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Asymptotic approximation of misclassification
probabilities in linear discriminant analysis with

repeated measurements

Edward K. Ngailo, Dietrich von Rosen, and Martin Singull

Abstract. We propose asymptotic approximations for the probabili-
ties of misclassification in linear discriminant analysis when the group
means follow a growth curve structure. The discriminant function can
classify a new observation vector of p repeated measurements into one of
several multivariate normal populations with equal covariance matrix.
We derive certain relations of the statistics under consideration in
order to obtain asymptotic approximation of misclassification errors for
the two group case. Finally, we perform Monte Carlo simulations to
evaluate the reliability of the proposed results.

1. Introduction

One can say that discriminant analysis and classification were first re-
ally developed in the 1930’s when multivariate statistics was a blossoming
area and attracted researchers. One of the first to deal with linear discrimi-
nant analysis and classification as we know it today was the well known Sir
R. A. Fisher [3]. Fisher published several papers on discriminant analysis,
including [4] in which he reviewed his 1936 work and related it to the con-
tributions by Hotelling and his T 2 statistic [6], and by Mahalanobis to his
∆2 statistic [16] and other distance measures. Nowadays, of course several
textbooks, for example [8, 9, 15, 22], have treated discriminant analysis in
detail.

Linear discriminant analysis is a technique which is commonly used for
the supervised classification problems. It is used for modeling differences in
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groups πi with i = 1, 2, . . . , k, that is, separating two (k = 2) or more (k > 2)
classes by maximizing the distance between means µi under the assumption
of the same variance-covariance matrix Σ. The statistical problem treated
by Fisher in [4] was that of assigning an unknown observation into one of
two known groups on the basis of p measured characteristics, i.e., a feature
vector x = (x1, . . . , xp)

′. Furthermore, the groups are assumed to follow
distributions with the same variance-covariance matrix. The sample based
Fisher’s discriminant function [27] equals

L(x; x1,x2,S) = (x1 − x2)′S−1x− 1

2
(x1 − x2)′S−1(x1 + x2), (1)

where x1 and x2 denote the sample mean vectors of the two groups, i.e.,
xi = 1

ni

∑ni
j=1 xij , where xij is observation j from group i with sample size

ni, and S is the pooled sample covariance matrix given by

S =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
, where Si =

1

ni − 1

ni∑
j=1

(
xij − x̄i

)(
xij − x̄i

)′
,

The classification rule for a new observation x is: classify x into π1 if
L(x; x1,x2,S) > 0 holds, otherwise classify into π2. In order to under-
stand the performance of the classification rule it is important to evaluate
the probability of misclassification.

An asymptotic expression for the misclassification errors for the linear
discriminant rule given above and for large n1 and n2 is given by Okamoto
in [18]. That is, the probability of misclassifying an observation from πi in
πj , with i, j = 1, 2 and i 6= j, is given by

e(j|i) ≈ Φ

(
−∆

2

)
+ φ

(
∆

2

)(
ai
n1

+
aj
n2

+
a3

n1 + n2 − 2

)
, (2)

where a1 = ∆2+12(p−1)
16∆ , a2 = ∆2−4(p−1)

16∆ , a3 = ∆
4 (p − 1), and Φ(·) and φ(·)

are the standard normal cumulative distribution and probability density
functions, respectively. Furthermore, ∆2 = (µ1 − µ2)′Σ−1(µ1 − µ2) is the
squared Mahalanobis distance [16] which simply can be estimated by the
consistent estimator

∆̂2 =
n1 + n2 − p− 3

n1 + n2 − 2
(x1 − x2)′S−1(x1 − x2).

Also in recent years there are studies in linear discriminant analysis which
evaluate the misclassification errors in an asymptotic approach. For example,
[7, 28] expanded the expression for the asymptotic approximation for the
misclassification errors using Taylor series expansion, and [5] derives many
details on the Taylor series expansion of the asymptotic misclassification
expression and their possible errors of approximations.

Discriminant analysis is usually applied to multivariate statistical prob-
lems in which several features are collected simultaneously. However, [1,
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11, 12, 20] among others considered discriminant analysis procedures for re-
peated measurements. Repeated measures discriminant analysis procedures
are applied to data collected at multiple occasions on the same individual.
Later, [24, 25] developed procedures based on univariate and multivariate re-
peated measures data, focusing on different covariance structures. Recently,
[13] reviewed the literature on discriminant analysis for univariate and mul-
tivariate repeated measures data, focusing on covariance patterns and linear
mixed-effects models with applications to psychological research.

One of the first to discuss discrimination between growth curves was Burn-
aby in his early paper [1] followed by Rao [20]. Burnaby’s focus was to gener-
alize procedures for constructing discriminant functions as well as to propose
a generalized distance between the populations of repeated measurements.
In our work, the classification of growth curves relies solely on the Growth
Curve model given by [19]. There have been earlier attempts to modify the
linear classification function given by [4] including Growth Curve models
for the group means. [11] considered classification of individuals into one of
two growth curves using a Bayesian approach, which was later extended by
[14]. Again, [12] developed both non-Bayesian and Bayesian classification
of growth curves, where he considered two different covariance structures,
the arbitrary positive definite covariance matrix and Rao’s simple covari-
ance structure. More recently, [17] considered the Rao’s classification scores
[21] with group means following the Growth Curve model structure given
by [19]. They used only simulations to show the performance of the classi-
fication rule, based on both an arbitrary covariance matrix and structured
covariance matrices (compound symmetry and independence).

Hence, the modifications required for the classification function (1) when
the repeated measurements of the populations obey some structure, have
been studied. However, very little has been said about the misclassification
error rate. In this paper we will study the linear discriminant function
for repeated measurements, i.e., growth curves, and derive some asymptotic
approximations of the misclassification probabilities. The results are derived
following the ideas given by [5] for the cases when the covariance matrix
is known and when it is unknown and hence have to be estimated. The
follow-up analysis involves investigating the performance of the proposed
approximations through Monte Carlo simulations.

The organization of this paper is as follows. In Section 2, the main idea
is given and the linear classification function for growth curves is presented.
In Section 3, the approximations of the probabilities of misclassifications are
derived for both known and unknown covariance matrices and the proposed
results are supported by a simulation study in Section 4. In Section 5, we
finalize the paper by giving a brief summary of the results.
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Throughout this paper matrices will be denoted by bold upper case letters,
vectors by bold lower case letters, and elements of matrices by ordinary
letters.

2. Classification into one of two growth curves

In this section we start by introducing the Growth Curve model of [19]
which will be considered when formulating the linear discriminant function.
The Growth Curve model is given by

X = ABC + E, E ∼ Np,n(0,Σ, In), (3)

where X is a p×n data matrix of n independent individuals with p repeated
measurements, E is the p × n error matrix with columns assumed to be
independently p variate normally distributed with mean vector 0p and a
positive definite variance-covariance matrix Σ. We will assume a polynomial
growth of order q − 1 and k = 2 independent groups of ni individuals,
i = 1, 2, with the total sample size as n = n1 + n2. Then, the design
matrices A : p× q,C : 2× n and parameter B : q × 2 can be given by

A =


1 t1 . . . tq−1

1

1 t2 . . . tq−1
2

...
...

. . .
...

1 tp . . . tq−1
p

 , C =

(
1′n1

0′n2

0′n1
1′n2

)
, B =

(
b1,b2

)
, (4)

where 1′ni and 0′ni are vectors of ones and zeros, respectively. The optimal
classification rule that minimizes the probability of misclassification is to
assign a vector x following the Growth Curve model to π1 if

q1f1(x) > q2f2(x), (5)

and to π2 otherwise. Here f1(x) and f2(x) are the density functions for x
belonging to π1 or π2, respectively, and q1 and q2 are the prior probabilities
about the classification. Given the Growth Curve model (3), we have the
probability density functions

fi(x) = (2π)−
p
2 |Σ|−

1
2 exp

{
−1

2
tr
{

Σ−1(x−Abi)(x−Abi)
′
}}

, i = 1, 2.

Assuming q1 = q2, i.e., no prior information, then the classification rule (5)
can be given as:

classify x to π1 if L(x; b1,b2,Σ) > 0, and to π2 otherwise, (6)

where the linear classification function L is

L(x; b1,b2,Σ) = (b1 − b2)′A′Σ−1x− 1

2
(b1 − b2)′A′Σ−1A(b1 + b2). (7)

In this paper we will study two cases: Σ is known and Σ is unknown.
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2.1. Estimators of the parameters B and Σ. There exist different ap-
proaches to estimate the model parameters B and Σ, in the Growth Curve
model (3), see e.g., [23, 27]. The maximum likelihood estimator of B when
A and C are assumed to have full rank, is given by

B̂ = (b̂1, b̂2) = (A′S−1A)−1A′S−1XC′(CC′)−1,

where S is the within sum of squares matrix

S = X(In −PC′)X′, with PC′ = C′(CC′)−1C.

With C given in (4) and k = 2, we have the estimators for the mean para-
meters as

b̂i = (A′S−1A)−1A′S−1xi,

where xi = 1
ni

Xi1ni , with Xi =
(
xi1 . . . xini

)
: p × ni being the ni

observations from group πi, i = 1, 2, i.e., X =
(
X1 X2

)
. Furthermore, the

maximum likelihood estimator for Σ is given by

nΣ̂ = (X−AB̂C)(X−AB̂C)′ = S + (Ip −PA,S)XPC′X(Ip −PA,S), (8)

which is a positive definite with probability one when p < n− 2 and PA,S =
A(A′S−1A)−1A′S−1. When Σ is known the estimator of the mean param-
eter B is given by

B̂ = (A′ΣA)−1A′ΣXC′(CC′)−1 =
(
b̂1 b̂2

)
,

where

b̂i = (A′Σ−1A)−1A′Σ−1xi ∼ Nq

(
bi,

1

ni
(A′Σ−1A)−1

)
. (9)

We will now give an useful lemma that we will use later in the paper.

Lemma 1. Let Σ̂ be given in (8) and suppose that all included inverses
exist. Then

A′(nΣ̂)−1 = A′S−1.

The proof of this lemma can be found, for example, in [23].

3. Asymptotic approximation of probabilities of
misclassification

In this section we consider the approximations of the probabilities of mis-
classification using the linear classification function given in (7). While in
general, it is hard to obtain the exact probability of misclassifications, there
have been extensive studies for their asymptotic approximations including
asymptotic expansions (see, for example, [5, 18, 26]). The main purpose of
this section is to derive the approximations for the probabilities of misclassifi-
cation through expressing the linear classification function in (7) as a location
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and scale mixture of the standard normal distribution. The probabilities of
misclassification by the linear classification function (7) are denoted

e(2|1) = Pr(L ≤ 0|x ∈ π1), e(1|2) = Pr(L > 0|x ∈ π2),

where e(2|1) is the probability of allocating x of p repeated measurements
into π2, although it is known that they come from π1 and similarly for e(1|2).
We are interested in deriving an asymptotic approximation of e(2|1). Note
that in this article, probabilities of misclassification are used interchangeably
with misclassification errors.

3.1. Asymptotic approximation of the misclassification errors with
known Σ. In this subsection we assume that Σ is known. Suppose that
the observation x of p repeated measurements is from π1, the conditional

distribution of L0 = L(x; b̂1, b̂2,Σ) given (b̂1, b̂2) is N(−U0, V0), that is,

E[L0|b̂1, b̂2] = −U0 and Var(L0|b̂1, b̂2) = V0, where

U0 = (b̂1 − b̂2)′A′Σ−1A(b̂1 − b1)− 1

2
V0, (10)

V0 = (b̂1 − b̂2)′A′Σ−1A(b̂1 − b̂2). (11)

Hence, L0 given b̂1, b̂2 can now be expressed as a location and scale mixture
of the standard normal distribution given by

L0 = V
1/2

0 Z0 − U0, (12)

where
Z0 = V

−1/2
0 (b̂1 − b̂2)′A′Σ−1(x−Ab1).

Given b̂1, b̂2, Z0 is obviously independent of (U0, V0) and is distributed as
N(0, 1). The probability of misclassification where x is assigned to π2, when
it actually belongs to π1 can be expressed using (12) as

e0(2|1) = Pr(L0 ≤ 0|x ∈ π1) = EU0,V0 [E[χ{L0≤0}|U0, V0]]

= EU0,V0 [Pr(L0 ≤ 0|U0, V0)] = EU0,V0 [Pr(V
1/2

0 Z0 − U0 ≤ 0|U0, V0)]

= EU0,V0 [Φ(V
−1/2

0 U0)], (13)

where χ{·} denotes the indicator function. As an approximation of (13), we
propose

e0(2|1) ' Φ
(
(E[V0])−1/2E[U0]

)
,

obtained by replacing U0 and V0 with E[U0] and E[V0] in a similar manner
as was performed by [5] for the classical case.

Theorem 1. The expectations of U0 and V0 defined in (10) and (11)
equal

E[V0] = ∆2 +
n1 + n2

n1n2
q,
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E[U0] = −1

2

(
∆2 +

n1 − n2

n1n2
q

)
,

where ∆2 is the squared Mahalanobis distance

∆2 = (b1 − b2)′A′Σ−1A(b1 − b2). (14)

Proof. Firstly, E[V0] is derived. It is utilized that b̂1 and b̂2 are indepen-

dently distributed. Since b̂1 − b̂2 ∼ Nq

(
b1 − b2,

(
1
n1

+ 1
n2

)
(A′Σ−1A)−1

)
,

which follows from (9), we have

E[V0] = E[(b̂1 − b̂2)′A′Σ−1A(b̂1 − b̂2)]

= tr
(
A′Σ−1AE[(b̂1 − b̂2)(b̂1 − b̂2)′]

)
= tr

(
A′Σ−1A

(( 1

n1
+

1

n2

)
(A′Σ−1A)−1 + (b1 − b2)(b1 − b2)′

))
= (b1 − b2)′A′Σ−1A(b1 − b2) +

n1 + n2

n1n2
q. (15)

Moreover, E[U0] is calculated as

E[U0] = E
[
(b̂1 − b̂2)′A′Σ−1A(b̂1 − b1)

]
− 1

2
E[V0],

where

E[(b̂1 − b̂2)′A′Σ−1A(b̂1 − b1)]

= E[b̂′1A
′Σ−1Ab̂1]− b′1A

′Σ−1Ab1 + b′2A
′Σ−1Ab1 − E[b̂′2A

′Σ−1Ab̂1]

= E[b̂′1A
′Σ−1Ab̂1]− b′1A

′Σ−1Ab1 =
q

n1
,

where the last equality follows from similar derivations as in (15) and where
(9) has been used. Then,

E[U0] =
q

n1
− 1

2
E[V0] = −1

2

(
∆2 +

n1 − n2

n1n2
q

)
.

�

The following theorem appears.

Theorem 2. For the linear classification function based on (7) with un-
known b1,b2 and known Σ, the misclassification errors can approximately
be evaluated via

e0(2|1) ' Φ
(
γ0

)
,

where

γ0 = −1

2

∆2 + n1−n2
n1n2

q√
∆2 + n1+n2

n1n2
q
,
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with the squared Mahalanobis distance given in (14).

Similarly as in (2) one can see that if n1 and n2 tend to infinity, then
e0(2|1) ' Φ(−∆/2). Although we can obtain the approximation for the
misclassification errors, we can not use b1 and b2 directly in the distance
measure ∆2 since they are usually unknown. Thus, when utilizing e0(2|1),b1

and b2 are replaced by b̂1 and b̂2, respectively.

3.2. Asymptotic approximation of misclassification errors with un-
known Σ. In Subsection 3.1, we assumed that Σ was known. In this subsec-
tion we shall assume that all parameters of the populations πi, i = 1, 2, are

unknown. Hence, we want to study L(x; b̂1, b̂2, Σ̂). However, from Lemma 1

we know that A′(nΣ̂)−1 = A′S−1, hence L(x; b̂1, b̂2, Σ̂) = nL(x; b̂1, b̂2,S),
and since we are only interested in the sign of L in the classification rule (6)

we will study L(x; b̂1, b̂2,S) instead of L(x; b̂1, b̂2, Σ̂) for simplicity. More-
over, the the sum of squares matrix S is Wishart distributed, whereas the
distribution of the maximum likelihood-based estimator is unknown [23].

Theorem 3. Assume that observation x comes from π1. Then the statis-

tic L(x; b̂1, b̂2,S) can be expressed as

L = V 1/2Z − U,
where

V = (b̂1 − b̂2)′A′S−1ΣS−1A(b̂1 − b̂2), (16)

Z = V −1/2(b̂1 − b̂2)′A′S−1(x−Ab1),

U = (b̂1 − b̂2)′A′S−1A(b̂1 − b1)− 1

2
Ṽ , (17)

and Ṽ = (b̂1 − b̂2)′A′S−1A(b̂1 − b̂2) is the squared sample Mahalanobis
distance between two populations.

The result (16) is obtained by noting that the conditional distribution of

(b̂1− b̂2)′A′S−1(x−Ab1) given b̂1, b̂2,S, is N(0, V ) when x comes from π1.

Given b̂1, b̂2,S, we can see that Z follows a standard normal distribution,
i.e., Z ∼ N(0, 1), which is also conditionally true. Moreover, Z and (U, V )
are independent. Analogously to (13), the probability of misclassification
when x comes from π1 is given by

e(2|1) = Pr(L(x; b̂1, b̂2,S) ≤ 0|x ∈ π1) = E(U,V )[Φ(V −1/2U)].

Again we consider a similar approach as in [5] to find the asymptotic ap-
proximation of the probability of misclassification:

e(2|1) ' Φ
(
(E[V ])−1/2E[U ]

)
. (18)

To find the expectations in the probability of misclassification (18), we need
the following lemma.
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Lemma 2. Let S : p × p be a random matrix distributed according to
Wp(n− 2,Σ), where Σ is positive definite. Assume that n− p− 5 > 0, then

(i) E
[
S−1ΣS−1

]
= (n− 3)d1Σ

−1,

(ii) E
[
S−1A(A′S−1A)−1A′S−1

]
= d2Σ

−1

− d3(Σ−1 −Σ−1A(A′ΣA)−1A′Σ−1),

(iii) E
[
S−1A(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1A′S−1

]
= (n− 3)d1Σ

−1

+
[
(n− 3)d4 − (n+ p− 2q − 3)d5

]
(Σ−1 −Σ−1A(A′ΣA)−1A′Σ−1),

where

d1 =
1

(n− p− 2)(n− p− 3)(n− p− 5)
,

d2 =
1

n−m− p− 3
,

d3 =
1

n−m− (p− q)− 3
,

d4 =
1

(n− (p− q)− 2)(n− (p− q)− 3)(n− (p− q)− 5)
,

d5 =
1

(n− q − 2)(n− (p− q)− 3)(n− q − 5)
,

and all constants are supposed to exist.

Proof. For the proof of (i) see [2], p. 388 and for the proofs of (ii) and (iii)
see, for example, [23], p. 447. �

We are now ready to derive the expectations in (18).

Theorem 4. The expectations of V and U defined in (16) and (17) are
as follows:

E[V ] = c1∆2 +
n1 + n2

n1n2
(pc1 + (p− q)c2),

and

E[U ] = −1

2

(
c3∆2 +

n1 − n2

n1n2
((c4 − c5)p+ c5q)

)
,

respectively, where ∆2 is the squared Mahalanobis distance (14),

c1 =
f − 1

(f − p)(f − p− 1)(f − p− 3)
,

c2 =
1

f−(p− q)− 1

(
f − 1

(f−(p− q))(f−(p− q)− 3)
− f + p− 2q − 1

(f − q)(f − q − 3)

)
,
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c3 =
1

f − p− 1
, c4 =

1

f −m− p− 1
, c5 =

1

f −m− (p− q)− 1
,

with f = n1 + n2 − 2, and all constants are supposed to exist.

Proof. Note that S and B̂ =
(
b̂1 b̂2

)
are not independent. However, we

have

E[V ] = ES

[
E[V |S]

]
= ES

[
E[(b̂1 − b̂2)′A′S−1ΣS−1A(b̂1 − b̂2)|S]

]
= ES

[
tr
(
A′S−1ΣS−1AE[(b̂1 − b̂2)(b̂1 − b̂2)′|S]

)]
. (19)

The conditional covariance matrix is

Cov(B̂|S) = (CC′)−1 ⊗ (A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1, (20)

where ⊗ denotes the Kronecker product and Cov(·) denotes the covariance
matrix. Result (20) can be found, for example, in [10]. For our choice of C
in (4) we have

(CC′)−1 =

( 1
n1

0

0 1
n2

)
,

and it follows that

Cov(b̂i|S) =
1

ni
(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1, i = 1, 2.

From (19) and since

b̂1 − b̂2|S ∼ Nq

(
b1 − b2,( 1

n1
+

1

n2

)
(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1

)
,

(21)

we have

ES

[
E[V |S]

]
= ES

[
tr
(
A′S−1ΣS−1A

(( 1

n1
+

1

n2

)
(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1

+ (b1 − b2)(b1 − b2)′
))]

=
n1 + n2

n1n2
tr
(
ΣES

[
S−1A(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1A′S−1

])
+ (b1 − b2)′A′ES

[
S−1ΣS−1

]
A(b1 − b2)

]
. (22)

Using Lemma 2 (i) and (iii), with S ∼Wp(n1 + n2 − 2,Σ), we obtain

ES

[
S−1A(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1A′S−1

]
= c1Σ

−1 + c2(Σ−1 −Σ−1A(A′ΣA)−1A′Σ−1),
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where c1 = (f − 1)d1, c2 = (f − 1)d4 − (f + p− 2q − 1)d5 with d1, d4 and d5

given in Lemma 2 and f = n1 + n2 − 2.
Hence, from (22) we have

E[V ] = ES

[
E[V |S]

]
=
n1 + n2

n1n2
tr
(
Σ(c1Σ

−1 + c2(Σ−1 −Σ−1A(A′ΣA)−1A′Σ−1)
)

+ c1(b1 − b2)′A′Σ−1A(b1 − b2)

=
n1 + n2

n1n2
(pc1 + (p− q)c2) + c1(b1 − b2)′A′Σ−1A(b1 − b2).

Next E[U ] can be derived as

E[U ] = ES

[
E[U |S]

]
= ES

[
E
[
(b̂1 − b̂2)′A′S−1A(b̂1 − b1)− 1

2
Ṽ |S

]]
= ES

[
E
[
(b̂1−b̂2)′A′S−1A(b̂1−b1)|S

]]
− 1

2
ES

[
E[Ṽ |S]

]
,

where Ṽ = (b̂1 − b̂2)′A′S−1A(b̂1 − b̂2). Note that b̂1 and b̂2 are unbiased
and given S they are independently normally distributed. Consider

ES

[
E[(b̂1 − b̂2)′A′S−1A(b̂1 − b1)|S]

]
= ES

[
E[b̂′1A

′S−1Ab̂1|S]
]
− ES

[
E[b̂′1A

′S−1Ab1|S]
]

= ES

[
tr
(
A′S−1AE[b̂1b̂

′
1|S]

]
− ES[b′1A

′S−1Ab1]

= ES

[
tr
(
A′S−1A

( 1

n1
(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1 + b1b

′
1

))]
− ES[b′1A

′S−1Ab1]

=
1

n1
tr
(
ΣES

[
S−1A(A′S−1A)−1A′S−1

])
=

1

n1
((c4 − c5)p+ c5q), (23)

since b̂1|S ∼ Nq

(
b1,

1
n1

(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1
)
, and where

we have used Lemma 2 (ii) in the last equality. Now using (21), one can see

that ES

[
E[Ṽ |S]

]
equals

ES

[
E[Ṽ |S]

]
= ES

[
tr
(
A′S−1AE[(b̂1 − b̂2)(b̂1 − b̂2)′|S]

)]
= ES

[
tr
(
A′S−1A

(( 1

n1
+

1

n2

)
(A′S−1A)−1A′S−1ΣS−1A(A′S−1A)−1

+ (b1 − b2)(b1 − b2)′
))]

=
n1 + n2

n1n2
tr
(
ΣES

[
S−1A(A′S−1A)−1A′S−1

])
+ (b1 − b2)′A′ES

[
S−1

]
A(b1 − b2)

]
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= c3(b1 − b2)′A′Σ−1A(b1 − b2) +
n1 + n2

n1n2
((c4 − c5)p+ c5q), (24)

where c3 =
1

f − p− 1
and where Lemma 2 has been used in the last equality.

Combining (23) and (24) we get

E[U ] = −1

2

(
c3(b1 − b2)′A′Σ−1A(b1 − b2) +

n1 − n2

n1n2
((c4 − c5)p+ c5q)

)
.

�

From the results above we are now ready to give the following theorem
and the main result of this paper.

Theorem 5. For the linear classification function based on (7) with un-
known b1,b2 and Σ, the misclassification errors can approximately be eval-
uated via

e(2|1) ' Φ
(
γ
)
,

where

γ = −1

2

c3∆2 + n1−n2
n1n2

((c4 − c5)p+ c5q)√
c1∆2 + n1+n2

n1n2
(pc1 + (p− q)c2)

,

with c1, . . . , c5 defined in Theorem 4 and where ∆2 is the squared Maha-
lanobis distance (14).

Again one can compare with (2) and also Theorem 2. Even if it is not so
straightforward, we can similarly see that if n1 and n2 tend to infinity, then
e(2|1) ' Φ(−∆/2) as expected.

4. Simulation study

The approximation of misclassification errors in case of repeated measures
observations that follow a growth curve structure [19] on the means have not
been proposed before. In Theorems 2 and 5 we gave approximations for these
misclassification errors first when we have assumed Σ to be known and then
when it is unknown.

In this section a simulation study is performed to examine the reliability
of the approximation of the misclassification errors proposed in Theorems 2
and 5. We compare the errors given by the approximations with the relative
frequencies, which are the number of times an observation is misclassified
to π2 while it actually comes from π1, using classification rule (6) both
for unknown and known Σ. As earlier the mean parameters B is always
unknown, i.e., estimated. In our Monte Carlo simulations, we let n = 80
and assume for simplicity n1 = n2 = n

2 . Further, let ti = t1 + (i − 1)
tp−t1
p−1 ,

with t1 = 0.50 and tp = 2.50, i.e., (t1, . . . , tp) are evenly spread out in the
interval [0.50, 2.50]. Also, let p ∈ {10, 20, 30, 40, 50, 60, 70, 72, 74, 100, 120}
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Figure 1. The third order growth curves describe the sam-
ple mean per group (solid lines) and the estimated mean
growth curves (dashed lines) for the populations π1 and π2.
In the upper plot p = 10 whereas in the lower plot p = 74.
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Figure 2. (a) True and estimated approximations for mis-
classification errors computed using Theorem 2 and the rela-

tive frequencies f0 and f̂0 for known Σ calculated using clas-
sification rule (6) (b) True and estimated approximations for
misclassification errors calculated using Theorem 5 and the

relative frequencies f and f̂ , computed using classification
rule (6) when Σ is unknown.
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p e0(2|1) f0 ê0(2|1) f̂0

10 0.185 0.181 0.180 0.155
20 0.104 0.104 0.102 0.091
30 0.062 0.057 0.061 0.060
40 0.038 0.024 0.037 0.048
50 0.023 0.020 0.024 0.026
60 0.015 0.013 0.015 0.013
70 0.009 0.007 0.010 0.011
72 0.008 0.006 0.008 0.006
74 0.007 0.006 0.007 0.005
100 0.002 0.003 0.003 0.002
120 0.001 0.003 0.001 0.001

Table 1. In the table e0(2|1) and ê0(2|1) are the values of the
“true” and estimated approximations of misclassification er-

rors, computed using Theorem 2 for b1,b2,Σ and b̂1, b̂2,Σ,

respectively. The relative frequencies f0 and f̂0 are calcu-

lated as the relative number of events {L(x; b̂1, b̂2,Σ) ≤ 0}
with observation x generated as x ∼ Np(Ab1,Σ) or x ∼
Np(Ab̂1,Σ), respectively.

for unknown b1,b2 and known Σ and p ∈ {10, 20, 30, 40, 50, 60, 70, 72, 74}
for unknown b1,b2,Σ, since we must have p ≤ n − 2. Data X : p × n are
generated using the Growth Curve model X = ABC+E, E ∼ Np,n(0,Σ, I),
where the design and parameter matrices are respectively given as

A =


1 t1 t21 t31
1 t2 t22 t32
...

...
...

1 tp t2p t3p

 , C =

(
1′40 0′40

0′40 1′40

)
, B =


0.117 0.125
−0.345 −0.313
0.232 0.314
−0.042 −0.075

 .

Furthermore, for Σ we have Σ = DRD, where D = diag(σ1, . . . , σp), σi =√
0.1 + (i− 1)d, with d = 1.9

p−1 for i = 1, . . . , p, and R = (ρij), where ρij =

(−1)i+jr|i−j|
γ

, with r = 0.2, γ = 0.1 for j = 1, . . . , p.
In Figure 1, the third order growth curves are given which show the true

mean growth profiles which were used when data was simulated and the esti-
mated growth profiles for two populations π1 and π2. Note here that Figure
1 is produced when b1,b2,Σ are unknown. In the upper plot, the dashed
lines seem to be close to the solid lines for p = 10. This means that the
mean growth profile is well estimated with p = 10 repeated measurements.
However, on the lower plot, the discrepancy between lines (dashed and solid
lines) become considerably large as the number of repeated measurements
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increases. This means that the mean growth profile is poorly estimated with
a large number of repeated measurements, i.e., p close to n.

p e(2|1) f ê(2|1) f̂
10 0.216 0.208 0.188 0.162
20 0.160 0.133 0.117 0.071
30 0.139 0.121 0.074 0.029
40 0.137 0.104 0.051 0.006
50 0.151 0.108 0.035 0.002
60 0.188 0.166 0.028 0.000
70 0.281 0.229 0.032 0.000
72 0.319 0.243 0.041 0.000
74 0.385 0.278 0.090 0.000

Table 2. In the table e(2|1) and ê(2|1) are the values of the
“true” and estimated approximations of misclassification er-

rors, computed using Theorem 5 for b1,b2,Σ and b̂1, b̂2, Σ̂,

respectively. The relative frequencies f and f̂ are calcu-

lated as the relative number of events {L(x; b̂1, b̂2, Σ̂) ≤ 0}
with observation x generated as x ∼ Np(Ab1,Σ) or x ∼
Np(Ab̂1, Σ̂), respectively.

In Table 1 the approximations and the relative frequencies of the misclas-
sification errors are investigated for p repeated measurements in the case
when Σ is known. As before, e0(2|1) denotes the “true” approximation of
the misclassification errors and ê0(2|1) denotes the estimated approximation
of misclassification errors, where we have plugged in the estimates for the

mean parameters. Furthermore, f0 and f̂0 stand for relative frequencies of
misclassifications computed using classification rule (6) for known Σ. These
relative frequencies are calculated, based on 10,000 simulations, as the rel-

ative number of events {L(x; b̂1, b̂2,Σ) ≤ 0} with observation x generated

as x ∼ Np(Ab1,Σ) or x ∼ Np(Ab̂1,Σ), respectively. In real life we do not

know b1 and must then trust b̂1 if any.
In Table 1 the values of the estimated misclassification errors ê0(2|1) are

closer to the true misclassification errors e0(2|1) when more information (re-
peated measurements) were included, and the misclassification errors become
smaller for larger p. This means that the more information the smaller are
the misclassification errors. This can be seen in Figure 2 (upper plot). It
can be noted that there are values of misclassification errors for p > n − 2,
which we can have because Σ is known.
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In Table 2 we present results for the approximation of misclassification er-
rors for the case when Σ is unknown. As earlier, e(2|1) denotes the “true” ap-
proximation for the misclassification errors and ê(2|1) denotes the estimated
approximation for the misclassification errors. Now the relative frequencies

f and f̂ are calculated as the relative number of events {L(x; b̂1, b̂2, Σ̂) ≤ 0}
with observation x generated as x ∼ Np(Ab1,Σ) or x ∼ Np(Ab̂1, Σ̂), re-
spectively.

In Table 2 the values of the estimated misclassification errors decrease
when numbers of repeated measurements are relatively small as for p = 10
through p = 60. For large numbers of repeated measurements which are
closer to the sample size, the misclassification errors increase, see for example
when p ∈ {70, 72, 74}. This is due to the sample variance-covariance matrix
which is not a good estimator when the number of repeated measurements
gets larger since it becomes unstable. Remember that the classification func-
tion (7) includes the inverse of the variance-covariance matrix. Thus, the
misclassification errors increase. The consequence when the number of re-
peated measurements is close to the sample size can also be seen in Figure
1, where the fitted growths are poor for p = 741.

Also, in the last column in Table 2, the relative frequency f̂ has zero values
for example from p = 60 through p = 74, it is because a new observation in
the simulation is generated based on the estimated parameters instead of the
true b1 and Σ, i.e., the new observation x to be classified is generated using
the wrong model which also has the same values as used in the classification
rule (6).

We conclude that, the proposed approximation can be suggested for use
when the number of repeated measurements is not too close to the sample
size. The simulation results pave the way for one to propose new estima-
tors and investigate the case when the number of repeated measurements is
comparable to sample size or exceeds it.

5. Summary

In this paper we have considered the linear classification function when the
means follow the Growth Curve model given by [19]. The linear classification
function can assign a new observation of p repeated measurements to one
of two specified groups. Given a classification rule it is natural to enquiry
how well the decision rule can appropriately classify a new observation of p
repeated measurements. In general, it is hard to obtain the exact expression
for the probability of misclassification. We express the linear discriminant

1Remark: This is a known phenomena but not easy to overcome. One way could be
by regularization, i.e., Tikhonov regularization. However, with regularization the distri-
butional properties are hard to derive and will be considered in future research
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function as a location and scale mixture of the standard normal distribution
and derive approximations for the probability of misclassification.

It seems that larger p is better for classification when Σ is known, but
when Σ is unknown and p is close to n we have a problem with the instability
for the sum of squares matrix S. If p > n−2, then S is singular and a regular
inverse cannot be taken.
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30 (1968), 387–400.

[3] R. A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eugenics
7 (1936), 179–188.

[4] R. A. Fisher, The statistical utilization of multiple measurements, Ann. Eugenics 8
(1938), 376–386.

[5] Y. Fujikoshi, Error bounds for asymptotic approximations of the linear discriminant
function when the sample sizes and dimensionality are large, J. Multivariate Anal. 73
(2000), 1–17.

[6] H. Hotelling, The generalization of Students ratio, Ann. Eugenics 2 (1931), 360–378.
[7] M. Hyodo, T. Mitani, T. Himeno, and T. Seo, Approximate interval estimation for

EPMC for improved linear discriminant rule under high dimensional frame work. SUT
J. Math. 51 (2015), 145–179.

[8] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning: with Applications in R, Springer Science and Business Media, New York,
2013.

[9] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice
Hall, Upper Saddle River, New Jersey, 2007.

[10] T. Kollo and D. von Rosen, Advanced Multivariate Statistics with Matrices, Springer,
Dordrecht, 2005.

[11] J. C. Lee, Bayesian classification of data from growth curves, South African Statist.
J. 11 (1977), 155–166.

[12] J. C. Lee, Classification of growth curves, Handbook of Statistics 2 (1982), 121–137.
[13] L. Lix and T. Sajobi, Discriminant analysis for repeated measures data: a review,

Frontiers in Psychology 1 (2010), 1–9.
[14] D. J. Nagel, Bayesian classification estimation and prediction of growth curves, South

African Statist. J. 13 (1979), 127–137.
[15] G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, John

Wiley & Sons, New Jersey, 2004.



ASYMPTOTIC APPROXIMATION OF MISCLASSIFICATION PROBABILITIES 85

[16] P. C. Mahalanobis, On the generalized distance in statistics, Proc. Nat. Inst. Sci. India
2 (1936), 49–55.

[17] G. B. Mentz and A. M. Kshirsagar, Classification using growth curves, Comm. Statist.
Theory Methods 33 (2005), 2487–2502.

[18] M. Okamoto, An asymptotic expansion for the distribution of the linear discriminant
function, Ann. Math. Statist. 34 (1963), 1286–1301.

[19] R. F. Potthoff and S. N. Roy, A generalized multivariate analysis of variance model
useful especially for Growth Curve problems, Biometrika 51 (1964), 313–326.

[20] C. R. Rao, Discriminant function between composite hypotheses and related problems,
Biometrika 53 (1966), 339–345.

[21] C. R. Rao, Linear Statistical Inference and its Applications, Wiley, New York, 1973.
[22] A. C. Rencher, Multivariate Statistical Inference and Applications, Wiley, New York,

1998.
[23] D. von Rosen, Bilinear Regression Analysis: An Introduction, Springer, New York,

2018.
[24] A. Roy and R. Khattree, Discrimination and classification with repeated measures

data under different covariance structures, Comm. Statist. Simulation Comput. 34
(2005), 167–178.

[25] A. Roy and R. Khattree, On discrimination and classification with multivariate re-
peated measures data, J. Statist. Plann. Inference 134 (2005), 462–485.

[26] M. Siotani, Large sample approximations and asymptotic expansions of classification
statistics, Handbook of Statistics 2 (1982), 61–100.

[27] M. S. Srivastava and C. G. Khatri, An Introduction to Multivariate Statistics, North
Holland, New York, 1979.

[28] H. Watanabe, M. Hyodo, T. Seo, and T. Pavlenko, Asymptotic properties of the
misclassification rates for euclidean distance discriminant rule in high-dimensional
data, J. Multivariate Anal. 140 (2015), 234–244.

Department of Mathematics, University of Dar Es Salaam, Box 2329, Dar
Es Salaam, Tanzania.

E-mail address: edward.ngailo@duce.ac.tz

Department of Energy and Technology, Swedish University of Agricul-
tural Sciences, Box 7032, SE–750 07 Uppsala, Sweden, and Department of
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