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Geometry of multilinear forms on [

SuNG GUEN KM

ABSTRACT. We characterize extreme, exposed and smooth points in the
Banach space £("E) of continuous n-linear forms on E, and in its sub-
space Ls(™E) of symmetric n-linear forms on E when F = Iy and F = IT"
for n,m € N with n,m > 2.

1. Introduction

Throughout the paper, we let n,m € N;n,m > 2. We write Bg for the
closed unit ball of a real Banach space E, and the dual space of E is denoted
by E*. An element x € Bp is called an extreme point of Bg if y, 2 € Bg with
T = %(y + z) implies x = y = 2. An element x € Bp is called an ezposed
point of By if there is f € E* such that f(z) =1 = || f] and f(y) < 1 for
every y € Bg \ {z}. It is easy to see that every exposed point of Bg is an
extreme point. An element x € Bg is called a smooth point of Bg if there
is a unique f € E* so that f(z) =1 = ||f||. We denote by ext Bg,exp Bg
and sm B the set of extreme points, the set of exposed points and the set
of smooth points of Bg, respectively. A mapping P : F — R is a continuous
n-homogeneous polynomial if there exists a continuous n-linear form T on
the product E X --- x E such that P(x) = T(x,...,z) for every z € E.
We denote by P("E) the Banach space of all continuous n-homogeneous
polynomials from E into R endowed with the norm || P|| = sup, = |P(z)|.
We denote by L("FE) the Banach space of all continuous n-linear forms on £
endowed with the norm ||T'[| = sup,, =1 |T(21, . .., z,)| and Ls("E) denotes
the closed subspace of all continuous symmetric n-linear forms on E. Notice
that L£("E) is identified with the dual of n-fold projective tensor product

®mnE. With this identification, the action of a continuous n-linear form 7'

as a bounded linear functional on ®mnE is given by
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<§:x(1>7i®... POKS > ZT< Wi <>,z’)_
=1

Notice also that Ls("E) is identified with the dual of n-fold symmetric pro-
jective tensor product @) E. With this identification, the action of a

8,m,n
continuous symmetric n-linear form 7T as a bounded linear functional on

®Sm7nE is given by

(S H(T s ono) 1) = S0 ao),

where o goes over all permutations on {1,...,n}. For more details about the
theory of polynomials and multilinear mappings on Banach spaces, we refer
to [6].

Let us say a little bit about the history of classification problems of the
extreme points, the exposed points, and the smooth points of the unit ball
of continuous n-homogeneous polynomials on a Banach space.

We let Ij = R" for every 1 < p < oo equipped with the [)-norm. Choi
et al. ([2], [3], [4]) classified ext Bp(zz) and sm Bpzpz) for p = 1,2. Choi
and Kim [5] classified sm Bp(2;,). Grecu [7] classified the sets ext Bp2pz) for
l<p<2o0r2<p< oo Kim et al. [26] showed that if E is a sepa-
rable real Hilbert space with dim(E) > 2, then, ext Bp2p) = exp Bpp).
Kim [8] classified exp Bpzz) for 1 < p < co. Kim ([10], [12]) characterized
ext Bp(2q, (1)2) and sm Bp2q, (1,4)2), Where di(1,w)* = R? with an octag-

,% for 0 < w < 1. Kim [16] clas-

sified exp Bp (24, (1,0)2) and showed that exp Bp 24, (1,w)2) 7 €xt Bp(24, (1,w)?)-
Recently, Kim ([17], [21]) classified ext Bppg2 | ) and exp Bp(apz |, where
h(3) h(3%)

onal norm ||(z,y)||w = max{|x|, [y

Ri( 1) = = R? with a hexagonal norm ||(z, y)”h(%) = max {|y[, || + %|y\}

Parallel to the classification problems of ext Bpnpgy, exp Bpng), and
sm Bp(n ) it seems to be very natural to study the, classification problems
of extreme and exposed points of the unit ball of continuous (symmetric)
multilinear forms on a Banach space.

Kim [9] classified ext By (252 y,exp B (22 ) and sm By (252 ). It was shown
that ext By (212 ) = exp B, (zlz . Kim ([11], [ 3], [14], [15]) classified ext Bx
and exp By, where X = L£(3d.(1,w)?) or L5(3d«(1,w)?). Kim ([18], [19])
also classified ext By (253 ), ext B, (3;2.) and sm By (32 ). It was shown that
ext By (253 ) = exp B, (23.) and ext By (32 y = exp By (s;2 ). Kim [20] char-
acterized  ext B ) and  ext Bp (2 ), and  showed  that
exp Br2pn )y = ext Bpegn ) and exp By 2n ) = ext By (2n ). Kim [22] char-
acterized ext B2z ) and exp B3 ). Kim [25] characterized sm By (nj2 ).
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Kim [24] studied ext B2 y. Cavalcante et al. [1] characterized ext By njm).
Recently, Kim [23] classified ext By nj2 ) and ext By (nj2 ). It was shown that
lext Bz )| = 2(2") and |ext Br niz)| = 27*1 and that exp Brmiz )y =
ext Bﬁ("lgo) and exp Bﬁs("lgo) = ext BLS(”ZEO)-

In this paper, we characterize the extreme and exposed points of the unit
balls of £(™l1) and L4(™l1). We also characterize the smooth points of the
unit balls of £(™I") and Lg("I}") for m > 2.

2. The unit ball of £("l;)

In this section we characterize ext Br(ny,), exp Brny,) and sm By nym) for
n,m > 2. First, we present an explicit formulae for the norm of T' € £("y).

Theorem 1. Let T € L("y) with
1 n 1 n
T ((x§ )) s (x§ ))) = Z ajl---jnwE'l) ) xgn) (1)
j17--~7jn€N
for some aj, ;, € R. Then ||T|| = sup {|aj,..j,| : j1,--.,Jn € N}.

Proof. Note that, for ji,...,j, € N, we have |a;, ;.| = |T(ej;,...,€j,)| <
|T||. Hence,
1T = sup{laj,..j,| : g1, -+ dn € N},
On the other hand we get

T = sup{’T ((:):5”) fees (xgn))ﬂ : H<x§k))H1 =1, k= 1,...,n}

< sup Z @i | () ‘xgz)‘ : H(azg»k))lel, E=1,...,n

Ji
j17"'7jne
< sup{|aj,-jo | : J1,- -+, Jn € N}

— )$§_1>‘...Z ‘mgm
JEN JjeN

= sup{|aj,..j,| : j1,---,Jn € N}.

x

: H(mgk))Hl =1, k=1,...,n

Now we characterize all extreme points of the unit ball of £("l;).

Theorem 2. Let T' € L(™1) be defined by (1) and let ||T'|| = 1. Then
T € ext Bpny,y if and only if |aj,...;,| = 1 for all jy,...,jn € N.

Proof. By Theorem 1, |aj,...;,| <1 for all jq,...,j, € N.
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Necessity. Assume the contrary. Then there are ji, ey j;l € N such that
< 1. Let Sj/._.j/ € L(™1) be defined by
1 n

Sy ((#0) 0 (507)) = 2D, o)

Choose €y > 0 such that ’aj/mj/ ) + e < 1andset R =T =+ EOSj',_,j/ . By
1 n 1 n
Theorem 1, we have ||[R¥| = 1. Since T = (Rt + R™), T is not extreme.
This is a contradiction. Hence, |aj,...j,| =1 for all ji,...,j, € N.
Sufficiency. Suppose that T = %(Tl + T3) for some T; € L("l;) with
| T;]] = 1. Write

T <(x§1)> e, (:pE”))) _ Z bjl...jna;ﬁ) N x§:)7

Qa ./ ./
‘ 1 In

J1,--Jn€N
T2 ((x;l)) yeaey (.%'gn)>> = Z le.,.jnxg-i) . 1‘;:)
J1yejn€N
for some bji-jns Cj1jn € R with ‘bjl"'jn’ <1, ‘le"'jn| <1 for all ji,...,jn €
N. Then, Ajy ey = %(bjl'”jn + le"'jn) for all ji,...,jn, € N. Since \ajl...jn] =
1 for all ji,...,jn € N, aj,...5, = bj,...;, = ¢j,...;, for all ji,...,j, € N.
Therefore, T' =T} for j = 1,2. Hence T' € ext Bpny,). O

The following theorem shows that every extreme point of the unit ball of
L("11) is exposed.

Theorem 3. The equality exp Brn;,) = ext By, holds.

Proof. Let T € ext By(ny,). By Theorem 2, the equality (1) holds for some
Qjy .., € R with |aj1...jn| =1 for all j1,...,5n € N. Let ¢ : N — N be a
bijection. Define f € £("{1)* by

1 .
f(9) = Z m51gn(aj1---jn)5(€ju Ces)
(J15-5dn)ENT
Then, by Theorem 2,

1 1
M= gimlenl= Y ey =L

(jlv"-7j’n)eNn (jl??]’ﬂ)ENn
It follows that
1 = f(T) <l
1 n
= Sup Z W|S(€j1a--'aejn)|:se‘c( ll)a”‘s”:l
(j17.._,jn)ENn

IN

71 =1
2 e = b

(jlvn'»jn)eNn
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Hence || f]| = 1.

Claim: f(S) <1 for every S € Byn,) with S # T.

It is enough to show that if f(S) = 1 for some S € By, then S = T.
We have

1
Z mmhmjn\ =1=f(9)

(jla---Jﬁ)EN"
1
) ( Z) 20017 58515 ) S (€ -+ €4,),
jlu"wjn ENn

which implies that

S(Ejl, SN ,ejn) = Qjy.-jp, = T(ejl, e ,ejn)
for all ji,...,jn € N. By the n-linearity, S = T. Therefore, f exposes T.
Hence T' € exp B (nyy)- O

We characterize all smooth points of the unit ball of £(™I]") for n,m > 2.
Theorem 4. Let n,m > 2, and let T € L(™T") with |T|| =1 and
) ™YY _ @, Lm
T ((:L'j ) e <$j )) = Z Ajyjn @, ]: .
1<j1,,jn<m

Then T € sm By if and only if there are Giseeerdm € {1,...,m} such
that

1

1 = |(a . ./
J1In

forall ji,...,Jn €4{1,...,m} with (j1,...,Jn) # (j;,...,j;).
Proof. Sufficiency. Let f € L(™{")* be such that f(T) =1 = ||f]|. As
L(MT)* = @nnll?, there are k € N and 7. f(W4 € 1™ such that
k

i=1

We claim that f = sign (a s “jl> (e . ) Indeed, let j1,...,7n €

31

{1,...,m} be such that (ji,...,Jjn) # (]1, . ,jn> and let Sj,...;, € L(MT")

be defined by
S () () ) 0

Choose €y > 0 such that |aj,..;,| + €0 < 1 and set R* = T + €S;,...j,. By
Theorem 1 we have |[RT| = 1. Thus,

1 > max {|f(R")|} = max {|f(T) £ eo f(Sj-.)|}
= |[f(D)+eo|f(Sjjp)| =1+ €0 | f(Sjj,)]
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which implies that f(Sj,..;,) = 0 for all ji,...,jn, € {1,...,m} such that
(jla" : 7.771,) 7& (]1’ 7]72) - Hence

a. .
oy

— 1= () =ay o f (S5

J10n

which shows that f <Sj/mj,) — sign (aj/“ . ) . Thus, for S € L"),
1 n

/
17 In

f(S) = > S(ensorei)f(Sis)

1<in,esin<m
= S <ej1, e ,ej;) f (Sj{mjil) =S (eji’ e ,ej;> sign <aj1mj;1>
= sign <aj1mj:1> (ejg ®...0 ej;l) (9).

Therefore, f is uniquely determined and 7' € sm B nm).
Necessity. By Theorem 1,

1 =||T|| = max {|aj,..j,| : 1 < J1,...,Jn < m}.

Hence there are jy,...,j, € {1,...,m} such that 1 = ‘aj/m]
1 n

Claim: |aj,..j,| < 1 for all ji,...,j4n € {1,...,m} with (j1,...,jn) #
(41 0dn)

If not, then there are 2/1’71; € {1,...,m} such that <z/1,,z/n) #*
(j;, .. ,j;> and 1 = ‘al . Let f1, fo € L(*[7")* be defined by

n

f1 =sign (aji“'jﬁl) (eji ®...0 ej;) , fo =sign (ai’r.d;) (eifl ®...0 ei;> .
(4)

Then
fr # f2, fi(T)=1=|f;l (1 =1,2).
This is a contradiction. Therefore, we have proved the claim. OJ
Theorem 5. Let n > 2 and let T € L("l1) be defined by (1) such that
|IT|| = 1. Suppose that ‘aji"'jil =1= ‘ai/1~~-i/n’ for some <j1,...,jn) +
(ill, i ) € N Then T ¢ sm B ny,).

Proof. Let f1, fo € L("1)* be defined by (4). Then,

fr# for [T =1=f;] (G =1,2).
Therefore, T ¢ sm By (ny,). O
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3. The unit ball of £,("l;)

In this section we characterize ext B, (ny,),exp B, (ny;) and sm B (nym)
for n,m > 2. The first theorem characterizes all extreme points of the unit
ball of Ls("1).

Theorem 6. Let T € L("l1) be defined by (1) and let |T'|| = 1. Then
T € ext Br, (n,) if and only if |aj,...j,| = 1 for all ji,...,jn € N

Proof. By Theorem 1, |aj,...j,| <1 for all ji,...,j, € N.

Sufficiency. Assume the contrary. There are j;, . ,j;l € N such that
‘a ./

| < 1. Let Sjimj’ € L(™1) be defined by (2). Choose ¢y > 0 such that
‘aj_”j, , ’ +eo < 1. Let L* € £4("11) be defined by

J1
+ €0
*=17+2%s, .,
n! = )

where o is a permutation on {1,...,n}. By Theorem 1 we have |L*| = 1.

Since T = %(L‘*‘ + L7), T is not extreme. This is a contradiction. Hence,
laj,...;,| =1 for all ji,...,j, € N.

The proof of necessity is identical to the proof of necessity of Theorem 2.

O

We show that every extreme point of the unit ball of L4("1) is exposed.
Theorem 7. The equality exp By (ny,) = ext Bz (ny,) is true.
Proof. 1t is identical to that for Theorem 3. g

The following theorem shows a relation between the spaces £("l;) and
Es(nll)'
Theorem 8. Let n,m > 2. Then:
(a) ext Bﬁs(nll) = ext Bﬁ(nll) N Ls(");
(b) exp Br,(ni,) = exp Brnyyy N Ls (™).
Proof. The statement (a) follows from Theorems 2 and 6, and (b) follows
from Theorems 3 and 7 in view of (a). O

We characterize all smooth points of the unit ball of £4(™}") for n,m > 2.

Theorem 9. Forn,m > 2, letT € L;("I]") be the same as in Theorem 4.
Then T € sm Bg (nymy if and only if there are j;, e ,j,/1 € {1,...,m} such

that
1=\|a.-

Ty | = 1]

forall ji,...,5n € {1,...,m} with (j1,...,jn) # (j;(l), . ,j;_(n)) , where o
is a permutation on {1,...,n}.
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Proof. Sufficiency. Let f € Ls(™7")* be such that f(T) =1 = | f]. We

claim that
. 1
f = s1gn (G];];) E Z <€j;(1) ®X...x ej;(n)> .
g
Indeed, let j1,...,jn€{1,...,m} besuch that (ji,...,jn)# (j;(1)7 . ,j;(n)>

for every permutation o. Let Sj..;, € L("I") be defined by (3). Choose
€0 > 0 such that |aj,..;,| + €0 < 1. Let L* € L4("]1) be defined by

€0
- ! Z Sja(l)"'ﬂ'e(n)'
g

By Theorem 1, we have ||L*|| = 1. Thus

1 > maX{’f(Li)’} = max { ‘f(T) + %f (Z Sjo(l)"'ja(n)) ‘}
f (Zsﬂam Jo(n>> = f (Z Sja(l)"'jam)) )

which implies that f( o Siaqy- jo(n) = 0 for all j1,...,7, € {1,...,m}

= @)+

such that (ji,...,Jjn) (]; Yo ,ja(n > for every permutation o. Hence,
=1=f(T)= ! S
’aji ]n - - f( )_ a]i];ﬁf Z ];(U];(n) ’
which shows that ,f (Z ) ) = sign (a g ) Thus, for S €
cr(l) “Jo(n) J1In
L),

f(S) = Z S(e’hv eln <Z Sj o(1) " Jo(n) )

1<i1,...yin<m

1 .
=S (eﬁ’ o ,ej;) mf (Z Sj;u)“'j;(n)) =9 (eji’ e ,ej;) sign (aj1~~~j;>
(e
! S
= sign ( i Jn) } Z e o ®...0 € (9).
g

Therefore, f is uniquely determined and 7" € sm B nm).
Necessary. By Theorem 1,

1 = ||T) = max{|aj,..j,| : 1 < J1,..., Jn <M}
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Hence, there are jll, . ,j; € {1,...,m} such that 1 = ’aj/.__j/ . Note that
1

n

since T is symmetric, 1 = |a ./ ;| for every permutation o on {1,...,n}.

Jo1)y o (n)
Claim: |aj,...;,| < 1forall ji,...,jn € {1,...,m} such that (ji,...,jn) #

(j;—u)’ . ,j;(n) for every permutation o on {1,...,n}.

If not, then there are 11177221 € {1,...,m} such that 1 = ‘aJ s | and
£

n

(i), ..., 0,) # (j;(l), e ,j;(n)) for every permutation o on {1,...,n}. Let
f1, fa € Ls(MT")* be defined by

' 1

1 (5)
fo = sign (az"1~~-i'n> ol ZU: (ei;m ®...® 6i;<n)> .
Then,
fo# fo, [i(T) =1=f] (G =1,2).
This is a contradiction. Therefore, we have proved the claim. O

Theorem 10. Forn > 2, let T € L("l1) be the same as in Theorem 5.
=1= for some (ji,...,j;), (i;,...,i/)sat—

isfying (zll, i) ¢ j;(l), - ,j;(n) : 0 is a permutation on{l,...,n}
Then T ¢ sm By (n,)-

Proof. Let fi1, fa € Ls("11)* be defined by (5). Then

fu# fa, [i(T) =1=|f5ll (G =1,2).
Therefore, T' ¢ sm By (). O

a.r ./
1q

17""n

Suppose that ‘aJ s
Jid

n
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