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Geometry of multilinear forms on l1

Sung Guen Kim

Abstract. We characterize extreme, exposed and smooth points in the
Banach space L(nE) of continuous n-linear forms on E, and in its sub-
space Ls(nE) of symmetric n-linear forms on E when E = l1 and E = lm1
for n,m ∈ N with n,m ≥ 2.

1. Introduction

Throughout the paper, we let n,m ∈ N, n,m ≥ 2. We write BE for the
closed unit ball of a real Banach space E, and the dual space of E is denoted
by E∗. An element x ∈ BE is called an extreme point of BE if y, z ∈ BE with
x = 1

2(y + z) implies x = y = z. An element x ∈ BE is called an exposed
point of BE if there is f ∈ E∗ such that f(x) = 1 = ‖f‖ and f(y) < 1 for
every y ∈ BE \ {x}. It is easy to see that every exposed point of BE is an
extreme point. An element x ∈ BE is called a smooth point of BE if there
is a unique f ∈ E∗ so that f(x) = 1 = ‖f‖. We denote by extBE , expBE
and smBE the set of extreme points, the set of exposed points and the set
of smooth points of BE , respectively. A mapping P : E → R is a continuous
n-homogeneous polynomial if there exists a continuous n-linear form T on
the product E × · · · × E such that P (x) = T (x, . . . , x) for every x ∈ E.
We denote by P(nE) the Banach space of all continuous n-homogeneous
polynomials from E into R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|.
We denote by L(nE) the Banach space of all continuous n-linear forms on E
endowed with the norm ‖T‖ = sup‖xk‖=1 |T (x1, . . . , xn)| and Ls(nE) denotes
the closed subspace of all continuous symmetric n-linear forms on E. Notice
that L(nE) is identified with the dual of n-fold projective tensor product⊗̂

π,nE. With this identification, the action of a continuous n-linear form T

as a bounded linear functional on
⊗̂

π,nE is given by
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〈 k∑
i=1

x(1),i ⊗ · · · ⊗ x(n),i, T
〉

=

k∑
i=1

T
(
x(1),i, . . . , x(n),i

)
.

Notice also that Ls(nE) is identified with the dual of n-fold symmetric pro-

jective tensor product
⊗̂

s,π,nE. With this identification, the action of a
continuous symmetric n-linear form T as a bounded linear functional on⊗̂

s,π,nE is given by〈 k∑
i=1

1

n!

(∑
σ

xσ(1),i ⊗ · · · ⊗ xσ(n),i
)
, T
〉

=
k∑
i=1

T
(
x(1),i, . . . , x(n),i

)
,

where σ goes over all permutations on {1, . . . , n}. For more details about the
theory of polynomials and multilinear mappings on Banach spaces, we refer
to [6].

Let us say a little bit about the history of classification problems of the
extreme points, the exposed points, and the smooth points of the unit ball
of continuous n-homogeneous polynomials on a Banach space.

We let lnp = Rn for every 1 ≤ p ≤ ∞ equipped with the lp-norm. Choi
et al. ([2], [3], [4]) classified extBP(2l2p) and smBP(2l2p) for p = 1, 2. Choi

and Kim [5] classified smBP(2l1). Grecu [7] classified the sets extBP(2l2p) for

1 < p < 2 or 2 < p < ∞. Kim et al. [26] showed that if E is a sepa-
rable real Hilbert space with dim(E) ≥ 2, then, extBP(2E) = expBP(2E).
Kim [8] classified expBP(2l2p) for 1 ≤ p ≤ ∞. Kim ([10], [12]) characterized

extBP(2d∗(1,w)2) and smBP(2d∗(1,w)2), where d∗(1, w)2 = R2 with an octag-

onal norm ‖(x, y)‖w = max
{
|x|, |y|, |x|+|y|1+w

}
for 0 < w < 1. Kim [16] clas-

sified expBP(2d∗(1,w)2) and showed that expBP(2d∗(1,w)2) 6= extBP(2d∗(1,w)2).
Recently, Kim ([17], [21]) classified extBP(2R2

h( 12 )
) and expBP(2R2

h( 12 )
), where

R2
h( 1

2
)

= R2 with a hexagonal norm ‖(x, y)‖h( 1
2
) = max

{
|y|, |x|+ 1

2 |y|
}
.

Parallel to the classification problems of extBP(nE), expBP(nE), and
smBP(nE) it seems to be very natural to study the, classification problems
of extreme and exposed points of the unit ball of continuous (symmetric)
multilinear forms on a Banach space.

Kim [9] classified extBLs(2l2∞), expBLs(2l2∞) and smBLs(2l2∞). It was shown
that extBLs(2l2∞) = expBLs(2l2∞). Kim ([11], [13], [14], [15]) classified extBX
and expBX , where X = L(2d∗(1, w)2) or Ls(2d∗(1, w)2). Kim ([18], [19])
also classified extBLs(2l3∞), extBLs(3l2∞) and smBLs(3l2∞). It was shown that
extBLs(2l3∞) = expBLs(2l3∞) and extBLs(3l2∞) = expBLs(3l2∞). Kim [20] char-
acterized extBL(2ln∞) and extBLs(2ln∞), and showed that
expBL(2ln∞) = extBL(2ln∞) and expBLs(2ln∞) = extBLs(2ln∞). Kim [22] char-
acterized extBL(2l3∞) and expBL(2l3∞). Kim [25] characterized smBLs(nl2∞).
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Kim [24] studied extBL(2l∞). Cavalcante et al. [1] characterized extBL(nlm∞).
Recently, Kim [23] classified extBL(nl2∞) and extBLs(nl2∞). It was shown that

| extBL(nl2∞)| = 2(2
n) and | extBLs(nl2∞)| = 2n+1, and that expBL(nl2∞) =

extBL(nl2∞) and expBLs(nl2∞) = extBLs(nl2∞).
In this paper, we characterize the extreme and exposed points of the unit

balls of L(nl1) and Ls(nl1). We also characterize the smooth points of the
unit balls of L(nlm1 ) and Ls(nlm1 ) for m ≥ 2.

2. The unit ball of L(nl1)
In this section we characterize extBL(nl1), expBL(nl1) and smBL(nlm1 ) for

n,m ≥ 2. First, we present an explicit formulae for the norm of T ∈ L(nl1).

Theorem 1. Let T ∈ L(nl1) with

T
((
x
(1)
j

)
, . . . ,

(
x
(n)
j

))
=

∑
j1,...,jn∈N

aj1...jnx
(1)
j1
. . . x

(n)
jn

(1)

for some aj1...jn ∈ R. Then ‖T‖ = sup {|aj1···jn | : j1, . . . , jn ∈ N} .

Proof. Note that, for j1, . . . , jn ∈ N, we have |aj1...jn | = |T (ej1 , . . . , ejn)| ≤
‖T‖. Hence,

‖T‖ ≥ sup{|aj1...jn | : j1, . . . , jn ∈ N}.

On the other hand we get

‖T‖ = sup
{∣∣∣T ((x(1)j ) , . . . ,(x(n)j

))∣∣∣ :
∥∥∥(x(k)j )∥∥∥

1
= 1, k = 1, . . . , n

}
≤ sup

 ∑
j1,...,jn∈N

|aj1···jn |
∣∣∣x(1)j1 ∣∣∣ · · · ∣∣∣x(n)jn

∣∣∣ :
∥∥∥(x(k)j )∥∥∥

1
=1, k = 1, . . . , n


≤ sup{|aj1···jn | : j1, . . . , jn ∈ N}

× sup

∑
j∈N

∣∣∣x(1)j ∣∣∣ · · ·∑
j∈N

∣∣∣x(n)j

∣∣∣ :
∥∥∥(x

(k)
j )
∥∥∥
1

= 1, k = 1, . . . , n


= sup{|aj1···jn | : j1, . . . , jn ∈ N}.

�

Now we characterize all extreme points of the unit ball of L(nl1).

Theorem 2. Let T ∈ L(nl1) be defined by (1) and let ‖T‖ = 1. Then
T ∈ extBL(nl1) if and only if |aj1···jn | = 1 for all j1, . . . , jn ∈ N.

Proof. By Theorem 1, |aj1···jn | ≤ 1 for all j1, . . . , jn ∈ N.
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Necessity. Assume the contrary. Then there are j
′
1, . . . , j

′
n ∈ N such that∣∣∣aj′1···j′n∣∣∣ < 1. Let S

j
′
1···j

′
n
∈ L(nl1) be defined by

S
j
′
1···j

′
n

((
x
(1)
j

)
, . . . ,

(
x
(n)
j

))
= x

(1)

j
′
1

· · ·x(n)
j′n
. (2)

Choose ε0 > 0 such that
∣∣∣aj′1···j′n∣∣∣ + ε0 < 1 and set R± = T ± ε0Sj′1···j′n . By

Theorem 1, we have ‖R±‖ = 1. Since T = 1
2(R+ + R−), T is not extreme.

This is a contradiction. Hence, |aj1···jn | = 1 for all j1, . . . , jn ∈ N.
Sufficiency. Suppose that T = 1

2(T1 + T2) for some Tj ∈ L(nl1) with
‖Tj‖ = 1. Write

T1

((
x
(1)
j

)
, . . . ,

(
x
(n)
j

))
=

∑
j1,...,jn∈N

bj1···jnx
(1)
j1
· · ·x(n)jn

,

T2

((
x
(1)
j

)
, . . . ,

(
x
(n)
j

))
=

∑
j1,...,jn∈N

cj1···jnx
(1)
j1
· · ·x(n)jn

for some bj1···jn , cj1···jn ∈ R with |bj1···jn | ≤ 1, |cj1···jn | ≤ 1 for all j1, . . . , jn ∈
N. Then, aj1···jn = 1

2(bj1···jn + cj1···jn) for all j1, . . . , jn ∈ N. Since |aj1···jn | =
1 for all j1, . . . , jn ∈ N, aj1···jn = bj1···jn = cj1···jn for all j1, . . . , jn ∈ N.
Therefore, T = Tj for j = 1, 2. Hence T ∈ extBL(nl1). �

The following theorem shows that every extreme point of the unit ball of
L(nl1) is exposed.

Theorem 3. The equality expBL(nl1) = extBL(nl1) holds.

Proof. Let T ∈ extBL(nl1). By Theorem 2, the equality (1) holds for some
aj1···jn ∈ R with |aj1···jn | = 1 for all j1, . . . , jn ∈ N. Let φ : Nn → N be a
bijection. Define f ∈ L(nl1)

∗ by

f(S) :=
∑

(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
sign(aj1···jn)S(ej1 , . . . , ejn).

Then, by Theorem 2,

f(T ) =
∑

(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
|aj1···jn | =

∑
(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
= 1.

It follows that

1 = f(T ) ≤ ‖f‖

= sup

 ∑
(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
|S (ej1 , . . . , ejn)| : S ∈ L(nl1), ‖S‖ = 1


≤

∑
(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
= 1.
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Hence ‖f‖ = 1.
Claim: f(S) < 1 for every S ∈ BL(nl1) with S 6= T.
It is enough to show that if f(S) = 1 for some S ∈ BL(nl1), then S = T.

We have ∑
(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
|aj1···jn | = 1 = f(S)

=
∑

(j1,...,jn)∈Nn

1

2φ(j1,...,jn)
sign(aj1···jn)S(ej1 , . . . , ejn),

which implies that

S(ej1 , . . . , ejn) = aj1···jn = T (ej1 , . . . , ejn)

for all j1, . . . , jn ∈ N. By the n-linearity, S = T. Therefore, f exposes T.
Hence T ∈ expBL(nl1). �

We characterize all smooth points of the unit ball of L(nlm1 ) for n,m ≥ 2.

Theorem 4. Let n,m ≥ 2, and let T ∈ L(nlm1 ) with ‖T‖ = 1 and

T
((
x
(1)
j

)
, . . . ,

(
x
(n)
j

))
=

∑
1≤j1,...,jn≤m

aj1···jnx
(1)
j1
· · ·x(n)jn

.

Then T ∈ smBL(nlm1 ) if and only if there are j
′
1, . . . , j

′
n ∈ {1, . . . ,m} such

that

1 =
∣∣∣aj′1···j′n∣∣∣ > |aj1···jn |

for all j1, . . . , jn ∈ {1, . . . ,m} with (j1, . . . , jn) 6=
(
j
′
1, . . . , j

′
n

)
.

Proof. Sufficiency. Let f ∈ L(nlm1 )∗ be such that f(T ) = 1 = ‖f‖. As

L(nlm1 )∗ = ⊗π,nlm1 , there are k ∈ N and f (1),i, . . . , f (n),i ∈ lm1 such that

f =
k∑
i=1

f (1),i ⊗ . . .⊗ f (n),i.

We claim that f = sign
(
a
j
′
1···j

′
n

)(
e
j
′
1
⊗ . . .⊗ ej′n

)
. Indeed, let j1, . . . , jn ∈

{1, . . . ,m} be such that (j1, . . . , jn) 6=
(
j
′
1, . . . , j

′
n

)
, and let Sj1···jn ∈ L(nlm1 )

be defined by

Sj1···jn

((
x
(1)
j

)
, . . . ,

(
x
(n)
j

))
= x

(1)
j1
· · ·x(n)jn

. (3)

Choose ε0 > 0 such that |aj1···jn | + ε0 < 1 and set R± = T ± ε0Sj1···jn . By
Theorem 1 we have ‖R±‖ = 1. Thus,

1 ≥ max
{∣∣f(R±)

∣∣} = max {|f(T )± ε0f(Sj1···jn)|}
= |f(T )|+ ε0 |f(Sj1···jn)| = 1 + ε0 |f(Sj1···jn)| ,
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which implies that f (Sj1···jn) = 0 for all j1, . . . , jn ∈ {1, . . . ,m} such that

(j1, . . . , jn) 6=
(
j
′
1, . . . , j

′
n

)
. Hence∣∣∣aj′1···j′n∣∣∣ = 1 = f(T ) = a

j
′
1···j

′
n
f
(
S
j
′
1···j

′
n

)
,

which shows that f
(
S
j
′
1···j

′
n

)
= sign

(
a
j
′
1···j

′
n

)
. Thus, for S ∈ L(nlm1 ),

f(S) =
∑

1≤i1,...,in≤m
S (ei1 , . . . , ein)f(Sj1···jn)

= S
(
e
j
′
1
, . . . , ej′n

)
f
(
S
j
′
1···j

′
n

)
= S

(
e
j
′
1
, . . . , ej′n

)
sign

(
a
j
′
1···j

′
n

)
= sign

(
a
j
′
1···j

′
n

)(
e
j
′
1
⊗ . . .⊗ ej′n

)
(S).

Therefore, f is uniquely determined and T ∈ smBL(nlm1 ).
Necessity. By Theorem 1,

1 = ‖T‖ = max {|aj1···jn | : 1 ≤ j1, . . . , jn ≤ m} .

Hence there are j
′
1, . . . , j

′
n ∈ {1, . . . ,m} such that 1 =

∣∣∣aj′1···j′n∣∣∣ .
Claim: |aj1···jn | < 1 for all j1, . . . , jn ∈ {1, . . . ,m} with (j1, . . . , jn) 6=(
j
′
1, . . . , j

′
n

)
.

If not, then there are i
′
1, . . . , i

′
n ∈ {1, . . . ,m} such that

(
i
′
1, . . . , i

′
n

)
6=(

j
′
1, . . . , j

′
n

)
and 1 =

∣∣∣ai′1···i′n∣∣∣ . Let f1, f2 ∈ L(nlm1 )∗ be defined by

f1 = sign
(
a
j
′
1···j

′
n

)(
e
j
′
1
⊗ . . .⊗ ej′n

)
, f2 = sign

(
a
i
′
1···i
′
n

)(
e
i
′
1
⊗ . . .⊗ ei′n

)
.

(4)
Then

f1 6= f2, fj(T ) = 1 = ‖fj‖ (j = 1, 2).

This is a contradiction. Therefore, we have proved the claim. �

Theorem 5. Let n ≥ 2 and let T ∈ L(nl1) be defined by (1) such that

‖T‖ = 1. Suppose that
∣∣∣aj′1···j′n∣∣∣ = 1 =

∣∣∣ai′1···i′n∣∣∣ for some
(
j
′
1, . . . , j

′
n

)
6=(

i
′
1, . . . , i

′
n

)
∈ Nn. Then T /∈ smBL(nl1).

Proof. Let f1, f2 ∈ L(nl1)
∗ be defined by (4). Then,

f1 6= f2, fj(T ) = 1 = ‖fj‖ (j = 1, 2).

Therefore, T /∈ smBL(nl1). �
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3. The unit ball of Ls(nl1)
In this section we characterize extBLs(nl1), expBLs(nl1) and smBLs(nlm1 )

for n,m ≥ 2. The first theorem characterizes all extreme points of the unit
ball of Ls(nl1).

Theorem 6. Let T ∈ Ls(nl1) be defined by (1) and let ‖T‖ = 1. Then
T ∈ extBLs(nl1) if and only if |aj1···jn | = 1 for all j1, . . . , jn ∈ N.

Proof. By Theorem 1, |aj1···jn | ≤ 1 for all j1, . . . , jn ∈ N.
Sufficiency. Assume the contrary. There are j

′
1, . . . , j

′
n ∈ N such that∣∣∣aj′1···j′n∣∣∣ < 1. Let S

j
′
1···j

′
n
∈ L(nl1) be defined by (2). Choose ε0 > 0 such that∣∣∣aj′1···j′n , ∣∣∣+ ε0 < 1. Let L± ∈ Ls(nl1) be defined by

L± = T ± ε0
n!

∑
σ

S
j
′
σ(1)
···j′

σ(n)
,

where σ is a permutation on {1, . . . , n}. By Theorem 1 we have ‖L±‖ = 1.
Since T = 1

2(L+ + L−), T is not extreme. This is a contradiction. Hence,
|aj1···jn | = 1 for all j1, . . . , jn ∈ N.

The proof of necessity is identical to the proof of necessity of Theorem 2.
�

We show that every extreme point of the unit ball of Ls(nl1) is exposed.

Theorem 7. The equality expBLs(nl1) = extBLs(nl1) is true.

Proof. It is identical to that for Theorem 3. �

The following theorem shows a relation between the spaces L(nl1) and
Ls(nl1).

Theorem 8. Let n,m ≥ 2. Then:

(a) extBLs(nl1) = extBL(nl1) ∩ Ls(nl1);
(b) expBLs(nl1) = expBL(nl1) ∩ Ls(nl1).

Proof. The statement (a) follows from Theorems 2 and 6, and (b) follows
from Theorems 3 and 7 in view of (a). �

We characterize all smooth points of the unit ball of Ls(nlm1 ) for n,m ≥ 2.

Theorem 9. For n,m ≥ 2, let T ∈ Ls(nlm1 ) be the same as in Theorem 4.

Then T ∈ smBLs(nlm1 ) if and only if there are j
′
1, . . . , j

′
n ∈ {1, . . . ,m} such

that

1 =

∣∣∣∣aj′
σ(1)
···j′

σ(n)

∣∣∣∣ > |aj1···jn |
for all j1, . . . , jn ∈ {1, . . . ,m} with (j1, . . . , jn) 6=

(
j
′

σ(1), . . . , j
′

σ(n)

)
, where σ

is a permutation on {1, . . . , n}.
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Proof. Sufficiency. Let f ∈ Ls(nlm1 )∗ be such that f(T ) = 1 = ‖f‖. We
claim that

f = sign
(
a
j
′
1···j

′
n

) 1

n!

∑
σ

(
e
j
′
σ(1)
⊗ . . .⊗ e

j
′
σ(n)

)
.

Indeed, let j1, . . . , jn∈{1, . . . ,m} be such that (j1, . . . , jn) 6=
(
j
′

σ(1), . . . , j
′

σ(n)

)
for every permutation σ. Let Sj1···jn ∈ L(nlm1 ) be defined by (3). Choose
ε0 > 0 such that |aj1···jn |+ ε0 < 1. Let L± ∈ Ls(nl1) be defined by

L± = T ± ε0
n!

∑
σ

Sjσ(1)···jσ(n) .

By Theorem 1, we have ‖L±‖ = 1. Thus

1 ≥ max{|f(L±)|} = max

{∣∣∣∣∣f(T )± ε0
n!
f

(∑
σ

Sjσ(1)···jσ(n)

)∣∣∣∣∣
}

= |f(T )|+ ε0
n!

∣∣∣∣∣f
(∑

σ

Sjσ(1)···jσ(n)

)∣∣∣∣∣ = 1 +
ε0
n!

∣∣∣∣∣f
(∑

σ

Sjσ(1)···jσ(n)

)∣∣∣∣∣ ,
which implies that f

(∑
σ Sjσ(1)···jσ(n)

)
= 0 for all j1, . . . , jn ∈ {1, . . . ,m}

such that (j1, . . . , jn) 6=
(
j
′

σ(1), . . . , j
′

σ(n)

)
for every permutation σ. Hence,

∣∣∣aj′1···j′n∣∣∣ = 1 = f(T ) = a
j
′
1···j

′
n

1

n!
f

(∑
σ

S
j
′
σ(1)
···j′

σ(n)

)
,

which shows that 1
n!f

(∑
σ Sj′

σ(1)
···j′

σ(n)

)
= sign

(
a
j
′
1···j

′
n

)
. Thus, for S ∈

L(nlm1 ),

f(S) =
∑

1≤i1,...,in≤m
S(ei1 , . . . , ein)

1

n!
f

(∑
σ

Sjσ(1)···jσ(n)

)

= S
(
e
j
′
1
, . . . , ej′n

) 1

n!
f

(∑
σ

S
j
′
σ(1)
···j′

σ(n)

)
= S

(
e
j
′
1
, . . . , ej′n

)
sign

(
a
j
′
1···j

′
n

)
= sign

(
a
j
′
1···j

′
n

) 1

n!

∑
σ

(
e
j
′
σ(1)
⊗ . . .⊗ e

j
′
σ(n)

)
(S).

Therefore, f is uniquely determined and T ∈ smBL(nlm1 ).
Necessary. By Theorem 1,

1 = ‖T‖ = max{|aj1···jn | : 1 ≤ j1, . . . , jn ≤ m}.
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Hence, there are j
′
1, . . . , j

′
n ∈ {1, . . . ,m} such that 1 =

∣∣∣aj′1···j′n∣∣∣ . Note that

since T is symmetric, 1 =

∣∣∣∣aj′
σ(1)
···j′

σ(n)

∣∣∣∣ for every permutation σ on {1, . . . , n}.

Claim: |aj1···jn | < 1 for all j1, . . . , jn ∈ {1, . . . ,m} such that (j1, . . . , jn) 6=(
j
′

σ(1), . . . , j
′

σ(n)

)
for every permutation σ on {1, . . . , n}.

If not, then there are i
′
1, . . . , i

′
n ∈ {1, . . . ,m} such that 1 =

∣∣∣ai′1···i′n∣∣∣ and

(i
′
1, . . . , i

′
n) 6=

(
j
′

σ(1), . . . , j
′

σ(n)

)
for every permutation σ on {1, . . . , n}. Let

f1, f2 ∈ Ls(nlm1 )∗ be defined by

f1 = sign
(
aj′ ···j′

) 1

n!

∑
σ

(
e
j
′
σ(1)
⊗ . . .⊗ e

j
′
σ(n)

)
,

f2 = sign
(
a
i
′
1···i
′
n

) 1

n!

∑
σ

(
e
i
′
σ(1)
⊗ . . .⊗ e

i
′
σ(n)

)
.

(5)

Then,
f1 6= f2, fj(T ) = 1 = ‖fj‖ (j = 1, 2).

This is a contradiction. Therefore, we have proved the claim. �

Theorem 10. For n ≥ 2, let T ∈ Ls(nl1) be the same as in Theorem 5.

Suppose that
∣∣∣aj′1···j′n∣∣∣ = 1 =

∣∣∣ai′1···i′n∣∣∣ for some
(
j
′
1, . . . , j

′
n

)
,
(
i
′
1, . . . , i

′
n

)
sat-

isfying
(
i
′
1, . . . , i

′
n

)
/∈
{(
j
′

σ(1), . . . , j
′

σ(n)

)
: σ is a permutation on {1, . . . , n}

}
.

Then T /∈ smBLs(nl1).

Proof. Let f1, f2 ∈ Ls(nl1)∗ be defined by (5). Then

f1 6= f2, fj(T ) = 1 = ‖fj‖ (j = 1, 2).

Therefore, T /∈ smBLs(nl1). �
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