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On some Hölder type trace inequalities for
operator weighted geometric mean

S. S. Dragomir

Abstract. We obtain some Hölder type trace inequalities for operator
weighted geometric mean. Some vector inequalities are also given.

1. Introduction

If {ei}i∈I is an orthonormal basis of a Hilbert space H, then we say that
A ∈ B (H) is a trace class provided

‖A‖1 :=
∑
i∈I
〈|A| ei, ei〉 <∞.

The definition of ‖A‖1 does not depend on the choice of the orthonormal
basis {ei}i∈I . We denote by B1 (H) the set of trace class operators in B (H) .

The following properties are also well known:
(i) for any A ∈ B1 (H) we have

‖A‖1 = ‖A∗‖1 ;

(ii) B1 (H) is an operator ideal in B (H), i.e.,

B (H)B1 (H)B (H) ⊆ B1 (H) ;

(iii) (B1 (H) , ‖·‖1) is a Banach space.

We define the trace of a trace class operator A ∈ B1 (H) to be

tr (A) :=
∑
i∈I
〈Aei, ei〉 . (1.1)

Note that this coincides with the usual definition of the trace if H is finite-
dimensional. We observe that the series (1.1) converges absolutely and it is
independent from the choice of basis.
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We collect some properties of the trace:

(i) if A ∈ B1 (H), then A∗ ∈ B1 (H) and

tr (A∗) = tr (A);

(ii) if A ∈ B1 (H) and T ∈ B (H), then AT, TA ∈ B1 (H),

tr (AT ) = tr (TA) , and |tr (AT )| ≤ ‖A‖1 ‖T‖ ;

(iii) tr (·) is a bounded linear functional on B1 (H) with ‖tr‖ = 1;
(iv) Bfin (H), the space of operators of finite rank, is a dense subspace of

B1 (H) .

Now, for the finite dimensional case, it is well known that the trace func-
tional is submultiplicative, that is, for positive semidefinite matrices A and
B in Mn(C),

0 ≤ tr(AB) ≤ tr (A) tr (B) .

Therefore,

0 ≤ tr(Ak) ≤ [tr (A)]k ,

where k is any positive integer.
In 2000, Yang [22] proved a matrix trace inequality

tr
[
(AB)k

]
≤ (trA)k(trB)k, (1.2)

where A and B are positive semidefinite matrices over C of the same order
n, and k is any positive integer.

If (H, 〈·, ·〉) is a separable infinite-dimensional Hilbert space, then the
inequality (1.2) is also valid for any positive operators A, B ∈ B1 (H) . This
result was obtained by L. Liu in 2007, see [12].

In 2001, Yang et al. [23] improved (1.2) as follows:

tr [(AB)m] ≤
[
tr
(
A2m

)
tr
(
B2m

)]1/2
,

where A and B are positive semidefinite matrices over C of the same order
and m is any positive integer.

In [18] the authors have proved many trace inequalities for sums and
products of matrices. For instance, if A and B are positive semidefinite
matrices in Mn (C), then

tr
[
(AB)k

]
≤ min

{
‖A‖k tr

(
Bk
)
, ‖B‖k tr

(
Ak
)}

for any positive integer k. Also, if A,B ∈Mn (C), then for r ≥ 1 and p, q > 1
with 1/p+ 1/q = 1 we have the following Young type inequality :

tr (|AB∗|r) ≤ tr

[(
|A|p

p
+
|B|q

q

)r]
. (1.3)



ON SOME HÖLDER TYPE TRACE INEQUALITIES 273

Ando [1] proved a strong form of Young’s inequality. It was shown that if A
and B are in Mn(C), then there is a unitary matrix U such that

|AB∗| ≤ U
(

1

p
|A|p +

1

q
|B|q

)
U∗,

where p, q > 1 with 1/p + 1/q = 1. This gives immediately the trace
inequality

tr (|AB∗|) ≤ 1

p
tr (|A|p) +

1

q
tr (|B|q) .

This inequality can also be obtained from (1.3) by taking r = 1.
The following Hölder’s type inequality has been proved by Ruskai [16]:

|tr (AB)| ≤ tr (|AB|) ≤ [tr (|A|p)]1/p [tr (|B|q)]1/q ,

where p, q > 1 with 1/p + 1/q = 1, and A, B ∈ B (H) with |A|p , |B|q ∈
B1 (H) .

In particular, for p = 2 we get the Schwarz inequality

|tr (AB)| ≤ tr (|AB|) ≤
[
tr
(
|A|2

)]1/2 [
tr
(
|B|2

)]1/2
with |A|2, |B|2 ∈ B1 (H) .

For the theory of trace functionals and their applications the reader is
referred to [20].

For some classical trace inequalities see [4], [6], [14] and [24], which are
continuations of the work of Bellman [2]. For related works the reader can
refer to [1], [3], [4], [9], [11], [12], [13], [17] and [21].

2. Some Hölder type trace inequalities

Assume that A, B are positive invertible operators on a complex Hilbert
space (H, 〈·, ·〉). We use the notation

A]νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2

for the weighted geometric mean. When ν = 1/2, we write A]B for brevity.
We have the following Hölder type trace inequality.

Theorem 1. If A, B are positive invertible operators, p, q > 1 with 1/p+
1/q = 1, and Ap, Bq ∈ B1 (H) , then Bq]1/pA

p ∈ B1 (H) and

tr
(
Bq]1/pA

p
)
≤ [tr (Ap)]1/p [tr (Bq)]1/q . (2.1)

In particular, if A2, B2 ∈ B1 (H) , then B2]A2 ∈ B1 (H) and[
tr
(
B2]A2

)]2 ≤ tr
(
A2
)

tr
(
B2
)
.
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Proof. In [8], the authors obtained the following Hölder’s type inequality
for the weighted geometric mean:〈

Bq]1/pA
px, x

〉
≤ 〈Apx, x〉1/p 〈Bqx, x〉1/q (2.2)

for any x ∈ H.
Let {ei}i∈I be an orthonormal basis of H. Then by (2.2) and Hölder’s

inequality we have

tr
(
Bq]1/pA

p
)

=
∑
i∈I

〈
Bq]1/pA

pei, ei
〉

≤
∑
i∈I
〈Apei, ei〉1/p 〈Bqei, ei〉1/q

≤

(∑
i∈I

[
〈Apei, ei〉1/p

]p)1/p(∑
i∈I

[
〈Bqei, ei〉1/q

]q)1/q

=

(∑
i∈I
〈Apei, ei〉

)1/p(∑
i∈I
〈Bqei, ei〉

)1/q

= [tr (Ap)]1/p [tr (Bq)]1/q ,

which proves the desired inequality (2.1). �

Corollary 1. If Ak, Bk are positive invertible operators, p, q > 1 with
1/p + 1/q = 1, and Apk, B

q
k ∈ B1 (H) for k ∈ {1, ..., n}, then Bq

k]1/pA
p
k ∈

B1 (H) for k ∈ {1, ..., n}, and for any pk ≥ 0, k ∈ {1, ..., n}, we have

tr

(
n∑
k=1

pkB
q
k]1/pA

p
k

)
≤

(
tr

(
n∑
k=1

pkA
p
k

))1/p(
tr

(
n∑
k=1

pkB
q
k

))1/q

. (2.3)

In particular, if A2
k, B

2
k ∈ B1 (H) for k ∈ {1, ..., n}, then B2

k]A
2
k ∈ B1 (H)

for k ∈ {1, ..., n}, and for any pk ≥ 0, k ∈ {1, ..., n}, we have[
tr

(
n∑
k=1

pkB
2
k]A

2
k

)]2
≤ tr

(
n∑
k=1

pkA
2
k

)
tr

(
n∑
k=1

pkB
2
k

)
.

Proof. Using Hölder’s weighted discrete inequality, we have

tr

(
n∑
k=1

pkB
q
k]1/pA

p
k

)
=

n∑
k=1

pk tr
(
Bq
k]1/pA

p
k

)
≤

n∑
k=1

pk
[
tr
(
Apk
)]1/p [

tr
(
Bq
k

)]1/q
≤

(
n∑
k=1

pk

([
tr
(
Apk
)]1/p)p)1/p( n∑

k=1

pk

([
tr
(
Bq
k

)]1/q)q)1/q
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=

(
n∑
k=1

pk tr
(
Apk
))1/p( n∑

k=1

pk tr
(
Bq
k

))1/q

=

(
tr

(
n∑
k=1

pkA
p
k

))1/p(
tr

(
n∑
k=1

pkB
q
k

))1/q

and the inequality (2.3) is proved. �

Theorem 2. If A, B are positive invertible operators, p, q > 1 with 1/p+
1/q = 1, and C ∈ B1 (H) , C ≥ 0, then CAp, CBq, C

(
Bq]1/pA

p
)
∈ B1 (H)

and

tr
(
C
(
Bq]1/pA

p
))
≤ [tr (CAp)]1/p [tr (CBq)]1/q . (2.4)

In particular, if C ∈ B1 (H), then CA2, CB2, C
(
B2]A2

)
∈ B1 (H) and[

tr
(
C
(
B2]A2

))]2 ≤ tr
(
CA2

)
tr
(
CB2

)
.

Proof. From the inequality (2.2) we have〈
Bq]1/pA

pC1/2x,C1/2x
〉
≤
〈
ApC1/2x,C1/2x

〉1/p 〈
BqC1/2x,C1/2x

〉1/q
for any x ∈ H, which is equivalent to〈

C1/2Bq]1/pA
pC1/2x, x

〉
≤
〈
C1/2ApC1/2x, x

〉1/p 〈
C1/2BqC1/2x, x

〉1/q
(2.5)

for any x ∈ H.
Let {ei}i∈I be an orthonormal basis of H. Then by (2.5) and Hölder’s

inequality we have

tr
(
C
(
Bq]1/pA

p
))

= tr
(
C1/2

(
Bq]1/pA

p
)
C1/2

)
=
∑
i∈I

〈
C1/2

(
Bq]1/pA

p
)
C1/2ei, ei

〉
≤
∑
i∈I

〈
C1/2ApC1/2ei, ei

〉1/p 〈
C1/2BqC1/2ei, ei

〉1/q
≤

(∑
i∈I

[〈
C1/2ApC1/2ei, ei

〉1/p]p)1/p(∑
i∈I

[〈
C1/2BqC1/2ei, ei

〉1/q]q)1/q

=

(∑
i∈I

〈
C1/2ApC1/2ei, ei

〉)1/p(∑
i∈I

〈
C1/2BqC1/2ei, ei

〉)1/q

=
[
tr
(
C1/2ApC1/2

)]1/p [
tr
(
C1/2BqC1/2

)]1/q
=[tr(CAp)]1/p [tr(CBq)]1/q ,

which proves the desired result (2.4). �
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Corollary 2. If Ak, Bk are positive invertible operators, p, q > 1 with
1/p + 1/q = 1, and Ck ∈ B1 (H) , Ck ≥ 0 for k ∈ {1, ..., n}, then CkA

p
k,

CkB
q
k, Ck

(
Bq
k]1/pA

p
k

)
∈ B1 (H) for k ∈ {1, ..., n} and we have

tr

(
n∑
k=1

Ck
(
Bq
k]1/pA

p
k

))
≤

(
tr

(
n∑
k=1

CkA
p
k

))1/p(
tr

(
n∑
k=1

CkB
q
k

))1/q

.

In particular, CkA
2
k, CkB

2
k, Ck

(
B2
k]A

2
k

)
∈ B1 (H) for k ∈ {1, ..., n} and[

tr

(
n∑
k=1

Ck
(
B2
k]A

2
k

))]2
≤ tr

(
n∑
k=1

CkA
2
k

)
tr

(
n∑
k=1

CkB
2
k

)
.

The proof follows by (2.4) making use of a similar argument to the one in
the proof of Corollary 1.

3. Some reverse vector inequalities

We have the following reverse of Hölder’s vector inequality for operators.

Theorem 3. Let A and B be two positive invertible operators, p, q > 1
with 1/p+ 1/q = 1 and let m, M > 0 be such that

mpBq ≤ Ap ≤MpBq. (3.1)

Then

〈Apx, x〉1/p 〈Bqx, x〉1/q ≤ exp

[
1

2pq

((
M

m

)p
− 1

)2
] 〈
Bq]1/pA

px, x
〉

(3.2)

for any x ∈ H.

Proof. In [7] we proved the following double inequality that provides a
refinement and a reverse of the arithmetic mean - geometric mean inequality:

exp

[
1

2
ν (1− ν)

(
1− min {a, b}

max {a, b}

)2
]
≤ (1− ν) a+ νb

a1−νbν

≤ exp

[
1

2
ν (1− ν)

(
max {a, b}
min {a, b}

− 1

)2
]

(3.3)

for any a, b > 0 and ν ∈ [0, 1] .
If a, b ∈ [t, T ] ⊂ (0,∞) and since

0 <
max {a, b}
min {a, b}

− 1 ≤ T

t
− 1,

we have (
max {a, b}
min {a, b}

− 1

)2

≤
(
T

t
− 1

)2

.
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Therefore, by (3.3) we get

(1− ν) a+ νb ≤ a1−νbν exp

[
1

2
ν (1− ν)

(
T

t
− 1

)2
]
, (3.4)

for any a, b ∈ [t, T ] and ν ∈ (0, 1) .
Now, if C is an operator with tI ≤ C ≤ TI, then for p > 1 we have

tpI ≤ Cp ≤ T pI. Using the functional calculus, we get from (3.4) for ν = 1
p

that (
1− 1

p

)
d+

1

p
Cp ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
d
1− 1

pC,

namely, the vector inequality(
1− 1

p

)
d+

1

p
〈Cpy, y〉 ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
d
1− 1

p 〈Cy, y〉 , (3.5)

for any y ∈ H, ‖y‖ = 1 and d ∈ [tp, T p] .
Since d = 〈Cpy, y〉 ∈ [tp, T p] for any y ∈ H, ‖y‖ = 1, and hence by (3.5)

we have(
1− 1

p

)
〈Cpy, y〉+ 1

p
〈Cpy, y〉≤exp

[
1

2pq

((
T

t

)p
−1

)2
]
〈Cpy, y〉1−

1
p 〈Cy, y〉 ,

which is equivalent to

〈Cpy, y〉 ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cpy, y〉1−

1
p 〈Cy, y〉 ,

and by division with 〈Cpy, y〉1−
1
p > 0, y ∈ H, ‖y‖ = 1, to

〈Cpy, y〉1/p ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cy, y〉 . (3.6)

If z ∈ H with z 6= 0, then by taking y = z
‖z‖ in (3.6) we get

〈Cpz, z〉1/p 〈z, z〉1/q ≤ exp

[
1

2pq

((
T

t

)p
− 1

)2
]
〈Cz, z〉 , (3.7)

for any z ∈ H.
Now, from (3.1) by multiplying both sides with B−

q
2 , we have

mpI ≤ B−
q
2ApB−

q
2 ≤ MpI, and by taking the power 1/p we get mI ≤(

B−
q
2ApB−

q
2

) 1
p ≤MI.
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Writing the inequality (3.7) for C =
(
B−

q
2ApB−

q
2

) 1
p
, t = m, T = M and

z = B
q
2x, with x ∈ H, we have〈
B−

q
2ApB−

q
2B

q
2x,B

q
2x
〉1/p 〈

B
q
2x,B

q
2x
〉1/q

≤ exp

[
1

2pq

((
M

m

)p
− 1

)2
]〈(

B−
q
2ApB−

q
2

) 1
p
B

q
2x,B

q
2x

〉
,

namely

〈Apx, x〉1/p 〈Bqx, x〉1/q

≤ exp

[
1

2pq

((
M

m

)p
− 1

)2
]〈

B
q
2

(
B−

q
2ApB−

q
2

) 1
p
B

q
2x, x

〉
,

for any x ∈ H. The inequality (3.2) is proved. �

Remark 1. We observe, for two positive invertible operators A and B,
that the condition (3.1) is equivalent to condition

mI ≤
(
B−

q
2ApB−

q
2

) 1
p ≤MI.

If we assume that rBq ≤ Ap ≤ RBq, then by (3.2) we have the inequality

〈Apx, x〉1/p 〈Bqx, x〉1/q ≤ exp

[
1

2pq

(
R

r
− 1

)2
] 〈
Bq]1/pA

px, x
〉

for any x ∈ H.

The following particular case is related to Schwarz’s trace inequality.

Corollary 3. Let A and B be two positive invertible operators and let m,
M > 0 be such that

mI ≤
(
B−1A2B−1

) 1
2 ≤MI.

Then we have〈
A2x, x

〉1/2 〈
B2x, x

〉1/2 ≤ exp

1

8

((
M

m

)2

− 1

)2
〈A2]B2x, x

〉
for any x ∈ H.

Under more suitable conditions for the operators involved, we have the
following result.

Corollary 4. Assume that A and B satisfy the conditions

m1I ≤ A ≤M1I, m2I ≤ B ≤M2I
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for some 0 < m1 < M1 and 0 < m2 < M2. Then we have

〈Apx, x〉1/p 〈Bqx, x〉1/q≤exp

[
1

2pq

((
M1

m1

)p(M2

m2

)q
−1

)2
]〈
Bq]1/pA

px, x
〉
,

for any x ∈ H.
In particular, we have

〈
A2x, x

〉1/2 〈
B2x, x

〉1/2 ≤ exp

1

8

((
M1M2

m1m2

)2

− 1

)2
〈A2]B2x, x

〉
,

for any x ∈ H.
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Cauchy-Schwarz and Hölder-McCarthy inequalities, Nihonkai Math. J. 8 (1997), 117–
122.

[9] S. Furuichi and M. Lin, Refinements of the trace inequality of Belmega, Lasaulce and
Debbah, Aust. J. Math. Anal. Appl. 7(2) (2010), Art. 23, 4 pp.

[10] W. Greub and W. Rheinboldt, On a generalisation of an inequality of L.V. Kan-
torovich, Proc. Amer. Math. Soc. 10 (1959), 407–415.

[11] H. D. Lee, On some matrix inequalities, Korean J. Math. 16(4) (2008), 565–571.
[12] L. Liu, A trace class operator inequality, J. Math. Anal. Appl. 328 (2007) 1484–1486.
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