Geometry of multilinear forms on l_1

SUNG GUEN KIM

ABSTRACT. We characterize extreme, exposed and smooth points in the Banach space $\mathcal{L}({}^{n}E)$ of continuous *n*-linear forms on *E*, and in its subspace $\mathcal{L}_{s}({}^{n}E)$ of symmetric *n*-linear forms on *E* when $E = l_{1}$ and $E = l_{1}^{m}$ for $n, m \in \mathbb{N}$ with $n, m \geq 2$.

1. Introduction

Throughout the paper, we let $n, m \in \mathbb{N}, n, m \geq 2$. We write B_E for the closed unit ball of a real Banach space E, and the dual space of E is denoted by E^* . An element $x \in B_E$ is called an *extreme point* of B_E if $y, z \in B_E$ with $x = \frac{1}{2}(y+z)$ implies x = y = z. An element $x \in B_E$ is called an *exposed point* of B_E if there is $f \in E^*$ such that f(x) = 1 = ||f|| and f(y) < 1 for every $y \in B_E \setminus \{x\}$. It is easy to see that every exposed point of B_E is an extreme point. An element $x \in B_E$ is called a *smooth point* of B_E if there is a unique $f \in E^*$ so that f(x) = 1 = ||f||. We denote by $\operatorname{ext} B_E, \operatorname{exp} B_E$ and sm B_E the set of extreme points, the set of exposed points and the set of smooth points of B_E , respectively. A mapping $P: E \to \mathbb{R}$ is a continuous n-homogeneous polynomial if there exists a continuous n-linear form T on the product $E \times \cdots \times E$ such that $P(x) = T(x, \dots, x)$ for every $x \in E$. We denote by $\mathcal{P}(^{n}E)$ the Banach space of all continuous *n*-homogeneous polynomials from E into \mathbb{R} endowed with the norm $||P|| = \sup_{||x||=1} |P(x)|$. We denote by $\mathcal{L}(^{n}E)$ the Banach space of all continuous *n*-linear forms on E endowed with the norm $||T|| = \sup_{||x_k||=1} |T(x_1, \ldots, x_n)|$ and $\mathcal{L}_s(^n E)$ denotes the closed subspace of all continuous symmetric n-linear forms on E. Notice that $\mathcal{L}(^{n}E)$ is identified with the dual of *n*-fold projective tensor product $\bigotimes_{\pi,n} E$. With this identification, the action of a continuous *n*-linear form T as a bounded linear functional on $\bigotimes_{\pi,n} E$ is given by

Received August 15, 2020.

2020 Mathematics Subject Classification. 46A22.

Key words and phrases. Extreme points, exposed points and smooth points. https://doi.org/10.12697/ACUTM.2021.25.04

SUNG GUEN KIM

$$\Big\langle \sum_{i=1}^k x^{(1),i} \otimes \cdots \otimes x^{(n),i}, T \Big\rangle = \sum_{i=1}^k T\Big(x^{(1),i}, \dots, x^{(n),i}\Big).$$

Notice also that $\mathcal{L}_s({}^nE)$ is identified with the dual of *n*-fold symmetric projective tensor product $\hat{\bigotimes}_{s,\pi,n}E$. With this identification, the action of a continuous symmetric *n*-linear form *T* as a bounded linear functional on $\hat{\bigotimes}_{s,\pi,n}E$ is given by

$$\Big\langle \sum_{i=1}^k \frac{1}{n!} \Big(\sum_{\sigma} x^{\sigma(1),i} \otimes \cdots \otimes x^{\sigma(n),i} \Big), \ T \Big\rangle = \sum_{i=1}^k T \Big(x^{(1),i}, \dots, x^{(n),i} \Big),$$

where σ goes over all permutations on $\{1, \ldots, n\}$. For more details about the theory of polynomials and multilinear mappings on Banach spaces, we refer to [6].

Let us say a little bit about the history of classification problems of the extreme points, the exposed points, and the smooth points of the unit ball of continuous n-homogeneous polynomials on a Banach space.

We let $l_p^n = \mathbb{R}^n$ for every $1 \leq p \leq \infty$ equipped with the l_p -norm. Choi et al. ([2], [3], [4]) classified ext $B_{\mathcal{P}(^2l_p^2)}$ and sm $B_{\mathcal{P}(^2l_p^2)}$ for p = 1, 2. Choi and Kim [5] classified sm $B_{\mathcal{P}(^2l_1)}$. Grecu [7] classified the sets ext $B_{\mathcal{P}(^2l_p^2)}$ for 1 or <math>2 . Kim et al. [26] showed that if <math>E is a separable real Hilbert space with dim $(E) \geq 2$, then, ext $B_{\mathcal{P}(^2E)} = \exp B_{\mathcal{P}(^2E)}$. Kim [8] classified exp $B_{\mathcal{P}(^2l_p^2)}$ for $1 \leq p \leq \infty$. Kim ([10], [12]) characterized ext $B_{\mathcal{P}(^2d_*(1,w)^2)}$ and sm $B_{\mathcal{P}(^2d_*(1,w)^2)}$, where $d_*(1,w)^2 = \mathbb{R}^2$ with an octagonal norm $\|(x,y)\|_w = \max\left\{|x|,|y|,\frac{|x|+|y|}{1+w}\right\}$ for 0 < w < 1. Kim [16] classified exp $B_{\mathcal{P}(^2d_*(1,w)^2)}$ and showed that exp $B_{\mathcal{P}(^2d_*(1,w)^2)} \neq \exp B_{\mathcal{P}(^2d_*(1,w)^2)}$. Recently, Kim ([17], [21]) classified ext $B_{\mathcal{P}(^2\mathbb{R}^2_{h(\frac{1}{2})})}$ and exp $B_{\mathcal{P}(^2\mathbb{R}^2_{h(\frac{1}{2})})}$, where

 $\mathbb{R}^{2}_{h(\frac{1}{2})} = \mathbb{R}^{2} \text{ with a hexagonal norm } \|(x, y)\|_{h(\frac{1}{2})} = \max\Big\{|y|, |x| + \frac{1}{2}|y|\Big\}.$

Parallel to the classification problems of ext $B_{\mathcal{P}(^{n}E)}$, exp $B_{\mathcal{P}(^{n}E)}$, and sm $B_{\mathcal{P}(^{n}E)}$ it seems to be very natural to study the, classification problems of extreme and exposed points of the unit ball of continuous (symmetric) multilinear forms on a Banach space.

Kim [24] studied ext $B_{\mathcal{L}(^{2}l_{\infty})}$. Cavalcante et al. [1] characterized ext $B_{\mathcal{L}(^{n}l_{\infty}^{m})}$. Recently, Kim [23] classified ext $B_{\mathcal{L}(^{n}l_{\infty}^{2})}$ and ext $B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}$. It was shown that $|\exp B_{\mathcal{L}(^{n}l_{\infty}^{2})}| = 2^{(2^{n})}$ and $|\exp B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}| = 2^{n+1}$, and that $\exp B_{\mathcal{L}(^{n}l_{\infty}^{2})} = \exp B_{\mathcal{L}_{s}(^{n}l_{\infty}^{2})}$.

In this paper, we characterize the extreme and exposed points of the unit balls of $\mathcal{L}({}^{n}l_{1})$ and $\mathcal{L}_{s}({}^{n}l_{1})$. We also characterize the smooth points of the unit balls of $\mathcal{L}({}^{n}l_{1}^{m})$ and $\mathcal{L}_{s}({}^{n}l_{1}^{m})$ for $m \geq 2$.

2. The unit ball of $\mathcal{L}(^{n}l_{1})$

In this section we characterize ext $B_{\mathcal{L}(n_{l_1})}$, exp $B_{\mathcal{L}(n_{l_1})}$ and sm $B_{\mathcal{L}(n_{l_1}^m)}$ for $n, m \geq 2$. First, we present an explicit formulae for the norm of $T \in \mathcal{L}(n_{l_1})$.

Theorem 1. Let $T \in \mathcal{L}(^n l_1)$ with

$$T\left(\left(x_{j}^{(1)}\right), \dots, \left(x_{j}^{(n)}\right)\right) = \sum_{j_{1}, \dots, j_{n} \in \mathbb{N}} a_{j_{1}\dots j_{n}} x_{j_{1}}^{(1)} \dots x_{j_{n}}^{(n)}$$
(1)

for some $a_{j_1...j_n} \in \mathbb{R}$. Then $||T|| = \sup \{ |a_{j_1...j_n}| : j_1, \ldots, j_n \in \mathbb{N} \}$.

Proof. Note that, for $j_1, \ldots, j_n \in \mathbb{N}$, we have $|a_{j_1\ldots j_n}| = |T(e_{j_1}, \ldots, e_{j_n})| \le ||T||$. Hence,

$$||T|| \ge \sup\{|a_{j_1\dots j_n}|: j_1,\dots,j_n \in \mathbb{N}\}.$$

On the other hand we get

Now we characterize all extreme points of the unit ball of $\mathcal{L}(nl_1)$.

Theorem 2. Let $T \in \mathcal{L}(nl_1)$ be defined by (1) and let ||T|| = 1. Then $T \in \operatorname{ext} B_{\mathcal{L}(nl_1)}$ if and only if $|a_{j_1\cdots j_n}| = 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$.

Proof. By Theorem 1, $|a_{j_1\cdots j_n}| \leq 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$.

Necessity. Assume the contrary. Then there are $j'_1, \ldots, j'_n \in \mathbb{N}$ such that $\left|a_{j'_1 \cdots j'_n}\right| < 1$. Let $S_{j'_1 \cdots j'_n} \in \mathcal{L}(nl_1)$ be defined by

$$S_{j'_1 \cdots j'_n}\left(\left(x_j^{(1)}\right), \dots, \left(x_j^{(n)}\right)\right) = x_{j'_1}^{(1)} \cdots x_{j'_n}^{(n)}.$$
 (2)

Choose $\epsilon_0 > 0$ such that $\left|a_{j'_1 \cdots j'_n}\right| + \epsilon_0 < 1$ and set $R^{\pm} = T \pm \epsilon_0 S_{j'_1 \cdots j'_n}$. By Theorem 1, we have $\|R^{\pm}\| = 1$. Since $T = \frac{1}{2}(R^+ + R^-)$, T is not extreme. This is a contradiction. Hence, $|a_{j_1 \cdots j_n}| = 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$.

This is a contradiction. Hence, $|a_{j_1\cdots j_n}| = 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$. Sufficiency. Suppose that $T = \frac{1}{2}(T_1 + T_2)$ for some $T_j \in \mathcal{L}(nl_1)$ with $||T_j|| = 1$. Write

$$T_1\left(\left(x_j^{(1)}\right), \dots, \left(x_j^{(n)}\right)\right) = \sum_{j_1, \dots, j_n \in \mathbb{N}} b_{j_1 \dots j_n} x_{j_1}^{(1)} \dots x_{j_n}^{(n)},$$
$$T_2\left(\left(x_j^{(1)}\right), \dots, \left(x_j^{(n)}\right)\right) = \sum_{j_1, \dots, j_n \in \mathbb{N}} c_{j_1 \dots j_n} x_{j_1}^{(1)} \dots x_{j_n}^{(n)}$$

for some $b_{j_1\cdots j_n}, c_{j_1\cdots j_n} \in \mathbb{R}$ with $|b_{j_1\cdots j_n}| \leq 1$, $|c_{j_1\cdots j_n}| \leq 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$. \mathbb{N} . Then, $a_{j_1\cdots j_n} = \frac{1}{2}(b_{j_1\cdots j_n} + c_{j_1\cdots j_n})$ for all $j_1, \ldots, j_n \in \mathbb{N}$. Since $|a_{j_1\cdots j_n}| = 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$, $a_{j_1\cdots j_n} = b_{j_1\cdots j_n} = c_{j_1\cdots j_n}$ for all $j_1, \ldots, j_n \in \mathbb{N}$. Therefore, $T = T_j$ for j = 1, 2. Hence $T \in \operatorname{ext} B_{\mathcal{L}(nl_1)}$.

The following theorem shows that every extreme point of the unit ball of $\mathcal{L}({}^{n}l_{1})$ is exposed.

Theorem 3. The equality $\exp B_{\mathcal{L}(nl_1)} = \exp B_{\mathcal{L}(nl_1)}$ holds.

Proof. Let $T \in \text{ext} B_{\mathcal{L}(nl_1)}$. By Theorem 2, the equality (1) holds for some $a_{j_1 \dots j_n} \in \mathbb{R}$ with $|a_{j_1 \dots j_n}| = 1$ for all $j_1, \dots, j_n \in \mathbb{N}$. Let $\phi : \mathbb{N}^n \to \mathbb{N}$ be a bijection. Define $f \in \mathcal{L}(^nl_1)^*$ by

$$f(S) := \sum_{(j_1,...,j_n) \in \mathbb{N}^n} \frac{1}{2^{\phi(j_1,...,j_n)}} \operatorname{sign}(a_{j_1...j_n}) S(e_{j_1},\ldots,e_{j_n}).$$

Then, by Theorem 2,

$$f(T) = \sum_{(j_1,\dots,j_n) \in \mathbb{N}^n} \frac{1}{2^{\phi(j_1,\dots,j_n)}} |a_{j_1\dots j_n}| = \sum_{(j_1,\dots,j_n) \in \mathbb{N}^n} \frac{1}{2^{\phi(j_1,\dots,j_n)}} = 1.$$

It follows that

$$1 = f(T) \leq ||f||$$

= $\sup \left\{ \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \frac{1}{2^{\phi(j_1, \dots, j_n)}} |S(e_{j_1}, \dots, e_{j_n})| : S \in \mathcal{L}(^n l_1), ||S|| = 1 \right\}$
$$\leq \sum_{(j_1, \dots, j_n) \in \mathbb{N}^n} \frac{1}{2^{\phi(j_1, \dots, j_n)}} = 1.$$

Hence ||f|| = 1.

Claim: f(S) < 1 for every $S \in B_{\mathcal{L}(n_{l_1})}$ with $S \neq T$.

It is enough to show that if f(S) = 1 for some $S \in B_{\mathcal{L}(n_{l_1})}$, then S = T. We have

$$\sum_{\substack{(j_1,\dots,j_n)\in\mathbb{N}^n\\(j_1,\dots,j_n)\in\mathbb{N}^n}}\frac{1}{2^{\phi(j_1,\dots,j_n)}}|a_{j_1\dots,j_n}| = 1 = f(S)$$
$$= \sum_{\substack{(j_1,\dots,j_n)\in\mathbb{N}^n\\2^{\phi(j_1,\dots,j_n)}}}\frac{1}{2^{\phi(j_1,\dots,j_n)}}\operatorname{sign}(a_{j_1\dots,j_n})S(e_{j_1},\dots,e_{j_n}),$$

which implies that

$$S(e_{j_1},\ldots,e_{j_n})=a_{j_1\cdots j_n}=T(e_{j_1},\ldots,e_{j_n})$$

for all $j_1, \ldots, j_n \in \mathbb{N}$. By the *n*-linearity, S = T. Therefore, f exposes T. Hence $T \in \exp B_{\mathcal{L}(n_{l_1})}$.

We characterize all smooth points of the unit ball of $\mathcal{L}(nl_1^m)$ for $n, m \geq 2$.

Theorem 4. Let $n, m \ge 2$, and let $T \in \mathcal{L}({}^{n}l_{1}^{m})$ with ||T|| = 1 and

$$T\left(\left(x_{j}^{(1)}\right), \dots, \left(x_{j}^{(n)}\right)\right) = \sum_{1 \le j_{1}, \dots, j_{n} \le m} a_{j_{1} \cdots j_{n}} x_{j_{1}}^{(1)} \cdots x_{j_{n}}^{(n)}$$

Then $T \in \operatorname{sm} B_{\mathcal{L}(nl_1^m)}$ if and only if there are $j'_1, \ldots, j'_n \in \{1, \ldots, m\}$ such that

$$1 = \left| a_{j_1' \cdots j_n'} \right| > \left| a_{j_1 \cdots j_n} \right|$$

for all $j_1, \ldots, j_n \in \{1, \ldots, m\}$ with $(j_1, \ldots, j_n) \neq (j'_1, \ldots, j'_n)$.

Proof. Sufficiency. Let $f \in \mathcal{L}(nl_1^m)^*$ be such that f(T) = 1 = ||f||. As $\mathcal{L}(nl_1^m)^* = \bigotimes_{\pi,n} l_1^m$, there are $k \in \mathbb{N}$ and $f^{(1),i}, \ldots, f^{(n),i} \in l_1^m$ such that

$$f = \sum_{i=1}^{k} f^{(1),i} \otimes \ldots \otimes f^{(n),i}$$

We claim that $f = \operatorname{sign}\left(a_{j'_{1}\cdots j'_{n}}\right)\left(e_{j'_{1}}\otimes \ldots \otimes e_{j'_{n}}\right)$. Indeed, let $j_{1},\ldots,j_{n} \in \{1,\ldots,m\}$ be such that $(j_{1},\ldots,j_{n}) \neq (j'_{1},\ldots,j'_{n})$, and let $S_{j_{1}\cdots j_{n}} \in \mathcal{L}({}^{n}l_{1}^{m})$ be defined by

$$S_{j_1\cdots j_n}\left(\left(x_j^{(1)}\right), \dots, \left(x_j^{(n)}\right)\right) = x_{j_1}^{(1)}\cdots x_{j_n}^{(n)}.$$
(3)

Choose $\epsilon_0 > 0$ such that $|a_{j_1\cdots j_n}| + \epsilon_0 < 1$ and set $R^{\pm} = T \pm \epsilon_0 S_{j_1\cdots j_n}$. By Theorem 1 we have $||R^{\pm}|| = 1$. Thus,

$$1 \geq \max \{ |f(R^{\pm})| \} = \max \{ |f(T) \pm \epsilon_0 f(S_{j_1 \cdots j_n})| \} \\ = |f(T)| + \epsilon_0 |f(S_{j_1 \cdots j_n})| = 1 + \epsilon_0 |f(S_{j_1 \cdots j_n})|,$$

which implies that $f(S_{j_1\cdots j_n}) = 0$ for all $j_1, \ldots, j_n \in \{1, \ldots, m\}$ such that $(j_1, ..., j_n) \neq (j'_1, ..., j'_n)$. Hence

$$a_{j'_1\cdots j'_n}\Big| = 1 = f(T) = a_{j'_1\cdots j'_n} f\left(S_{j'_1\cdots j'_n}\right),$$

which shows that $f\left(S_{j'_1\cdots j'_n}\right) = \operatorname{sign}\left(a_{j'_1\cdots j'_n}\right)$. Thus, for $S \in \mathcal{L}({}^n l_1^m)$,

$$f(S) = \sum_{1 \le i_1, \dots, i_n \le m} S(e_{i_1}, \dots, e_{i_n}) f(S_{j_1 \cdots j_n})$$

= $S\left(e_{j'_1}, \dots, e_{j'_n}\right) f\left(S_{j'_1 \cdots j'_n}\right) = S\left(e_{j'_1}, \dots, e_{j'_n}\right) \operatorname{sign}\left(a_{j'_1 \cdots j'_n}\right)$
= $\operatorname{sign}\left(a_{j'_1 \cdots j'_n}\right) \left(e_{j'_1} \otimes \dots \otimes e_{j'_n}\right)(S).$

Therefore, f is uniquely determined and $T \in \operatorname{sm} B_{\mathcal{L}(nl_1^m)}$.

Necessity. By Theorem 1,

$$1 = ||T|| = \max\{|a_{j_1\cdots j_n}| : 1 \le j_1, \dots, j_n \le m\}.$$

Hence there are $j'_1, \ldots, j'_n \in \{1, \ldots, m\}$ such that $1 = \left|a_{j'_1 \cdots j'_n}\right|$. Claim: $|a_{j_1\cdots j_n}| < 1$ for all $j_1,\ldots,j_n \in \{1,\ldots,m\}$ with $(j_1,\ldots,j_n) \neq j_n$ $\left(j_{1}^{\prime},\ldots,j_{n}^{\prime}\right)$.

If not, then there are $i'_1, \ldots, i'_n \in \{1, \ldots, m\}$ such that $(i'_1, \ldots, i'_n) \neq i'_n$ (j'_1,\ldots,j'_n) and $1 = |a_{i'_1\cdots i'_n}|$. Let $f_1, f_2 \in \mathcal{L}(nl_1^m)^*$ be defined by $f_1 = \operatorname{sign}\left(a_{j_1'\cdots j_n'}\right)\left(e_{j_1'}\otimes \ldots \otimes e_{j_n'}\right), \quad f_2 = \operatorname{sign}\left(a_{i_1'\cdots i_n'}\right)\left(e_{i_1'}\otimes \ldots \otimes e_{i_n'}\right).$ (4)Then

$$f_1 \neq f_2, \ f_j(T) = 1 = ||f_j|| \ (j = 1, 2).$$

This is a contradiction. Therefore, we have proved the claim.

Theorem 5. Let $n \geq 2$ and let $T \in \mathcal{L}(nl_1)$ be defined by (1) such that ||T|| = 1. Suppose that $\left|a_{j'_1\cdots j'_n}\right| = 1 = \left|a_{i'_1\cdots i'_n}\right|$ for some $(j'_1,\ldots,j'_n) \neq 0$ $(i'_1,\ldots,i'_n) \in \mathbb{N}^n$. Then $T \notin \operatorname{sm} B_{\mathcal{L}(nl_1)}$.

Proof. Let $f_1, f_2 \in \mathcal{L}(nl_1)^*$ be defined by (4). Then,

$$f_1 \neq f_2, \ f_j(T) = 1 = ||f_j|| \ (j = 1, 2).$$

Therefore, $T \notin \operatorname{sm} B_{\mathcal{L}(nl_1)}$

Г		
т		
L		

3. The unit ball of $\mathcal{L}_s({}^nl_1)$

In this section we characterize ext $B_{\mathcal{L}_s(nl_1)}$, exp $B_{\mathcal{L}_s(nl_1)}$ and sm $B_{\mathcal{L}_s(nl_1^m)}$ for $n, m \geq 2$. The first theorem characterizes all extreme points of the unit ball of $\mathcal{L}_s(nl_1)$.

Theorem 6. Let $T \in \mathcal{L}_s({}^nl_1)$ be defined by (1) and let ||T|| = 1. Then $T \in \operatorname{ext} B_{\mathcal{L}_s({}^nl_1)}$ if and only if $|a_{j_1\cdots j_n}| = 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$.

Proof. By Theorem 1, $|a_{j_1\cdots j_n}| \leq 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$.

Sufficiency. Assume the contrary. There are $j'_1, \ldots, j'_n \in \mathbb{N}$ such that $\left|a_{j'_1 \cdots j'_n}\right| < 1$. Let $S_{j'_1 \cdots j'_n} \in \mathcal{L}(^n l_1)$ be defined by (2). Choose $\epsilon_0 > 0$ such that $\left|a_{j'_1 \cdots j'_n}, \right| + \epsilon_0 < 1$. Let $L^{\pm} \in \mathcal{L}_s(^n l_1)$ be defined by

$$L^{\pm} = T \pm \frac{\epsilon_0}{n!} \sum_{\sigma} S_{j'_{\sigma(1)} \cdots j'_{\sigma(n)}},$$

where σ is a permutation on $\{1, \ldots, n\}$. By Theorem 1 we have $||L^{\pm}|| = 1$. Since $T = \frac{1}{2}(L^{+} + L^{-})$, T is not extreme. This is a contradiction. Hence, $|a_{j_1\cdots j_n}| = 1$ for all $j_1, \ldots, j_n \in \mathbb{N}$.

The proof of necessity is identical to the proof of necessity of Theorem 2. $\hfill \Box$

We show that every extreme point of the unit ball of $\mathcal{L}_s(nl_1)$ is exposed.

Theorem 7. The equality $\exp B_{\mathcal{L}_s(nl_1)} = \exp B_{\mathcal{L}_s(nl_1)}$ is true. *Proof.* It is identical to that for Theorem 3.

The following theorem shows a relation between the spaces $\mathcal{L}(^{n}l_{1})$ and $\mathcal{L}_{s}(^{n}l_{1})$.

Theorem 8. Let $n, m \ge 2$. Then:

(a) ext $B_{\mathcal{L}_s(nl_1)} = \text{ext } B_{\mathcal{L}(nl_1)} \cap \mathcal{L}_s(nl_1);$

(b) $\exp B_{\mathcal{L}_s(nl_1)} = \exp B_{\mathcal{L}(nl_1)} \cap \mathcal{L}_s(nl_1).$

Proof. The statement (a) follows from Theorems 2 and 6, and (b) follows from Theorems 3 and 7 in view of (a). \Box

We characterize all smooth points of the unit ball of $\mathcal{L}_s(nl_1^m)$ for $n, m \geq 2$.

Theorem 9. For $n, m \geq 2$, let $T \in \mathcal{L}_s({}^nl_1^m)$ be the same as in Theorem 4. Then $T \in \operatorname{sm} B_{\mathcal{L}_s({}^nl_1^m)}$ if and only if there are $j'_1, \ldots, j'_n \in \{1, \ldots, m\}$ such that

$$1 = \left| a_{j'_{\sigma(1)} \cdots j'_{\sigma(n)}} \right| > \left| a_{j_1 \cdots j_n} \right|$$

for all $j_1, \ldots, j_n \in \{1, \ldots, m\}$ with $(j_1, \ldots, j_n) \neq \left(j'_{\sigma(1)}, \ldots, j'_{\sigma(n)}\right)$, where σ is a permutation on $\{1, \ldots, n\}$.

Proof. Sufficiency. Let $f \in \mathcal{L}_s({}^nl_1^m)^*$ be such that f(T) = 1 = ||f||. We claim that

$$f = \operatorname{sign}\left(a_{j_1'\cdots j_n'}\right) \frac{1}{n!} \sum_{\sigma} \left(e_{j_{\sigma(1)}'} \otimes \ldots \otimes e_{j_{\sigma(n)}'}\right).$$

Indeed, let $j_1, \ldots, j_n \in \{1, \ldots, m\}$ be such that $(j_1, \ldots, j_n) \neq \left(j'_{\sigma(1)}, \ldots, j'_{\sigma(n)}\right)$ for every permutation σ . Let $S_{j_1 \cdots j_n} \in \mathcal{L}({}^n l_1^m)$ be defined by (3). Choose $\epsilon_0 > 0$ such that $|a_{j_1 \cdots j_n}| + \epsilon_0 < 1$. Let $L^{\pm} \in \mathcal{L}_s({}^n l_1)$ be defined by

$$L^{\pm} = T \pm \frac{\epsilon_0}{n!} \sum_{\sigma} S_{j_{\sigma(1)} \cdots j_{\sigma(n)}}$$

By Theorem 1, we have $||L^{\pm}|| = 1$. Thus

$$1 \geq \max\{|f(L^{\pm})|\} = \max\left\{\left|f(T) \pm \frac{\epsilon_0}{n!}f\left(\sum_{\sigma} S_{j_{\sigma(1)}\cdots j_{\sigma(n)}}\right)\right|\right\}$$
$$= |f(T)| + \frac{\epsilon_0}{n!}\left|f\left(\sum_{\sigma} S_{j_{\sigma(1)}\cdots j_{\sigma(n)}}\right)\right| = 1 + \frac{\epsilon_0}{n!}\left|f\left(\sum_{\sigma} S_{j_{\sigma(1)}\cdots j_{\sigma(n)}}\right)\right|,$$

which implies that $f\left(\sum_{\sigma} S_{j_{\sigma(1)}\cdots j_{\sigma(n)}}\right) = 0$ for all $j_1,\ldots,j_n \in \{1,\ldots,m\}$ such that $(j_1,\ldots,j_n) \neq \left(j'_{\sigma(1)},\ldots,j'_{\sigma(n)}\right)$ for every permutation σ . Hence,

$$\left|a_{j_1^{\prime}\cdots j_n^{\prime}}\right| = 1 = f(T) = a_{j_1^{\prime}\cdots j_n^{\prime}} \frac{1}{n!} f\left(\sum_{\sigma} S_{j_{\sigma(1)}^{\prime}\cdots j_{\sigma(n)}^{\prime}}\right),$$

which shows that $\frac{1}{n!}f\left(\sum_{\sigma} S_{j'_{\sigma(1)}\cdots j'_{\sigma(n)}}\right) = \operatorname{sign}\left(a_{j'_{1}\cdots j'_{n}}\right)$. Thus, for $S \in \mathcal{L}({}^{n}l_{1}^{m}),$

$$\begin{split} f(S) &= \sum_{1 \le i_1, \dots, i_n \le m} S(e_{i_1}, \dots, e_{i_n}) \frac{1}{n!} f\left(\sum_{\sigma} S_{j_{\sigma(1)} \cdots j_{\sigma(n)}}\right) \\ &= S\left(e_{j'_1}, \dots, e_{j'_n}\right) \frac{1}{n!} f\left(\sum_{\sigma} S_{j'_{\sigma(1)} \cdots j'_{\sigma(n)}}\right) = S\left(e_{j'_1}, \dots, e_{j'_n}\right) \operatorname{sign}\left(a_{j'_1 \cdots j'_n}\right) \\ &= \operatorname{sign}\left(a_{j'_1 \cdots j'_n}\right) \frac{1}{n!} \sum_{\sigma} \left(e_{j'_{\sigma(1)}} \otimes \dots \otimes e_{j'_{\sigma(n)}}\right) (S). \end{split}$$

Therefore, f is uniquely determined and $T \in \operatorname{sm} B_{\mathcal{L}(n l_1^m)}$. Necessary. By Theorem 1,

$$1 = ||T|| = \max\{|a_{j_1\cdots j_n}| : 1 \le j_1, \dots, j_n \le m\}.$$

Hence, there are $j'_1, \ldots, j'_n \in \{1, \ldots, m\}$ such that $1 = \left|a_{j'_1 \cdots j'_n}\right|$. Note that since T is symmetric, $1 = \left|a_{j'_{\sigma(1)} \cdots j'_{\sigma(n)}}\right|$ for every permutation σ on $\{1, \ldots, n\}$. Claim: $|a_{j_1 \cdots j_n}| < 1$ for all $j_1, \ldots, j_n \in \{1, \ldots, m\}$ such that $(j_1, \ldots, j_n) \neq (j'_{\sigma(1)}, \ldots, j'_{\sigma(n)})$ for every permutation σ on $\{1, \ldots, n\}$.

If not, then there are $i'_1, \ldots, i'_n \in \{1, \ldots, m\}$ such that $1 = \left|a_{i'_1 \cdots i'_n}\right|$ and $(i'_1, \ldots, i'_n) \neq \left(j'_{\sigma(1)}, \ldots, j'_{\sigma(n)}\right)$ for every permutation σ on $\{1, \ldots, n\}$. Let $f_1, f_2 \in \mathcal{L}_s({}^n l_1^m)^*$ be defined by

$$f_{1} = \operatorname{sign}\left(a_{j'\cdots j'}\right) \frac{1}{n!} \sum_{\sigma} \left(e_{j'_{\sigma(1)}} \otimes \cdots \otimes e_{j'_{\sigma(n)}}\right),$$

$$f_{2} = \operatorname{sign}\left(a_{i'_{1}\cdots i'_{n}}\right) \frac{1}{n!} \sum_{\sigma} \left(e_{i'_{\sigma(1)}} \otimes \cdots \otimes e_{i'_{\sigma(n)}}\right).$$
(5)

Then,

$$f_1 \neq f_2, \ f_j(T) = 1 = ||f_j|| \ (j = 1, 2).$$

This is a contradiction. Therefore, we have proved the claim.

Theorem 10. For $n \ge 2$, let $T \in \mathcal{L}_s({}^nl_1)$ be the same as in Theorem 5. Suppose that $\left|a_{j'_1\cdots j'_n}\right| = 1 = \left|a_{i'_1\cdots i'_n}\right|$ for some $\left(j'_1,\ldots,j'_n\right)$, $\left(i'_1,\ldots,i'_n\right)$ satisfying $\left(i'_1,\ldots,i'_n\right) \notin \left\{\left(j'_{\sigma(1)},\ldots,j'_{\sigma(n)}\right) : \sigma \text{ is a permutation on } \{1,\ldots,n\}\right\}$. Then $T \notin \operatorname{sm} B_{\mathcal{L}_s(nl_1)}$.

Proof. Let $f_1, f_2 \in \mathcal{L}_s(^n l_1)^*$ be defined by (5). Then

$$f_1 \neq f_2, \ f_j(T) = 1 = ||f_j|| \ (j = 1, 2).$$

Therefore, $T \notin \operatorname{sm} B_{\mathcal{L}_s(nl_1)}$.

Acknowledgements. The author is thankful to the referees for careful reading and for suggestions that led to a better presented paper.

References

- W. V. Cavalcante, D. M. Pellegrino, and E. V. Teixeira, Geometry of multilinear forms, Commun. Contemp. Math. 22 (2) (2020), 1950011, 26 pp.
- Y. S. Choi, H. Ki, and S. G. Kim, Extreme polynomials and multilinear forms on l₁, J. Math. Anal. Appl. 228 (1998), 467–482.
- [3] Y. S. Choi and S. G. Kim, *Extreme polynomials on c*₀, Indian J. Pure Appl. Math. 29 (1998), 983–989.
- [4] Y. S. Choi and S. G. Kim, The unit ball of P(²l₂²), Arch. Math. (Basel) 71 (1998), 472–480.
- [5] Y. S. Choi and S. G. Kim, Smooth points of the unit ball of the space P(²l₁), Results Math. 36 (1999), 26–33.

SUNG GUEN KIM

- [6] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
- [7] B. C. Grecu, Geometry of 2-homogeneous polynomials on l_p spaces, 1 , J. Math. Anal. Appl.**273**(2002), 262–282.
- [8] S. G. Kim, Exposed 2-homogeneous polynomials on P(²l²_p) (1 ≤ p ≤ ∞), Math. Proc.
 R. Ir. Acad. 107 (2007), 123–129.
- [9] S. G. Kim, The unit ball of $\mathcal{L}_s({}^2l_{\infty}^2)$, Extracta Math. 24 (2009), 17–29.
- [10] S. G. Kim, The unit ball of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, Math. Proc. R. Ir. Acad. **111** (2) (2011), 79–94.
- [11] S. G. Kim, Extreme bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J. 53 (2013), 625–638.
- [12] S. G. Kim, Smooth polynomials of $\mathcal{P}(^{2}d_{*}(1,w)^{2})$, Math. Proc. R. Ir. Acad. **113A** (1) (2013), 45–58.
- [13] S. G. Kim, The unit ball of $\mathcal{L}_s(^2d_*(1,w)^2)$, Kyungpook Math. J. **53** (2013), 295–306.
- [14] S. G. Kim, Exposed symmetric bilinear forms of $\mathcal{L}_s(^2d_*(1,w)^2)$ Kyungpook Math. J. 54 (2014), 341–347.
- [15] S. G. Kim, Exposed bilinear forms of $\mathcal{L}(^{2}d_{*}(1,w)^{2})$, Kyungpook Math. J. 55 (2015), 119–126.
- [16] S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math. 13 (2016), 2827–2839.
- [17] S. G. Kim, Extreme 2-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar. 54 (2017), 362–393.
- [18] S. G. Kim, The geometry of $\mathcal{L}_s({}^{3}l_{\infty}^2)$, Commun. Korean Math. Soc. **32** (2017), 991–997.
- [19] S. G. Kim, The unit ball of $\mathcal{L}_{s}(^{2}l_{\infty}^{3})$, Comment. Math. (Prace Mat.) 57 (2017), 1–7.
- [20] S. G. Kim, Extreme bilinear forms on \mathbb{R}^n with the supremum norm, Period. Math. Hungar. **77** (2018), 274–290.
- [21] S. G. Kim, Exposed polynomials of $\mathcal{P}({}^{2}\mathbb{R}^{2}_{h(\frac{1}{2})})$, Extracta Math. **33** (2) (2018), 127-143.
- [22] S. G. Kim, The unit ball of the space of bilinear forms on ℝ³ with the supremum norm, Commun. Korean Math. Soc. 34 (2019), 487–494.
- [23] S. G. Kim, Extreme and exposed points of $\mathcal{L}({}^{n}l_{\infty}^{2})$ and $\mathcal{L}_{s}({}^{n}l_{\infty}^{2})$, Extracta Math. 34 (2)(2020), 127–135.
- [24] S. G. Kim, Extreme points of the space $\mathcal{L}(^{2}l_{\infty})$, Commun. Korean Math. Soc. **35** (3) (2020), 799–807.
- [25] S. G. Kim, Smooth points of $\mathcal{L}_{s}(^{n}l_{\infty}^{2})$, Bull. Korean Math. Soc. 57 (2) (2020), 443–447.
- [26] S. G. Kim and S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc. 131 (2003), 449–453.

Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea

E-mail address: sgk317@knu.ac.kr