical models.
The whole idea was based, as usual, on the concept of possible worlds. For
example, in case of GTF -frames forcing of necessity in a given world w ∈W
was defined as follows:
w 
µ 2ϕ⇔ there is Ow ∈ Fw such that for each v ∈ Ow, v 
 ϕ.

Our GT -models are complete with respect to the logics MT4 and MNT4,
the latter refers to the case of strong spaces. This was also proved by
Järvinen et al. [12] in terms of interior systems. These authors were mo-
tivated by certain reflexions on the approximate reasoning and rough sets.
Also, our models turned out to be similar to the (complete) extensional ab-
stractions, investigated by Soldano in [20].

Moreover, we adopted the notion of impossible worlds, i.e., worlds in which
“everyting is possible and nothing is necessary” (that is, 3ϕ holds for any
ϕ and 2ϕ fails for any ϕ). If we assume that for any w ∈W \

⋃
µ, Fw = ∅,

then these worlds are impossible. Finally, we used strong GT -frames as a
sound semantics for certain subintuitionistic logic. While intuitionism does
not contain the law of the excluded middle, subintuitionistic logics are even
weaker (for example, they may not contain modus ponens rule or a fortiori
axiom).

We did not obtain completeness result for GTF -structures. However,
we have investigated similar but more concrete class of GTf -frames. They
consist of two subsets: each world from Y1 is connected (by means of a
special function f) with certain world from

⋃
µ and inherits its family of

open neighbourhoods; while each world from Y2 has its own family Nw of
neighbourhoods. In this environment we defined forcing of two modal oper-
ators 2 and �. We obtained completeness for two systems based on these
modalities.

It is known that certain (ordinary) topological properties have their logical
characterizations. Other properties are not definable, at least in a standard
propositional modal language. It would be cognitively valuable to obtain
analogous characterizations in the generalized framework. Some attempts of
this sort have been made in the context of so-called peritopological spaces,
investigated by Ahmet and Mehmet [1]. A peritopology on a given set W is
a family (V(w))w∈W where each V(w) is either a proper filter on W or the
unproper filter, e.g. the whole P (W ). For example, the classes of T0, T1 and
T2-peritopological spaces4 are not modal definable.

4Of course these spaces are not identical with GT -frames.
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4. Generalized nets and sequences

In this section we adhere mostly to the notions studied by Baskaran et.
al in [2] and [3]. Of course, they are placed in our specific environment.
Moreover, we have developed some new definitions and ideas. We have been
inspired also by the papers [16] and [18].

The first definition refers to the notion of generalized net.

Definition 4.1. Let 〈W,µ,F〉 be a GTF and (P,≥) be a poset. A gen-
eralized net (gnet) in W is a function f : P → W . The image of λ ∈ P
under f is denoted by fλ and the whole gnet is denoted as (fλ).

Note that generalized net has pre-ordered and not necessarily directed
domain (this was assumed both in [2] and [18]). For this reason we can
introduce also two other notions.

Definition 4.2. Let 〈W,µ,F〉 be a GTF and (P,≥) be a poset. We say
that a gnet (fλ), f : P → W , is a net if P is directed, i.e., for any two
elements λ1, λ2 ∈ P there is λ3 ∈ P such that λ1 ≤ λ3 and λ2 ≤ λ3. If
P = N, then we say that (fλ) is a sequence.

Now we go to the convergence, using F directly.

Definition 4.3. Let 〈W,µ,F〉 be a GTF and (fλ) be a gnet in W . We
say that:

• (fλ) is eventually in U ⊆ W if there is λ0 ∈ P such that for any
λ ≥ λ0, fλ ∈ U ;
• (fλ) converges to w ∈ W (i.e. (fλ) → w) if for any G ∈ Fw, fλ is

eventually in G. In this case we say that w is a limit of (fλ). We say
that (fλ) is convergent if there is v ∈W such that (fλ)→ v;
• (fλ) is frequently in U if for any λ ∈ P there is λ1 ∈ P such that
λ1 ≥ λ, we have fλ1 ∈ U . We say that w is a limit point of (fλ) if it
is frequently in every G ∈ Fw.

Sometimes, when it is useful for clarity, we shall name this kind of con-
vergence as F-convergence or →-convergence. Contrary to the result for
GT (without F), in our environment constant gnet may not be convergent.

Lemma 4.4. Let 〈W,µ,F〉 be a GTF and (fλ) = (w) be a constant gnet
in W . Then (w) is convergent if and only if (w)→ w.

Proof. Sufficiency. This is obvious.
Necessity. Assume the contrary, i.e., that there is v ∈W, v 6= w such that

(w) → v but (w) 9 w. Hence, for any G ∈ Fv, w ∈ G (note that we speak
about constant gnet) but there still is H ∈ Fw such that w /∈ H. But if w
is in each open neighbourhood of v, then w must be in

⋃
µ. Then for any

G ∈ Fw, w ∈ G, hence the existence of H is not possible. �
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Theorem 4.5. Let 〈W,µ,F〉 be a GTF and (fλ) = (w) be a constant
gnet in W . Then (fλ) is convergent if and only if w ∈

⋃
µ or Fw = ∅.

Proof. Sufficiency. Assume that (fλ) is not convergent. In particular (by
the preceeding lemma) it means that (w) 9 w. Hence, there is G ∈ Fw such
that w /∈ G. Now we have two options. If w ∈

⋃
µ, then w ∈ G, this is a

contradiction. If Fw = ∅ (which means, in particular, that w ∈ W \
⋃
µ),

then w /∈ G ⊆
⋃
µ.

Necessity. Now (w) is convergent. In particular, it means that (w)→ w.
Suppose that w /∈

⋃
µ and Fw 6= ∅. But then for any G ∈ Fw, w /∈ G. Hence

(fλ) = (w) is not eventually in G. Contradiction with convergence. �

The next question about constant gnets is: is the limit of a convergent
constant gnet unique? Let us introduce a certain subclass of our structures.

Definition 4.6. We say that a GTF -structure 〈W,µ,F〉 is FT1 if for
any w 6= v there are G ∈ Fw such that v /∈ G and H ∈ Fv such that w /∈ H.

Theorem 4.7. Let 〈W,µ,F〉 be a GTF -structure. Then the limit of
every constant and convergent gnet is unique if and only if 〈W,µ,F〉 is FT1.

Proof. Necessity. Assume that (fλ) has a unique limit w. Hence, for any
v 6= w, fλ = (w) 9 v. Thus there is H ∈ Fv such that w /∈ H.

But maybe for any G ∈ Fw, v ∈ G? This would mean that (v) → w (by
the very definition of convergence). However, (v) → v and the limits are
unique, so v = w, a contradiction.

Sufficiency. Suppose that our space is FT1. Let w 6= v, and (w) be a
convergent gnet. Then (w) → w. Assume that at the same time (w) → v.
It means that for any G ∈ Fv, w ∈ G. But this is a contradiction. �

The following theorem is nearly compatible with (⇒) part of Theorem 13
in [2]. However, we must assume that our gnet (w) is convergent.

Theorem 4.8. Let 〈W,µ,F〉 be a GTF . Assume that w, v ∈W , w 6= v,
(w) is a convergent, constant gnet and fλ may be an arbitrary gnet (in W ).
Then

[(fλ)→ w ⇒ (fλ)→ v] ⇒ [w ∈
⋂
Fv].

Proof. Suppose that whenever (fλ) → w, also (fλ) → v. Let us consider
the constant gnet w,w,w, . . . . It converges to w but also to v. Hence, w is
eventually in every G ∈ Fv. This means that w ∈

⋂
Fv. �

In the next conclusion we do not need to assume that (w) is convergent.
This proposition is just like (⇐) from the aforementioned theorem.

Theorem 4.9. Let 〈W,µ,F〉 be a GTF . Assume that w, v ∈W , w 6= v
and (fλ) is an arbitrary gnet in W . Then

[w ∈
⋂
Fv] ⇒ [(fλ)→ w ⇒ (fλ)→ v].
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Proof. Suppose that w ∈
⋂
Fv. It allows us to say that any H ∈ Fv is

also in Fw. Hence Fv ⊆ Fw. Now assume that (fλ) → w. Thus (fλ) is
eventually in every G ∈ Fw. In particular, it is in every G ∈ Fv. Clearly,
this means that (fλ)→ v. �

The next lemma is an interesting and useful observation.

Lemma 4.10. Let 〈W,µ,F〉 be a GTF and (fλ) be a gnet. If (fλ) →
w ∈W , then ∅ /∈ Fw.

Proof. Assume that ∅ ∈ Fw. By convergence, we know that for any G ∈
Fw, so also for ∅, there is λ0 ∈ P such that for each λ ≥ λ0, fλ ∈ ∅. This is
impossible. �

The last lemma in this section is a modification of Theorem 2.6 in [2].

Lemma 4.11. Let 〈W,µ,F〉 be a GTF and f : P →W be a gnet in W .
Assume that m is a maximal element of P and fm ∈

⋃
µ or Ffm = ∅. Then

(fλ)→ fm.

Proof. If fm ∈
⋃
µ, then let us consider an arbitrary G ∈ Ffm . Of course,

fm ∈ G and fλ ∈ G for each λ ≥ m. The reason is that λ ≥ m implies
λ = m. We conclude that fλ → fm.

If Ffm is empty, then our result is trivial. �

5. A higher level of convergence

We have already proved that each point of W is contained in certain F-
open neighbourhood (if Fw 6= ∅). This observation leads us to the second
understanding of convergence.

Definition 5.1. Let 〈W,µ,F〉 be a GTF -structure. Assume that w ∈
W . We define Ew as the set of all F-open sets to which w belongs.

As we know from Theorem 2.18, Ew = ∅ if and only if Fw = ∅. Let us go
back to the GTF -structure from Example 2.4.

Example 5.2. Recall that we are working with 〈Z, µ,F〉, where µ =
{∅, {1}, {1, 3}, {1, 3, 5}, {1, 3, 5, 7}, . . . }. Let m be an odd integer. Consider
an arbitrary G ∈ Fm. We assumed that for any n ∈ 2Z, Fn = ∅. For this
reason, FInt(G) ⊆ G. By means of Lemma 2.7 and the fact that G ∈ µ, G
is F-open. Of course m ∈ G (because m ∈

⋃
µ), so G ∈ Em.

Now suppose that there is H ∈ Em such that H /∈ Fm. It means that
w /∈ H (a contradiction) or that H /∈ µ. If H ∩ [W \

⋃
µ] 6= ∅, then we have

a contradiction again: if there is any n ∈ H ∩ [W \
⋃
µ] and H is F-open,

then it means that n ∈ FInt(H), so Fn 6= ∅. This is not possible because n
is even.
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Hence H = FInt(H) ⊆
⋃
µ. All the assumptions of Lemma 2.9 are

satisfied. Thus H ∈ µ. Of course, m ∈ H. It means that H ∈ Fm. Finally,
in this case Fm = Em.

Note that the reasoning presented above is in fact general. Hence, we can
formulate the following conclusion.

Theorem 5.3. Assume that 〈W,µ,F〉 is a GTF -structure and Fw = ∅
for each w ∈W \

⋃
µ. Then for any v ∈

⋃
µ, Fv = Ev. Moreover, this result

is true also for any w ∈W \
⋃
µ: Fw = Ew = ∅.

Now we can go further.

Definition 5.4. Let 〈W,µ,F〉 be a GTF and let (fλ) be a gnet in W .
We say that:

• (fλ) E-converges to w ∈W (i.e., (fλ)→E w) if for any G ∈ Ew, fλ is
eventually in G. In this case we say that w is an E-limit of (fλ). We
say that (fλ) is E-convergent if there is v ∈W such that (fλ)→E v;
• w is an E-limit point of (fλ) if it is frequently in every G ∈ Ew.

What are the properties of such convergence? Let us start from constant
gnets.

Lemma 5.5. Each constant gnet in any GTF -structure 〈W,µ,F〉 is E-
convergent.

Proof. Let us consider (fλ) = (w). Suppose that for any v ∈W , (w) 9E v.
Hence, for any v ∈W there is S ∈ Ev such that w /∈ S. In particular, this is
true for v = w. Thus, there is S ∈ Ew such that w /∈ S. This is impossible
because of the very definition of Ew. �

Lemma 5.6. Let 〈W,µ,F〉 be a GTF and (fλ) = (w) be a constant gnet
in W . Then (w) is E-convergent if and only if (w)→E w.

Proof. Assume that (w) 9E w. It means that there is S ∈ Ew such that
w /∈ S. This is a contradiction. �

Now we introduce the notion of ET1-spaces.

Definition 5.7. We say that a GTF -structure 〈W,µ,F〉 is ET1 if for any
w 6= v there are G ∈ Ew such that v /∈ G and H ∈ Ev such that w /∈ H.

We can prove the following theorem about uniqueness.

Theorem 5.8. Let 〈W,µ,F〉 be a GTF -structure. Then the E-limit of
every constant gnet is unique if and only if 〈W,µ,F〉 is ET1.

Proof. Necessity. Suppose that (w) is E-convergent. We may assume that
(w)→E w. For any v 6= w, (w) 9E v, i.e., there is H ∈ Ev such that w /∈ H.
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But maybe for any S ∈ Ew, v ∈ S? Let us consider the constant gnet (v).
Then (v)→E v. But then (v) 9E w. Hence there must be G ∈ Ew such that
v /∈ G.

Sufficiency. Assume that there is a constant gnet (w) with two different
E-limits, i.e. (w) →E w and (w) →E v 6= w. It means that for any S ∈ Ev,
w ∈ S, contradiction. �

Below we prove a connection between convergence and E-convergence.

Theorem 5.9. Let 〈W,µ,F〉 be a GTF and (fλ) be a gnet (we assume
that f : P →W ). If (fλ)→ w, then (fλ)→E w.

Proof. Suppose that (fλ) 9E w. Then there is S ∈ Ew such that for any
λ ∈ P there exists λ1 ≥ λ for which fλ1 /∈ S.

We know that S 6= ∅ (because S ∈ Ew, so w ∈ S). Moreover, S is F-o.,
so w ∈ FInt(S). Hence, there is H ∈ Fw such that H ⊆ S. Recall that
(fλ)→ w, so there is λ0 ∈ P such that for any λ ≥ λ0, fλ ∈ H ⊆ S. This is
a contradiction. �

We can easily prove that the converse of Theorem 5.9 is not true.

Example 5.10. Let us consider the GTF -structure 〈W,µ,F〉, where
W = {w, v}, µ = {∅, {w}} and Fv = {{w}}. Then the set {w, v} = W is
F-open and it is the only element of Ev (note that FInt({v}) = ∅). Now
let us think about the constant gnet (fλ) = (v) (connected to an arbitrary
P ). Undoubtedly, (v) →E v. Note, however, that (v) 9 v because there is
G ∈ Fv, namely {w}, such that v /∈ G.

We can also reformulate Lemma 4.11. Now we do not need any special
assumptions about fm.

Lemma 5.11. Let 〈W,µ,F〉 be a GTF and f : P →W be a gnet in W .
Assume that m is a maximal element of P . Then (fλ)→E fm.

Proof. If Efm = ∅, then the result is trivial. If not, then consider S ∈ Efm .
Clearly, fm ∈ S and fλ ∈ S for any λ ≥ m (because in such a case λ =
m). �

6. Gnets and the question of closure

6.1. Mutual dependence. There is a strict dependence between closures
and gnets in generalized topology. It has been proven in [2] that if ∅ 6= A ⊆
W and w ∈W , then w ∈ Cl(A) if and only if there is a gnet (fλ) in A (i.e.,
with its values in A) converging to w. However, the authors assumed that
each point is in each of its neighbourhoods. Clearly, in our case this is false
(for all points from W \

⋃
µ). For this reason, we formulate the following

dependence.
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Theorem 6.1. Assume that 〈W,µ,F〉 is a GTF -structure, ∅ 6= A ⊆W .
Then
w ∈ FCl(A) ⇔ there is a gnet (fλ) ∈ A such that (fλ)→ w.

Proof. (⇒) Assume that w ∈ FCl(A). There are two possibilites. First,
Fw = ∅. In this case we may assume that P = 2W \{∅} and C ≥ D ⇔ C ⊆ D.
We define f : P → W in such a way that f(C) ∈ A. Clearly, (fλ) becomes
a gnet in A and moreover (fλ)→ w (because there are no sets in Fw, so we
can say anything about them).

Second option is that Fw 6= ∅. Here we assume that P = Fw. As for the
≥, it is defined as above. Note that (from the very definition of FCl(A)) for
any G ∈ Fw, G ∩A 6= ∅. Then assume5 that f(G) ∈ G ∩A for any G ∈ Fw.
Then (fλ) is a gnet in A and for any G ∈ Fw our gnet is eventually in G,
i.e., (fλ)→ w.

(⇐) Assume that there is a gnet (fλ) in A such that (fλ) → w. Hence,
for any G ∈ Fw, (fλ) is eventually in G, which means that for any G ∈ Fw
there is λ0 such that for any λ ≥ λ0, fλ ∈ G. But for any λ, fλ ∈ A. Hence,
for any G ∈ Fw, G ∩ A 6= ∅. Thus w ∈ FCl(A). Moreover, due to Lemma
2.26, w ∈ Cl(A). �

Is it possible to replace →-convergence by →E -convergence? Of course,
if w ∈ FCl(A), then we can find our expected →-convergent gnet, as it
has been shown above: and this gnet is (by means of Lemma 5.6) →E -
convergent. But the converse is not true. Let us think about the following
(counter)-example.

Example 6.2. Let 〈W,µ,F〉 be a GTF -structure where W = {w, v, u},
µ = {∅, {w}}, Fv = {{w}, {u}}, Fu = ∅. Of course, Fw = {{w}}. Consider
A = {v} and the constant gnet (v). Clearly, (v) is a gnet in A. It is →E -
convergent (at least to v).

Now v /∈ FCl(A) because there is G = {u} ∈ Fv such that G ∩ {v} =
G∩A = {u}∩{v} = ∅. In fact, FCl(A) = FCl({v}) = {z ∈W ; for any G ∈
Fz, G ∩ {v} 6= ∅} = {u} (because there are no sets in Fu).

6.2. E-open sets and their generalized topology. We have introduced
F-interiors (closures) to speak later about F-open (closed) sets. Then we
have discussed the set Ew for an arbitrary w. One could ask: does it make
sense to move these notions on even more high level? We wish to treat this
issue very briefly.

Definition 6.3. Assume that 〈W,µ,F〉 is a GTF -structure and A ⊆W .
We say that:

5This reasoning is based on the one for ordinary generalized neighbourhoods, presented
in [2]. However, there is a mistake there (probably a typo). The authors assumed only
that f(G) ∈ G (we use our notation). Clearly, we must assume that our gnet is in the
(nonempty) intersection of a neighbourhood and the set A.
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• w ∈ EInt(A) if there is S ∈ Ew such that S ⊆ A;
• w ∈ ECl(A) if for any S ∈ Ew, S ∩A 6= ∅.

We say that A is E-open if EInt(A) = A and that A is E-closed if ECl(A) =
A.

Although at this stage of research such definitions seem to be somewhat
artificial, there is at least one interesting thing to note.

Theorem 6.4. Let 〈W,µ,F〉 be a GTF -structure and let EO be a col-
lection of all E-open sets (with respect to µ and F). Then EO forms a
generalized topology on W . If for any w ∈ W , Fw 6= ∅, then EO is a strong
generalized topology.

Proof. First, let us prove that ∅ is E-open. Compute: EInt(∅) = {z ∈
W ; there is S ∈ Ew such that S ⊆ ∅} = ∅. It is because the only set con-
tained in ∅ is the empty set itself, but for any S ∈ Ew, w ∈ S and hence
S 6= ∅.

Assume now that J 6= ∅ and for any i ∈ J , Xi is E-open. Then
⋃
Xi is

also E-open, i.e., EInt(
⋃
i∈J Xi) =

⋃
Xi.

(⊆) Let w ∈ EInt(
⋃
Xi). Hence there is S ∈ Ew such that S ⊆

⋃
i∈J Xi.

But w ∈ S. Thus w ∈
⋃
i∈J Xi.

(⊇) Let w ∈
⋃
i∈J Xi. Then there is Xk such that w ∈ Xk. Xk is E-open,

so w ∈ EInt(Xk). Thus there is S ∈ Ew such that S ⊆ Xk ⊆
⋃
i∈J Xi. Hence

w ∈ EInt(
⋃
i∈J Xi).

Now assume that Fw 6= ∅ for any w ∈ W . Then Ew 6= ∅. Hence
EInt(W ) = {z ∈W ; there is S ∈ Ew such that S ⊆W} = W . �

Informally speaking, even if we are working with GTF which is not strong
(but for any w ∈ W , Fw 6= ∅), we still can find a generalized topology
(namely, EO) which depends on F and “covers” each element of W .
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[8] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106
(2005), 53–66.

[9] A. P. Dhana Balan and P. Padma, Separation spaces in generalized topology, Int. J.
Math. Res. 9(1) (2017), 65–74.

[10] J. P. Doignon and J. C. Falmagne, Knowledge spaces and learning spaces, in: New
Handbook of Mathematical Psychology. Vol. 1, Cambridge University Press, Cam-
bridge, 2017, pp. 274–321.
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