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About the number of τ-numbers relative to
polynomials with integer coefficients

Mart Abel, Helena Lauer, and Ellen Redi

Abstract. We show that for all polynomials Q(x) with integer coef-
ficients, that satisfy the extra condition |Q(0) · Q(1) |6= 1, there are
infinitely many positive integers n such that n is a τ -number relative to
the polynomial Q(x). We also find some examples of polynomials Q(x)
for which 1 is the only τ -number relative to the polynomial Q(x) and
some examples of polynomials Q(x) with |Q(0) · Q(1)|= 1, which have
infinitely many positive integers n such that n is a τ -number relative
to the polynomial Q(x). In addition, we prove one result about the
generators of a τ -number.

1. Introduction

The subset of positive integers called τ -numbers was introduced by Kenne-
dy and Cooper in [2] in 1990. They showed that the natural density of the
set of τ -numbers is zero and asked about the characterization of τ -numbers.
In 1999, Colton rediscovered the τ -numbers in [1], calling them refactorable
numbers. He studied the distribution of τ -numbers that are smaller than a
certain fixed real number x and formulated a conjecture on it, related to the
distribution of prime numbers. In 2002, in the attempt of proving Colton’s
Conjecture, Zelinsky checked in [8] that this conjecture is valid under some
extra assumptions, proved several other properties of the distribution of
τ -numbers and introduced several new generalizations, like the notion of
a τ -number relative to a polynomial Q(x) ∈ Z[x] or the notion of an
anti-τ -number. The present paper is concerned with the topics studied by
Zelinsky, more precisely with Zelinsky’s Theorems 34 and 54.
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Let us first recall some definitions needed in the following. Most of these
definitions can be found in several books and papers about τ -numbers and
number theory (e.g., [1], [3], [5], [8]).

A positive integer n is called a τ -number, if the number τ(n) of positive
divisors of n divides n (in short, τ(n) |n), i.e., if n ≡ 0 (mod τ(n)).

A positive number n is called an anti-τ -number, if n and τ(n) are coprime,
that is (n, τ(n)) = gcd(n, τ(n)) = 1.

Let m be a non-negative integer and Q(x) = amx
m + . . . + a1x + a0 a

polynomial with integer coefficients a0, . . . , am (in short, Q(x) ∈ Z[x]). A
positive integer n is said to be a τ -number relative to the polynomial Q(x), if
Q(n) is divisible by τ(n) (in short, τ(n) |Q(n)), i.e., if Q(n) ≡ 0 (mod τ(n)).
A positive integer n is said to be an anti-τ -number relative to the polynomial
Q(x), if (Q(n), τ(n)) = 1.

A τ -number n is called a p-generator, if for any prime p with (n, p) = 1,
the number np is a τ -number. If n is a τ -number, p is a prime, (n, p) = 1
and np is also a τ -number, then it is said that n is a generator of np.

For fixed positive integers k, a1, . . . , ak, a positive number n is called an
(a1, . . . , ak)-generator, if for all k-tuples of distinct primes (p1, . . . , pk) which
do not divide n, the number npa11 · . . . · p

ak
k is a τ -number.

For a positive integer n, the number of distinct sets of positive integers
greater than 1 such that the product of all the elements of the set is n, is
denoted by h(n). For example, h(1) = 0, because 1 cannot be represented
as a product of positive integers greater than 1; h(2) = 1, because {2} is the
only suitable set of positive integers greater than 1 such that the product
of all integers in this set is 2; h(4) = 2, because the suitable sets are {4}
and {2, 2}; h(6) = 2, because the suitable sets are {6} and {2, 3}; h(8) = 3,
because the suitable sets are {8}, {2, 4} and {2, 2, 2}, etc.

Dirichlet’s theorem (on arithmetic progressions) says that for any coprime
a ∈ Z and b ∈ Z+, there are infinitely many primes p in the form p = a+kb,
where k ∈ Z+. In other words, these primes p ≡ a (mod b).

Fermat’s little theorem says that if prime p does not divide a, then
ap−1 ≡ 1 (mod p).

The term “τ -number relative to a polynomial Q(x)” was introduced by
Zelinsky in [8]. This was a natural generalization, prepared by many papers
on τ -numbers relative to arithmetic functions f : Z[x] → A, where A is the
field of algebraic numbers. From the results of C. A. Spiro in 1985, we know
that there are infinitely many τ -numbers relative to I(x) = x (see [7]) and
to S(x) = x+ 1 (see [6]). J. Zelinsky stated the same for Ck(x) = k (see [8],
Conjecture 53), but proved it only partially.

F. Luca studied upper bounds for the number of 0 < n ≤ x with
τ(n) | f(n), where f(x) ∈ Q[x]. The main result of the paper [4] is that
such count is o(x), so “most numbers” are not τ -numbers relative to any
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fixed polynomial. Moreover, J. Zelinsky formulated in 2002 the following
two statements:

1) For any Q(x) ∈ Z[x] there exists infinitely many n such that
τ(n) |Q(n) (see [8], Theorem 54).

2) Apart from the order of the exponents, any given tau number n has∑
d|(n/τ(n)) h(d) generators (see [8], Theorem 34 d)).

Unfortunately, the proofs of these two results were wrong (it has been un-
derstood by several mathematicians, for example in [3]).

What concerns the proof of the first statement by Zelinsky, then it is true
that τ(pQ(c)−1) = Q(c) and Q(c) | Q(p), but what we actually needed in

this proof, is that τ(pQ(c)−1) |Q(pQ(c)−1). Unfortunately, this is not true, in
general.

What concerns the second statement of Zelinsky, then we have a
counterexample. The τ -number 80 is (1)-generator, (1, 1)-generator,
(1, 1, 1)-generator, (3)-generator, (3, 1)-generator and (7)-generator and∑

d|(80/τ(80)) h(d) = h(2) + h(4) + h(8) = 1 + 2 + 3 = 6, i.e., 80 is an

(a1, . . . , ak)-generator for
∑

d|(80/τ(80)) h(d) different k-tuples (a1, . . . , ak) of

numbers, but there are no generators of 80.
Our paper is mainly concerned with proving the first statement of Zelinsky

in case |Q(0) ·Q(1)|6= 1 and reformulating the second statement of Zelinsky
in a way it could be proved, as it is demonstrated in the present paper.

The main results of the present paper are Theorems 1, 2, and 4.

2. On the number of τ-numbers

At first, let us notice that, for any prime p, positive integer k and all

primes q 6= p, the equality τ(qp
k−1) = pk holds, i.e., there are infinitely

many τ -numbers relative to Q(x) = pk. As τ -function is multiplicative,
it holds that there are infinitely many τ -numbers relative to all constant
polynomials Q(x) = a, where a 6∈ {0,±1}.

Lemma 1. Assume that Q(x) = Q1(x)e1 · . . . · Qt(x)et ∈ Z[x], where
t is a positive integer and Q1(x), . . . , Qt(x) ∈ Z[x] are pairwise different
polynomials. Then the following two statements hold:

1) if n ∈ Z+ is a τ -number relative to some Qi(x), where i ∈ {1, . . . , t}, then
n is a τ -number relative to Q(x);

2) if n ∈ Z+ is not a τ -number relative to Q(x), the n is not a τ -number
relative to any Qi(x) were i ∈ {1, . . . , t}.
Proof. 1) Let n be a τ -number relative to some Qi(x) with i ∈ {1, . . . , t},

i.e., τ(n) | Qi(n). Then τ(n) | (Q1(n)e1 · . . . · Qt(n)et) = Q(n), i.e., n is a
τ -number relative to Q(x).

2) Suppose that n is not a τ -number relative to Q(n), i.e., τ(n) does not
divide Q(n) = Q1(n)e1 · . . . ·Qt(n)et . Then it is clear that τ(n) cannot divide
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Qi(n) for any i ∈ {1, . . . , t}, because otherwise we would get by part 1) that
n |Q(n), which is false. Hence, n is not a τ -number relative to any Qi(x)
where i ∈ {1, . . . , t}. �

Remark 1. If one could show that for every non-constant irreducible poly-
nomial Q(x) ∈ Z[x] there are infinitely many τ -numbers relative to Q(x),
then, by Lemma 1, we would obtain that there are infinitely many τ -numbers
relative to every non-constant polynomial, because every non-constant poly-
nomial is representable as a product of irreducible non-constant polynomials.

Using Lemma 1 and the comments before Lemma 1, we obtain the follow-
ing result.

Corollary 1. There are infinitely many τ -numbers relative to Q(x) ∈ Z[x]
if at least one of the following conditions holds:

1) Q(x) is not primitive (i.e., the greatest common divisor of its coefficients
is a > 1);

2) Q(x) is non-constant and Q(0) = 0;
3) Q(x) is non-constant and Q(1) = 0.

Proof. These follow from Lemma 1. Indeed, in case 1), we can write
Q(x) = aQ2(x) were a > 1, and there are infinitely many τ -numbers for
Q1(x) = a, as it was noted before Lemma 1.

In case 2), we can write Q(x) = xQ2(x). For any τ -number n, it is true
that τ(n) | n | nQ2(n) = Q(n). It is known that there are infinitely many
τ -numbers (e.g., pp−1 with prime p). So, there are infinitely many τ -numbers
relative to Q(x).

In case 3), we can write Q(x) = (x − 1)Q2(x). Let p < q be arbitrary
primes. Then (by Fermat’s little theorem) p |(qp−1−1). Set n = qp−1. Then
we have τ(n) = p | (qp−1 − 1) = (n− 1) | (n− 1)Q2(n) = Q(n) and there are
infinitely many such integers n. �

Next, we study the case, where |Q(0)|> 1.

Lemma 2. If Q(x) ∈ Z[x] and |Q(0)|= v > 1, then there are infinitely
many τ -numbers relative to Q(x).

Proof. Let p be a prime factor of v which exists since v > 1. Set
T (x) := Q(xp−1). It is known (see, for example, [5], E.1.2.5) that the set of
prime factors of values of T (n) is infinite as n runs over positive integers.
So, there exist some w ∈ Z+ and a prime r > v so that r |T (w) |Q(wp−1).

Clearly, r does not divide w, since from r |w and r |Q(wp−1), we would get
r |v, which is false. Choose a prime q so that r < q ≡ w (mod r). There are
infinitely many of them, by Dirichlet’s theorem. Take n = pr−1qp−1. Then
τ(n) = rp. Since p |v, we have p |Q(n). Since r > v > p, we get by Fermat’s
little theorem that pr−1 ≡ 1 (mod r). Hence, Q(n) ≡ Q(wp−1) ≡ 0 (mod r),
showing that rp |Q(n), i.e., τ(n) |Q(n). �
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Next, we study the case, where |Q(1)|> 1.

Lemma 3. If Q(x) ∈ Z[x] and |Q(1)|> 1, then there are infinitely many
τ -numbers relative to Q(x).

Proof. As |Q(1)|>1, then (|Q(1)|, 1)=1. Take any prime p≡1(mod |Q(1)|).
There are infinitely many of them, by Dirichlet’s theorem. Set n = p|Q(1)|−1.
Then n = p|Q(1)|−1 ≡ 1 (mod |Q(1)|) and Q(n) = Q(p|Q(1)|−1) ≡ Q(1) = 0
(mod |Q(1)|). Clearly, τ(n) =|Q(1)|, so we have Q(n) ≡ 0 (mod τ(n)). All

these integers n = p|Q(1)|−1 ≡ 1 are τ -numbers relative to Q(x) and there
are infinitely many of them, since the exponent |Q(1)|> 0. Hence, there are
infinitely many τ -numbers relative to Q(x). �

We can have a corollary for the special case of some cyclotomic polyno-
mials (see also the example after the corollary).

Corollary 2. There are infinitely many τ -numbers relative to cyclotomic

polynomial Φpk(x) = xp
k−1(p−1) + xp

k−1(p−2) + · · ·+ xp
k−1

+ 1 with prime p.

Proof. It is a partial case of Lemma 3 for cyclotomic polynomial Φpk(x),
because Φpk(1) = p > 1. �

Example 1. In the increasing order of degrees, the first cyclotomic poly-
nomials with index pk for some prime p are: Φ2(x) = x+1, Φ3(x) = x2+x+1,
Φ4(x) = x2 + 1, Φ5(x) = x4 + x3 + x2 + x+ 1, Φ7(x) = x6 + x5 + · · ·+ x+ 1,
Φ8(x) = x4 + 1, Φ9(x) = x6 + x3 + 1, Φ11(x) = x10 + x9 + · · · + x + 1,
Φ13(x) = x12 + · · ·+ x+ 1, Φ16(x) = x8 + 1, etc.

Now we are ready to prove our first theorem.

Theorem 1. If Q(x) ∈ Z[x] and |Q(0) ·Q(1)|6= 1, then there are infinitely
many τ -numbers relative to Q(x).

Proof. Notice, that the condition |Q(0) · Q(1) |6= 1 is equivalent to the
condition that either |Q(0)|6= 1 or |Q(1)|6= 1. In case we have a constant
polynomial Q(x) = 0, then every positive integer n is a τ -number relative to
Q(x), because Q(n) = 0 ≡ 0 (mod τ(n)) for every integer n > 0. We will go
through all other different allowed values of Q(0) and Q(1).

a) If Q(x) is non-constant and Q(0) = 0, then the claim follows from
Corollary 1, case 2).

b) If Q(x) is non-constant and Q(1) = 0, then the claim follows from
Corollary 1, case 3).

c) If |Q(0) |> 1, then the claim follows from Lemma 2.
d) If |Q(1) |> 1, then the claim follows from Lemma 3. �

3. Results concerning anti-τ-numbers

Theorem 2. There are infinitely many anti-τ -numbers relative to any
Q(x) ∈ Z[x] except for the constant polynomial Q(x) = 0.
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Proof. In case we have a constant polynomial Q(x) = c and c 6= 0, then

n = p|c| is an anti-τ -number relative to Q(x) for any prime p.
Let us assume that Q(x) = adx

d+ · · ·+a0 and d > 0. Choose large primes
q1, q2 such that both are larger than the maximum of numbers 2d+1, |ad|, |a0|
and such that (q1 − 1, q2 − 1) = 2. There are (q1 − 1)/2 quadratic residues
modulo q1 and they cannot all be roots of Q(x) (mod q1), as d < (q1− 1)/2.
So, we can choose r1 ∈ {1, . . . , q1 − 1} such that Q(r21) 6≡ 0 (mod q1).
Similarly, we can choose r2 ∈ {1, . . . , q2 − 1} such that Q(r22) 6≡ 0 (mod q2).

Since ((q1−1)/2, (q2−1)/2) = 1, the number (q1−1)/2 is invertible modulo
(q2 − 1)/2 and vice-versa. So, there is u1 ∈ Z+ such that

u1(q1 − 1)/2 ≡ 1(mod(q2 − 1)/2)

(from which we get u1(q1 − 1) ≡ 2 (mod (q2 − 1))). Choose a prime
p1 ≡ ru12 (mod q2).

Similarly, choose a prime p2 ≡ ru21 (mod q1), where
u2(q2 − 1)/2 ≡ 1 (mod (q1 − 1)/2)). Then u2(q2 − 1) ≡ 2 (mod (q1 − 1)).

Consider the integer n = pq1−11 pq2−12 . Clearly, pq1−11 ≡ 1 (mod q1) (by

Fermat’s little theorem) and pq2−12 ≡ r
u2(q2−1)
1 ≡ r21 (mod q1), since the

exponents are equivalent modulo q1−1. Thus, n = pq1−11 pq2−12 ≡ r21 (mod q1),
which implies Q(n) ≡ Q(r21) 6≡ 0 (mod q1). Hence, q1 - Q(n). Similarly we
get that q2 - Q(n). So Q(n) is coprime with q1q2 = τ(n). Since there are
infinitely many possibilities for choosing primes p1 and p2, there are infinitely
many anti-τ -numbers n = pq1−11 pq2−12 relative to Q(x). �

Next, let us describe some relations between the τ -numbers relative to
some polynomial and anti-τ -numbers.

Lemma 4. Suppose that Q(x) ∈ Z[x] is such that Q(0) ∈ {−1, 1}. If
n ∈ Z+ is a τ -number relative to Q(x), then n is an anti-τ -number.

Proof. It is clear that n = 1 is an anti-τ -number.
Let n > 1 be an arbitrary positive integer, which is not an anti-τ -number.

Then (n, τ(n)) > 1 and there exists some prime p such that p |n and p |τ(n).
Set Q(x) − Q(0) = xT (x). Then Q(n) = nT (n) + Q(0) = nT (n) ± 1.

Clearly, n - Q(n). Therefore, p - Q(n) and τ(n) - Q(n), as well. So n cannot
be a τ -number relative to Q(x). Hence, any τ -number relative to Q(x) must
be an anti-τ -number. �

The following proposition helps us to say something about the total num-
ber of τ -numbers relative to a polynomial with integer coefficients.

Proposition 1. Let Q(x) ∈ Z[x]. If there exists an anti-τ -number n > 1
which is a τ -number relative to Q(x), then there are infinitely many such
anti-τ -numbers, which are τ -numbers relative to Q(x).
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Proof. Let n > 1 be an anti-τ -number which is a τ -number relative to
Q(x). Then (n, τ(n)) = 1 and τ(n) |Q(n). As n > 1, we can consider its

canonical form n = pt11 · . . . · p
tk
k where k > 1, primes p1, . . . , pk are pairwise

different and t1, . . . , tk ∈ Z+. Then τ(n) = (t1 + 1) · . . . · (tk + 1). Since
(τ(n), n) = 1, then also (τ(n), pi) = 1 for each i ∈ {1, . . . , k}. By Dirichlet’s
theorem, there are infinitely many different primes

1) q1 such that q1 ≡ p1 (mod τ(n));
. . . . . . . . . . . . . . . . . .
k) qk such that qk ≡ pk (mod τ(n)).

Set m = qt11 · . . . · q
tk
k for some k-tuple of pairwise different primes

(q1, . . . , qk) that satisfy conditions 1) - k), respectively. Then

τ(m) = (t1 + 1) · . . . · (tk + 1) = τ(n),

(m, τ(m)) = 1 (i.e., m is an anti-τ -number), m ≡ n (mod τ(n)) and
Q(m) ≡ Q(n) ≡ 0 (mod τ(n)), because τ(n) divides Q(n). Hence,
τ(m) = τ(n) divides also Q(m). With that, we have constructed infinitely
many anti-τ -numbers m, which are τ -numbers relative to Q(x). �

Remark 2. By Lemma 4 and Proposition 1, we can now say that for
Q(x) ∈ Z[x] with Q(0) ∈ {−1, 1}, there are exactly 2 possibilities:

1) number 1 is the only τ -number relative to Q(x);
2) there are infinitely many τ -numbers relative to Q(x).

Example 2. Some non-constant polynomials with |Q(0) ·Q(1)|= 1, which
belong to the case 2) of Remark 2, are listed in the following table.

Q(x) suitable values for n Q(0) ·Q(1)

2x− 1
p16 · q6 with p ≡ ±3 (mod 7)
and q ≡ ±7 (mod 17), q 6= 7

−1

4x4 − 5x2 + 3x− 1
p4 · q6 with primes p ≡ 2 (mod 35)

and q ≡ 3 (mod 35)

−1
x4 + 32x2 − 33x− 1 1
x4 − 3x2 + 2x− 1 1
x4 − 7x2 + 8x− 1

p6 · q4 with primes p ≡ 2 (mod 35)
and q ≡ 3 (mod 35)

−1
x4 + 17x2 − 18x− 1 1
x3 − 2x2 + x− 1 1
x4 + 7x2 − 8x− 1

p4 · q10 with primes p ≡ 2 (mod 55)
and q ≡ 3 (mod 55)

1
x4 − 32x2 + 33x− 1 −1

x2 − 3x+ 1 −1

x4 − 17x2 + 18x− 1
p10 · q4 with primes p ≡ 2 (mod 55)

and q ≡ 3 (mod 55)
−1

x4 + 10x2 − 11x− 1
p6 · q10 with primes p ≡ 2 (mod 77)

and q ≡ 3 (mod 77)
1
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4. A result, which does not use the values of Q(0) and Q(1)

We have obtained also a result, which does not use the values of Q(0) and
Q(1) in order to classify some more polynomials relative to which there are
infinitely many τ -numbers.

Theorem 3. Let Q(x) ∈ Z[x] be a polynomial for which there exist differ-
ent primes q1, q2 with (q1−1, q2−1) = 2 and positive integers r1 < q1, r2 < q2
such that Q(r21) ≡ 0 (mod q1) and Q(r22) ≡ 0 (mod q2). Then there are in-
finitely many τ -numbers relative to Q(x).

Proof. Since q1, q2 are primes and r1 < q1, r2 < q2, we have (r1, q1) = 1
and (r2, q2) = 1. As (q1 − 1, q2 − 1) = 2, then ((q1 − 1)/2, (q2 − 1)/2) = 1,
which means that (q1−1)/2 is invertible modulo (q2−1)/2 and (q2−1)/2 is
invertible modulo (q1−1)/2. So, there exist positive integers u1, u2 such that
u1(q1−1)/2 ≡ 1 (mod (q2−1)/2) and u2(q2−1)/2 ≡ 1 (mod (q1−1)/2)). It
gives us u1(q1−1) ≡ 2 (mod (q2−1)) and u2(q2−1) ≡ 2 (mod (q1−1)). By
Dirichlet’s theorem, we can choose infinite number of pairs (p1, p2) of primes
such that p1 ≡ ru12 (mod q2) and p2 ≡ ru21 (mod q1).

Consider the integer n = pq1−11 pq2−12 > 1. Clearly, pq1−11 ≡ 1 (mod q1)

(by Fermat’s little theorem) and pq2−12 ≡ r
u2(q2−1)
1 ≡ r21 (mod q1), since the

exponents are equivalent modulo q1−1. Thus, n = pq1−11 pq2−12 ≡ r21 (mod q1)
and Q(n) ≡ Q(r21) ≡ 0 (mod q1). Hence, q1 |Q(n). Similarly, we get that
q2 |Q(n). So Q(n) is divisible by q1q2 = τ(n).

As there were infinitely many different ways to choose the primes p1, p2,
there are infinitely many numbers n = pq1−11 pq2−12 , which are τ -numbers
relative to Q(x). �

Remark 3. Notice, that n = pq1−11 pq2−12 in Theorem 3 is also an
anti-τ -number.

5. About the generators of a τ-number

We think that the reason why we could find a counterexample for Theo-
rem 34 d) in [8] is that actually the result was formulated wrongly. Hereby
we offer another formulation of this result with a proof.

Theorem 4. Apart from the order of the numbers a1, . . . , ak, any given
τ -number n is an (a1, . . . , ak)-generator for

∑
d|(n/τ(n)) h(d) different k-tuples

(a1, . . . , ak) of positive integers (here k can take different values for fixed n).

Proof. Take any τ -number n and set t = n
τ(n) . Then t is a positive integer.

If n = 1 or n = 2, then t = 1, the only positive divisor of t is d = 1 and∑
d|(n/τ(n)) h(d) = h(1) = 0, which corresponds to the fact that the integers

1 and 2 are not (a1, . . . , ak)-generators for any integer k > 0 and any k-tuple
(a1, . . . , ak) of positive integers.
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If 2 < n, then there exist a positive integer s, pairwise different prime
numbers p1, . . . , ps and positive integers b1, . . . , bs such that n = pb11 · . . . ·pbss .
As n was a τ -number, τ(n) divides n, which means that all primes, which
divide t = n

τ(n) , have to be from the set {p1, . . . , ps} of prime divisors of n.

Let d > 1 be any positive integer that is a divisor of t. Then
d = pd11 · . . . · pdss , where d1 6 b1, . . . , ds 6 bs are non-negative integers
such that m = d1 + . . . + ds > 0. By the definition, there are exactly h(d)
different k-tuples of positive integers (c1, . . . , ck) such that k is a positive
integer, 1 6 k 6 m, 1 < min{c1, . . . , ck} and c1 · . . . · ck = d.

Take any set {q1, . . . , qk} of pairwise different primes such that (qi, n) = 1
for all i ∈ {1, . . . , k} and define ai = ci − 1 for each i ∈ {1, . . . , k}. Then
(qi, pj) = 1 for every i ∈ {1, . . . , k} and every j ∈ {1, . . . , s}, which means
that (qa11 · . . . · q

ak
k , n) = 1. Define n′ = nqa11 · . . . · q

ak
k . Then

τ(n′) = τ(n)τ(qa11 · . . . · q
ak
k ) = τ(n)c1 · . . . · ck = τ(n)d.

It is clear that τ(n′) = τ(n)d is a divisor of n. Hence, τ(n′) is also a divisor
of n′ and n′ is a τ -number. So, we have that n is an (a1, . . . , ak)-generator.

We see that for every positive divisor d of t, apart from the order of
the numbers a1, . . . , ak, the number n is an (a1, . . . , ak)-generator for h(d)
different k-tuples (a1, . . . , ak), where k is a positive integer. Moreover, for
different positive divisors d, d′ of t, their respective tuples (a1, . . . , ak) and
(a′1, . . . , a

′
k), where k and k′ are positive integers, are also different, because

(a1 + 1) · . . . · (ak + 1) = d 6= d′ = (a′1 + 1) · . . . · (a′k + 1).

Hence, every τ -number n is an (a1, . . . , ak)-generator for at least∑
d|(n/τ(n)) h(d) different k-tuples (a1, . . . , ak) of positive integers (where k

is a positive integer that can vary).
On the other hand, suppose that a τ -number n is an (a1, . . . , ak)-generator

for some positive integer k and positive integers a1, . . . , ak. Then there
exist pairwise different primes p1, . . . , pk such that (pi, n) = 1 and
(pi, aj + 1) = 1 for every i, j ∈ {1, . . . , k}. As n is an (a1, . . . , ak)-generator,
n′ = npa11 · . . . · pakk is a τ -number, which means that
τ(n′) = τ(n)(a1 + 1) . . . (ak + 1) divides n′. As (pi, aj + 1) = 1 for all
i, j ∈ {1, . . . , k}, the number τ(n)(a1 + 1) . . . (ak + 1) has to divide n, which
means that d = (a1 + 1) . . . (an + 1) is a divisor of t = n

τ(n) ∈ Z. Hence

all k-tuples (a1, . . . , ak), for which n is an (a1, . . . , ak)-generator for some
positive integer k and positive integers a1, . . . , ak, are of the form described
above.

With that we have demonstrated that apart from the order of the numbers
a1, . . . , ak, any given τ -number n is an (a1, . . . , ak)-generator for exactly∑

d|(n/τ(n)) h(d) different k-tuples (a1, . . . , ak) of positive integers (where k

can take different positive values for a fixed n). �



116 MART ABEL, HELENA LAUER, AND ELLEN REDI

6. Open problems

Let Q(x) = amx
m + . . . + a1x + a0 be a polynomial with integer co-

efficients. First, let us remark that the condition “|Q(0) · Q(1) |6= 1” is
equivalent to the condition “ama0 + . . . + a1a0 + a20 6∈ {−1, 1}”, because
ama0 + . . .+ a1a0 + a20 = Q(0) ·Q(1).

Similarly, the condition “|Q(0) · Q(1)|= 1” is equivalent to the condition
“ama0 + . . .+ a1a0 + a20 ∈ {−1, 1}”.

Formally, the new equivalent conditions seem not to use the values of the
polynomial and they can be easily checked by doing similar calculations with
the coefficients of the polynomial. We give the following definition in order
to shorten the texts of open problems.

Definition 1. We say that a polynomial Q(x) = amx
m + . . .+ a1x1 + a0

with integer coefficients is

a) of type I, if ama0 + . . .+ a1a0 + a20 6∈ {−1, 1};
b) of type II, if ama0 + . . .+ a1a0 + a20 ∈ {−1, 1}.

By Theorem 1, we know that, for every polynomial Q(x) of type I, there
are infinitely many integers n such that n is a τ -number relative to polyno-
mial Q(x).

For polynomials of type II we have two examples (Q(x) = 1 and
Q(x) = −1) such that only n = 1 is a τ -number relative to polynomial
Q(x). But we also have several examples, where there are infinitely many
τ -numbers relative to a polynomial Q(x) of type II. For several polynomials
of type II (e.g., x2−x+ 1, x2 +x−1, x3 +x2−1, 2x2−2x+ 1, 2x2−2x−1,
etc) we have checked by a computer program that the only τ -number rela-
tive to these polynomials, in the range from 1 to 108, is 1. Unfortunately,
we were not able to classify the polynomials of type II by the number of
τ -numbers relative to the polynomial yet. We just remark here, that the
only common thing for polynomials of type II, for which we were able to
find an infinite family of τ -numbers with respect to the polynomial, was
that |am| + . . .+ |a0| was a prime. From this, the following open problem
arises.

Open problem 1. Determine the conditions (using only the values of
am, . . . , a0), which are necessary and sufficient for a polynomial Q(x) of type
II to have infinitely many τ -numbers relative to Q(x).

In our results, we constructed for each polynomial of type I only one
infinite family of τ -numbers to polynomial Q(x). Actually, there are more
different families of τ -numbers n with different values of τ(n). For example,
for a polynomial Q(x) = x−2, there are families n1 = 2p and n2 = 4p, where
p > 2 is a prime, n3 = 2pq, where p and q are primes with p ≡ 3 ≡ q (mod 8),
with τ(n1) = 4, τ(n2) = 6 and τ(n3) = 8. Perhaps there are even more
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families of τ -numbers relative to the polynomial Q(x) = x− 2 with different
number of positive divisors. From this the following open problems arise.

Open problem 2. Determine all possible values for τ(n) such that n is
a τ -number relative to a fixed polynomial Q(x) = amx

m + . . . + a1x + a0
with integer coefficients, using only the values of am, . . . , a0.

Open problem 3. Determine all possible values n ∈ Z+ which are
τ -numbers relative to fixed polynomial Q(x) = amx

m + . . .+ a1x+ a0 with
integer coefficients, using only the values of am, . . . , a0.
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