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When the annihilator graph of a commutative ring
is planar or toroidal?

M. Bakhtyiari, R. Nikandish, and M. J. Nikmehr

Abstract. Let R be a commutative ring with identity, and let Z(R)
be the set of zero-divisors of R. The annihilator graph of R is defined as
the undirected graph AG(R) with the vertex set Z(R)∗ = Z(R) \ {0},
and two distinct vertices x and y are adjacent if and only if annR(xy) 6=
annR(x) ∪ annR(y). In this paper, all rings whose annihilator graphs
can be embedded on the plane or torus are classified.

1. Introduction

Recently, a major part of research in algebraic combinatorics has been
devoted to the application of graph theory and combinatorics in abstract
algebra. There are a lot of papers which apply combinatorial methods to
obtain algebraic results in ring theory (see [2], [3], [6] and [13]). Moreover,
for most recent study in this field see [7] and [14].

Throughout this paper R is a commutative ring with identity which is not
an integral domain. We denote by Min(R), Nil(R) and U(R), the set of all
minimal prime ideals of R, the set of all nilpotent elements of R, and the set
of all invertible elements of R, respectively. Also, the set of all zero-divisors
of an R-module M , which is denoted by Z(M), is the set

Z(M) = {r ∈ R | rx = 0 for some nonzero element x ∈M}.

A finite field of order n is denoted by Fn. By dim(R) and depth(R), we mean
the dimension and depth of R, see [16]. For every ideal I of R, we denote the
annihilator of I by Ann(I). For a subset A of a ring R we let A∗ = A \ {0}.
The ring R is said to be reduced if it has no non-zero nilpotent elements.
Let R be a Noetherian local ring. Then R is said to be a Cohen–Macaulay
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ring if depht(R) = dim(R). In general, if R is a Noetherian ring, then R is a
Cohen–Macaulay ring if Rm is a Cohen–Macaulay ring, for all maximal ideals
m, where Rm is the localization of R at m. Also, a Noetherian local ring R is
called Gorenstein if R is Cohen–Macaulay and dimR/m(soc(R)) = 1, where
m is the unique maximal ideal of R. In general, if R is a Noetherian ring,
then R is a Gorenstein ring if Rm is a Gorenstein ring, for all maximal ideals
m. For any undefined notation or terminology in ring theory, we refer the
reader to [9, 16, 17].

Let G = (V,E) be a graph, where V = V (G) is the set of vertices and
E = E(G) is the set of edges. By Kn and Km,n we mean the complete
graph of order n and the complete bipartite graph with part sizes m and
n, respectively. Moreover, by G we denote the complement of G. The
graph H = (V0, E0) is a subgraph of G if V0 ⊆ V and E0 ⊆ E. Moreover,
H is called an induced subgraph by V0, denoted by G[V0], if V0 ⊆ V and
E0 = {{u, v} ∈ E |u, v ∈ V0}. Let G1 and G2 be two graphs. The subdivision
of a graph G is a graph obtained from G by subdividing some of the edges,
that is, by replacing the edges by paths having at most their endvertices in
common. By G1 ∨ G2 and G1 = G2, we mean the join of G1, G2 and G1

is identical to G2, respectively. Let Sk denote the sphere with k handles,
where k is a non-negative integer, that is, Sk is an oriented surface of genus
k. The genus of a graph G, denoted γ(G), is the minimal integer n such
that the graph can be embedded in Sn (see [17, Chapter 6]). Intuitively, G
is embedded in a surface if it can be drawn in the surface so that its edges
intersect only at their common vertices. A genus 0 graph is called a planar
graph and a genus 1 graph is called a toroidal graph. It is well known that

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
if n ≥ 3

and

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
if n,m ≥ 2.

The annihilator graph of a ring R is defined as the graph AG(R) with the
vertex set Z(R)∗ = Z(R) \ {0}, and two distinct vertices x and y are ad-
jacent if and only if annR(xy) 6= annR(x) ∪ annR(y). This graph was first
introduced and investigated in [6] and many of interesting properties of an
annihilator graph were studied. This paper is devoted to classify all rings
whose annihilator graphs are planar or toroidal.

2. Planar annihilator graphs

In this section, we characterize all rings whose annihilator graphs are
planar. Moreover, it is shown that the genus of the annihilator graph asso-
ciated with an infinite ring is either zero or infinite. First, we recall a series
of necessary results.
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Lemma 1 (see [12], Lemma 2.1). Let R be a ring and let x, y be distinct
elements of Z(R)∗. Then the following statements are equivalent.

(1) x− y is an edge of AG(R).
(2) Rx ∩ annR(y) 6= (0) and Ry ∩ annR(x) 6= (0).
(3) x ∈ Z(Ry) and y ∈ Z(Rx).

Lemma 2 (see [12], Lemma 2.2). Let R be a ring.
(1) Let x, y be elements of Z(R)∗. If annR(x) * annR(y) and annR(y) *

annR(x), then x− y is an edge of AG(R). Moreover, if R is a reduced ring,
then the converse is also true.

(2) Let R ∼= R1×· · ·×Rn, x = (x1, . . . , xn), and y = (y1, . . . , yn), where n
is a positive integer, every Ri is a ring, and xi, yi ∈ Ri for every 1 ≤ i ≤ n.
If Rixi∩annRi(yi) 6= (0) and Rjyj ∩annRj (xj) 6= (0), for some 1 ≤ i, j ≤ n,
then x−y is an edge of AG(R). In particular, if xi−yi is an edge of AG(Ri)
or xi = yi ∈ Nil(Ri)

∗, for some 1 ≤ i ≤ n, then x− y is an edge of AG(R).

Lemma 3. Let R be a reduced ring which contains a minimal ideal. Then
R is decomposable.

Proof. The proof is obtained by [19, 2.7]. �

To classify planar annihilator graphs, we need a celebrated theorem due
to Kuratowski.

Theorem 1 (see [17], Theorem 6.2.2). A graph is planar if and only if it
contains no subdivision of either K3,3 or K5.

Theorem 2. Let R be a ring such that R ∼= R1 × · · · × Rn, where n is
a positive integer and Ri is a ring for every 1 ≤ i ≤ n. Then the following
statements hold.

(1) If n ≥ 4, then AG(R) is not planar.
(2) If n = 3 and AG(R) is planar, then R ∼= Z2 × Z2 × Z2.

Proof. (1) We only need to show that AG(R) is not planar for n = 4. Since
the set {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)} is a complete
subgraph of AG(R), K5 is a subgraph of AG(R). The result now follows
from Theorem 1.

(2) Let R ∼= R1 × R2 × R3. Assume to the contrary and without loss of
generality, R1 6= Z2. Let x ∈ R1 \ {0, 1}. Then it is not hard to check that
the vertices of the set {(1, 0, 1), (x, 0, 0), (x, 0, 1)} and the vertices of the set
{(0, 1, 1), (1, 1, 0), (0, 1, 0)} together with the path (x, 0, 0)−(0, 0, 1)−(1, 1, 0)
forms a subgraph that contains a subdivision of K3,3, a contradiction. So
R ∼= Z2 × Z2 × Z2. �

In the next theorem, we characterize reduced rings whose annihilator
graphs are planar.
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Theorem 3. Let R be a reduced ring. Then AG(R) is planar if and only
if one of the following statements hold:

(1) R ∼= Z2 × Z2 × Z2;
(2) |Min(R)| = 2 and one of the minimal prime ideals of R has at most

three distinct elements.

Proof. Suppose that AG(R) is planar and let x ∈ Z(R)∗. Since R is a
reduced ring, we have Rx ∩ annR(x) = (0). If |Rx| = |annR(x)| = ∞, then
obviously AG(R) is not planar, a contradiction. If either |Rx| or |annR(x)|
is finite, then R has a minimal ideal and so, by Lemma 3, R is decomposable.
Assume that R ∼= R1 × R2, where R1, R2 are two rings. If |Min(R)| = 2,
then, by [6, Theorem 3.7], one of the minimal prime ideals of R has at most
three distinct elements. If |Min(R)| ≥ 3, without loss of generality, we may
assume that |Min(R2)| ≥ 2. Thus Z(R2) 6= (0). By repeating the above
argument we conclude that R2 is decomposable. Therefore, one may assume
that R ∼= R1 × R2 × R3, where R1, R2, R3 are three rings. By part (2) of
Theorem 2, R ∼= Z2 × Z2 × Z2.

Conversely, if R ∼= Z2 × Z2 × Z2, then one may easily see that AG(R) is
planar. Also, if |Min(R)| = 2 and one of the minimal prime ideals of R has
at most three distinct elements, then the result follows from [6, Theorem
3.7]. �

To characterize non-reduced rings whose annihilator graphs are planar we
state the following lemmas.

Lemma 4 (see [1], Lemma 2.2). Let R be a ring and let m be a maximal
ideal in R. If Ann(m) 6= 0, then m = Z(Ann(m)).

Lemma 5. Let R be a ring and let m1,m2 be two maximal ideals of R such
that Ann(m1) 6= (0), Ann(m2) 6= (0). Then K|m1\m2|,|m2\m1| is a subgraph of
AG(R).

Proof. Let x ∈ m1 \ m2 and y ∈ m2 \ m1. We claim that Ann(m2) ∩
annR(x) = 0. Assume to the contrary, there exists an element z ∈ Ann(m2)∩
annR(x). Hence zx = 0. Now, Lemma 4 implies that x ∈ m2, a con-
tradiction. Similarly, Ann(m1) ∩ annR(y) = 0. Since m1 + m2 = R,
Ann(m1) 6= Ann(m2). Hence Ann(m1) ⊆ annR(x) * annR(y), Ann(m2) ⊆
annR(y) * annR(x) and so by part (2) of Lemma 2, x − y is an edge of
AG(R). �

Theorem 4. Let R be a non-reduced ring. Then AG(R) is planar if and
only if one of the following statements hold:

(1) R is ring-isomorphic to either Z2 × Z4 or Z2 × Z2[X]/(X2);
(2) Ann(Z(R)) is a prime ideal of R and 2 ≤ |Nil(R)| ≤ 3;
(3) Z(R) = Nil(R) and 4 ≤ |Nil(R)| ≤ 5.
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Proof. Suppose that AG(R) is planar. We consider following two cases.
Case 1. R is decomposable. Let R ∼= R1 × R2, where R1, R2 are two

rings. One may assume that there exists a non-zero element a ∈ Nil(R1).
We show that |Z(R1)| = 2. If |Z(R1)| ≥ 3, then by part (2) of Lemma 2, the
vertices contained in the set {(1, 0), (u, 0), (a, 0)} and the vertices contained
in the set {(0, 1), (x, 1), (a, 1)} form K3,3, where 1 6= u ∈ U(R1) and x is a
neighbor of a in AG(R1), a contradiction (note that |Nil(R1)| ≤ |U(R1)|).
This implies that |Z(R1)| = 2. Similarly, if x ∈ R2 \ {0, 1}, then the vertices
of the set {(1, 0), (u, 0), (a, 0)} and the vertices of the set {(0, 1), (a, x), (a, 1)}
form K3,3, a contradiction. So R is ring-isomorphic to either Z2 × Z4 or
Z2 × Z2[X]/(X2).

Case 2. R is indecomposable. By [6, Theorem 3.10], 2 ≤ |Nil(R)| ≤ 5.
Then either 2 ≤ |Nil(R)| ≤ 3 or 4 ≤ |Nil(R)| ≤ 5. First assume that
Z(R) = Nil(R). If 4 ≤ |Nil(R)| ≤ 5, then (3) holds. If 2 ≤ |Nil(R)| ≤ 3,
then Nil(R)2 = (0) and since Z(R) = Nil(R), Ann(Z(R)) is a prime ideal
of R and so (2) holds. Now, let Z(R) 6= Nil(R) and Ra be a minimal ideal,
for some a ∈ Nil(R)∗. Since R is indecomposable and Z(R) 6= Nil(R), we
conclude that |annR(a)| has infinitely many elements. If xy = 0, for some
x, y ∈ Z(R) \Nil(R), then the vertices of the set {x, x2, x3} and the vertices
of the set {y, y2, y3} are adjacent, a contradiction (as R is indecomposable).
So annR(x) ⊆ Nil(R), for every x ∈ Z(R)\Nil(R). Now, let a 6= b ∈ Nil(R)∗.
We claim that b is adjacent to all vertices contained in annR(a). To see this,
we consider two subcases.

Subcase 1. Ra ⊆ Rb. Let x be an arbitrary element of annR(a)\Nil(R).
If xb = 0, then there is nothing to prove. So let xb 6= 0 and xbn−1 6= 0,
xbn = 0, for a positive integer n. Thus xbn−1 ∈ Rx ∩ annR(b). Since
Ra ⊆ Rb, we deduce that Rb ∩ annR(x) 6= (0). Now, by Lemma 1, x − b is
an edge of AG(R).

Subcase 2. Ra * Rb. Since Ra is a minimal ideal, Ra ∩ Rb = (0). So
Rb contains a minimal ideal, say Rc, for some c ∈ Nil(R). Thus annR(c)
is a maximal ideal of R. If annR(a) 6= annR(c), then by Lemma 5, we
get a contradiction (as annR(a) is a maximal ideal, too). Thus annR(a) =
annR(c). The fact Rc ⊆ Rb together with subcase 1 imply that b is adjacent
to all vertices contained in annR(a).

So the claim is proved. This together with the planarity of AG(R) imply
that 2 ≤ |Nil(R)| ≤ 3 and hence Nil(R) is a minimal ideal. Since annR(x) ⊆
Nil(R) for every x ∈ Z(R)\Nil(R), we have Ann(Z(R)) = Nil(R) and Nil(R)
is a prime ideal of R.

Conversely, if either (1) or (2) is hold, then obviously AG(R) is planar.
Moreover if Ann(Z(R)) is a prime ideal of R, then Ann(Z(R)) = Nil(R) and
annR(x) ⊆ Nil(R), for every x ∈ Z(R) \ Nil(R). Since Nil(R) is a minimal
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ideal, annR(x) = Nil(R). Hence AG(R) = K|Nil(R)∗|∨Kn, where n ∈ {0,∞}.
Therefore, the condition 2 ≤ |Nil(R)| ≤ 3 implies that AG(R) is planar. �

We are now in a position to classify all finite rings with planar annihilator
graphs.

Corollary 1. Let R be a finite ring. If AG(R) is planar, then R is
isomorphic to one of the following rings:

Z4, Z2[x]/(x2), Z9, Z3[x]/(x2), Z8, Z2[x]/(x3), Z4[x]/(x2 − 2, 2x),
Z2[x, y]/(x2, xy, y2), Z4[x]/(2x, x2), F4[x]/(x2),Z4[x]/(x2 + x+ 1),
Z25, Z5[x]/(x2), Z2×Fpn , Z3×Fpn , Z2×Z4, Z2×Z2[X]/(X2), Z2×Z2×Z2.

Proof. The proof follows from [15, Section 5], Theorems 3 and 4. �

The last result in this section states that the genus of the annihilator
graph associated with an infinite ring is either zero or infinite.

Theorem 5. Let R be an infinite ring. Then either γ(AG(R)) = 0 or
γ(AG(R)) =∞.

Proof. Suppose to the contrary that 0 < γ(AG(R)) < ∞. We consider
the following two cases.

Case 1. R is indecomposable. The equality |R| = ∞ together with
[6, Theorem 3.10] imply that Z(R) 6= Nil(R). Let x ∈ Z(R) \ Nil(R).
Since R is indecomposable, |Rx| = ∞, and so γ(AG(R)) < ∞ shows that
|annR(x)| ≤ 3. So the indecomposability of R implies that Nil(R) 6= (0). We
claim that for every y ∈ Z(R) \ Nil(R), annR(x) = annR(y). If annR(x) 6=
annR(y) for some y ∈ Z(R) \ Nil(R), then since annR(x) and annR(y) are
two minimal ideals, annR(x) ∩ annR(y) = (0). Now, let 0 6= a ∈ annR(x)
and 0 6= b ∈ annR(y). Since Ra and Rb are two minimal ideals, both
annR(a) and annR(b) are maximal ideals. So we put annR(a) = m1 and
annR(b) = m2. We consider two subcases.

Subcase 1. |m1∩m2| =∞. So the vertices contained in the set {a, b, a+b}
and the vertices contained in the set m∗1 ∩ m∗2 \ {a, b, a + b} form K3,∞, a
contradiction.

Subcase 2. |m1 ∩ m2| < ∞. The indecomposability of R implies that
m1 6= m2, |m1 \ m2| = ∞ and |m2 \ m1| = ∞. Thus Lemma 4 contradicts
γ(AG(R)) < ∞. Hence for every y ∈ Z(R) \ Nil(R), annR(x) = annR(y)
and so the claim is proved. This implies that AG(R) = K|annR(x)∗| ∨ K∞
and so γ(AG(R)) = 0, a contradiction.

Case 2. R is decomposable. Let R ∼= R1×R2. Since 0 < γ(AG(R)) <∞,
we may assume that |R1| ≤ 3, |R2| = ∞. Therefore, γ(AG(R)) = 0, a
contradiction. �
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3. Toroidal annihilator graphs

In this section all rings with toroidal annihilator graphs are classified. We
first study annihilator graphs associated with reduced rings.

Theorem 6. Let R be a reduced ring. If AG(R) is toroidal, then R ∼=
R1 × · · · ×Rn, where 2 ≤ n ≤ 3. Moreover, one of the following statements
hold.

(1) If n = 3, then R ∼= Z2×Z2×Z3. Also, AG(Z2×Z2×Z3) is a toroidal
graph.

(2) If n = 2, then R is one of the rings F7×F4, F5×F5, F5×F4, F4×F4.

Proof. First we show that R is decomposable. By hypothesis, AG(R) is a
toroidal graph and so it follows from Theorem 5 that R is finite. Since R is
a reduced ring, we deduce that R ∼= R1 × · · · × Rn, where 2 ≤ n. If n ≥ 4,
then we prove that AG(R) is not a toroidal graph. To see this, we only
need to check the case n = 4. If n = 4, then it is not hard to check that the
vertices of the set {(1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 0)} and
the vertices contained in the set {(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (0, 0, 0, 1)}
together with the path (1, 0, 0, 0) − (0, 1, 0, 0) − (1, 0, 0, 1) form a subgraph
which contains a subdivision of K5,4, a contradiction. So n ≤ 3.

(1) Let R ∼= R1 × R2 × R3. The ring Ri is indecomposable and fi-
nite, for every 1 ≤ i ≤ 3, so Ri is a field for every 1 ≤ i ≤ 3. If
R1
∼= R2

∼= R3
∼= Z2, then by Theorem 2, AG(R) is a planar graph, a

contradiction. So, with no loss of generality, we can suppose that |R3| > 2.
We show that R1

∼= R2
∼= Z2. If |R2| > 2, then the vertices of the

set {(1, 0, 0), (1, 0, 1), (1, 0, y), (1, 1, 0), (1, x, 0)} and the vertices of the set
{(0, 1, 1), (0, 1, y), (0, x, y), (0, x, 1)} form a subgraph which contains a sub-
division of K5,4, where x ∈ R2 \ {0, 1} and y ∈ R3 \ {0, 1}, a contradiction.
Thus R2

∼= Z2. Similarly, R1
∼= Z2. We only have to prove that R3

∼= Z3 and
AG(Z2×Z2×Z3) is a toroidal graph. If x, y ∈ R3 \ {0, 1}, then the vertices
of the set {(0, 1, x), (0, 1, y), (0, 1, 1), (0, 1, 0)} and the vertices contained in
the set {(1, 1, 0), (1, 0, 1), (1, 0, x), (1, 0, y), (1, 0, 0)} together with the path
(0, 1, 0)− (0, 0, 1)− (1, 1, 0) form a subgraph which contains a subdivision of
K5,4, a contradiction. Hence R3

∼= Z3 and R ∼= Z2 ×Z2 ×Z3. The following
Figure shows that AG(Z2×Z2×Z3) can, indeed, be drawn without crossing
itself on a torus. Hence AG(Z2 × Z2 × Z3) is a toroidal graph.

(2) If n = 2, then the result follows from [6, Theorem 3.6], and part (3)
of [18, Theorem 3.1]. �

To complete our classification, we state the following remark and lemma.

Remark 1. It is not hard to see that, if (R,m) is a finite local ring, then
there exists a prime integer p and positive integers t, l, k such that char(R) =
pt, |m| = pl, |R| = pk, and char(R/m) = p.
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Figure 1. The annihilator graph of Z2 × Z2 × Z3 on the torus.

Lemma 6. Let (R,m) be a finite local ring. If |m| ∈ {7, 8}, then R is
isomorphic to one of the following 22 rings:

Z49, Z7[x]/(x2), Z16, Z2[x]/(x4), Z4[x]/(x2 + 2), Z4[x]/(x2 + 3x),
Z4[x]/(x3 − 2, 2x2, 2x), Z2[x, y]/(x3, xy, y2), Z8[x]/(2x, x2),
Z4[x]/(x3, 2x2, 2x), Z4[x]/(x2 + 2x), Z8[x]/(2x, x2 + 4),
Z2[x, y]/(x2, y2 − xy), Z4[x, y]/(x2, y2 − xy, xy − 2, 2x, 2y),
Z4[x, y]/(x3, y2, xy − 2, 2x, 2y), Z2[x, y]/(x2, y2), Z4[x]/(x2),
Z4[x]/(x3 − x2 − 2, 2x2, 2x), Z2[x, y, z]/(x, y, z)

2, F8[x]/(x2),
Z4[x, y]/(x2, y2, xy, 2x, 2y), Z4[x]/(x3 + x+ 1).

Proof. The proof follows from [15, Section 5]. �

We are now in a position to classify toroidal annihilator graphs associated
with non-reduced ring.

Theorem 7. Let R be a non-reduced ring. If AG(R) is toroidal, then
R ∼= R1 × · · · ×Rn, where n ≤ 2. Moreover, one of the following statements
hold.

(1) If n = 1, then R is one of the following rings:
Z49, Z7[x]/(x2), Z16, Z2[x]/(x4), Z4[x]/(x2 + 2), Z4[x]/(x2 + 3x),
Z4[x]/(x3 − 2, 2x2, 2x), Z2[x, y]/(x3, xy, y2), Z8[x]/(2x, x2),
Z4[x]/(x3, 2x2, 2x), Z4[x]/(x2 + 2x), Z8[x]/(2x, x2 + 4),
Z2[x, y]/(x2, y2 − xy), Z4[x, y]/(x2, y2 − xy, xy − 2, 2x, 2y),
Z4[x, y]/(x3, y2, xy − 2, 2x, 2y), Z2[x, y]/(x2, y2), Z4[x]/(x2),
Z4[x]/(x3 − x2 − 2, 2x2, 2x), Z2[x, y, z]/(x, y, z)

2, F8[x]/(x2),
Z4[x, y]/(x2, y2, xy, 2x, 2y), Z4[x]/(x3 + x+ 1)
(2) If n = 2, then either R ∼= Z4 × Z3 or R ∼= Z2[x]/(x2)× Z3.

Proof. By Theorem 5, R is finite and so is an Artinian ring. Thus R ∼=
R1 × · · · × Rn, where n ≥ 1. Let R ∼= R1 × · · · × Rn, where n ≥ 3. Since
R is a non-reduced ring, we can suppose that Nil(R1) 6= (0). This implies
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that |U(R1)| ≥ 2. Let a ∈ Nil(R1)
∗ and 1 6= u ∈ U(R1). We show that

AG(R) is not a toroidal graph. To see this, we only need to check the case
n = 3. But if n = 3, then by Lemma 2, one may see that the vertices of the
set {(1, 0, 0), (u, 0, 0), (1, 1, 0), (u, 1, 0), (a, 1, 0)} and the vertices contained in
the set {(0, 1, 1), (0, 0, 1), (a, 0, 1), (a, 1, 1)} form a subgraph which contains
a subdivision of K5,4, a contradiction. So n ≤ 2.

(1) Let (R,m) be a local ring. By Theorem 5, R is finite. So |R| = pk and
|m| = pl, for some prime number p and some integers k, l. If |m| > 8, then
by [6, Theorem 3.10], AG(R) is a not toroidal graph. Thus |m| ≤ 8. Since
|m| ≥ 6 and |m| = pl, for some prime number p and for some integer l, we
deduce that either |m| = 8 or |m| = 7. Thus by Lemma 6, the result holds.

(2) Suppose that R ∼= R1 × R2, where (Ri,mi) is a finite local ring,
for 1 ≤ i ≤ 2. With no loss of generality, suppose that Nil(R1) 6= (0).
First, we show that |m1| = 2. If |m1| > 2, then |R1| ≥ 9. So the ver-
tices of the set {(1, 0), (a1, 0), (a2, 0), (a3, 0), (a4, 0), (a5, 0), (a6, 0)} and ver-
tices contained in the set {(0, 1), (0, 1), (a, 1), (b, 1)} form a subgraph which
contains a subdivision of K7,4 where a, b ∈ Nil(R1)

∗ and ai ∈ R1 \ {0, 1}
for 1 ≤ i ≤ 6, a contradiction. Hence |m1| = 2. Thus either R1 = Z4

or R1 = Z2[x]/(x2). Next, we show that R2 is a field. To see this, let
a ∈ m∗2 and R1 = Z4. Then by Lemma 2, the vertices contained in two
sets {(2, a), (2, 1), (0, 1), (0, a)} and {(1, a), (3, a), (1, 0), (3, 0), (2, 0)} form a
subgraph which contains a subdivision of K5,4, a contradiction. There-
fore, R2 is a field. If |R2| ≥ 5 and R1 = Z4, then the vertices con-
tained in sets {(2, 1), (2, a1), (2, a2), (2, a3), (0, 1), (0, a1), (0, a2), (0, a3)} and
{(1, 0), (2, 0), (3, 0)} form a subgraph which contains a subdivision of K8,3, a
contradiction. This implies that R2 = Z2, R2 = Z3 or R2 = F4. If R2 = Z2,
then by [6, Theorem 3.16], AG(R) = K2,3 and so AG(R) is not a toroidal
graph. If R2 = Z3, then we can easily check that AG(R) contains K3,3 as a
subgraph and since in this case |V (AG(R))| = 7, we conclude that AG(R)
is a toroidal graph. Hence if R2 = Z3, then there are two rings such that
AG(R) is a toroidal graph. They are: Z4 × Z3 and Z2[x]/(x2)× Z3.

If R2 = F4, then R = Z4 × F4. Assume that F4 = {0, u1, u2, u3}. Let
x = (1, 0), y = (2, 0), z = (3, 0), a = (0, u1), b = (0, u2), c = (0, u3), d =
(2, u1), e = (2, u2), f = (2, u3), V1 = {x, y, z} and V2 = {a, b, c, d, e, f}. It
is not hard to check that AG(R) is K|V1|,|V2| together with a triangle in V2.
Therefore, AG(R) is not a toroidal graph and so the proof is complete. �
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