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Module bundles and module amenability

Terje Hill and David A. Robbins

Abstract. Let X be a compact Hausdorff space, and let {Ax : x ∈ X}
and {Bx : x ∈ X} be collections of Banach algebras such that each Ax is
a Bx-bimodule. Using the theory of bundles of Banach spaces as a tool,
we investigate the module amenability of certain algebras of Ax-valued
functions on X over algebras of Bx-valued functions on X.

1. Introduction

Let X be a set, perhaps even a topological space, and suppose that
{Ex : x ∈ X} is a collection of Banach spaces indexed by X. Let S be
a Banach space of choice functions σ from X to the disjoint

union E =
•⋃
{Ex : x ∈ X} of the Ex (i.e., σ ∈

∏
x∈X

Ex) such that

{σ(x) : σ ∈ S} = Ex for each x ∈ X. If S has a property P whenever
each Ex has property P (or perhaps when only some do), we say that P
is hereditary for S. It seems fairly natural to ask for which spaces S and
properties P this hereditary condition holds.

In this paper, when the Ex are Banach algebras, we will investigate the
extent to which a condition sufficient for module amenability is hereditary
for spaces S of a specific description. We will conduct this investigation
using the language of bundles of Banach spaces ( = Banach bundles) and
their Banach section spaces. The paper is organized as follows. In Section 2
we will introduce the notion of Banach bundles and from the somewhat
scattered references we will gather together for the reader’s convenience some
definitions, useful facts, and examples. We close the section with a very
abbreviated bibliography of Banach bundles. In Section 3 we will discuss
the notion of module amenability, and prove our main result. In the very
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short Section 4 we will prove a result regarding irreducibility of modules
over section spaces of bundles of Banach algebras, and make two auxiliary
observations.

2. Banach bundles – introduction, examples, and relevant
properties

We first describe the spaces S with which we will be working. Let X be a
compact Hausdorff space and, as above, let {Ex : x ∈ X} be a collection of

Banach spaces indexed by X, with disjoint union E =
•⋃
{Ex : x ∈ X}. Let K

be the common scalar field, either R or C, and let π : E → X be the natural
projection. We let S be a vector space of choice functions σ : X → E which
satisfies the following:

1) for each x ∈ X, Ex = φx(S) = {σ(x) : σ ∈ S} (S is said to be full; φx
is the evaluation map at x);

2) for each σ ∈ S the norm map x 7→ ‖σ(x)‖ is upper semicontinuous;
3) S is a C(X)-module under the pointwise operations;
4) S is closed in the sup-norm.
(We observe that, while we are operating in the context of Banach spaces

and algebras only, it is possible using only 1) and 3) above to describe an
analogous situation in the more general context where the Ex are arbitrary
topological algebras; see [1].)

Note that in the presence of the sup-norm on the space S, it is in fact a
C(X)-locally convex module. That is (among other equivalent definitions,
see [22] or [17]), whenever f, g ∈ C(X) with fg = 0, we have
‖(f + g)σ‖ = max{‖fσ‖ , ‖gσ‖} for all σ ∈ S.

When S satisfies these conditions, and in the presence of the compactness
of X (in the language of [11], S is a function module), there is a topology on
E such that S is precisely the space of continuous choice functions σ : X → E .
This space of continuous choice functions is denoted by Γ(π), which is the
section space of the bundle of Banach spaces (= Banach bundle) π : E → X
with fibers Ex; we shall denote this bundle by π when there can be no
confusion. The topology on E is called the bundle topology, and is defined
by tubes of the form

T = T (U, z, ε) = {w ∈ E : π(w) ∈ U and ‖σ(π(w))− w‖ < ε},
where σ ∈ S is such that σ(x) = z ∈ Ex, U ⊂ X varies over neighborhoods
of x ∈ X, and ε > 0 varies; the tubes T form a subbasis for the bundle
topology. With this bundle topology, the addition map (z, w) 7→ z + w is

continuous from E ∨E to E , where E ∨E =
•⋃
{Ex×Ex : x ∈ X} is the fibered

product of E with itself with the relative topology from E ×E . The intuitive
notion is that if σ ∈ Γ(π), then we can think of σ(x) as moving continuously
through the various spaces Ex as x moves continuously through X.
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Two sources which the reader may find most immediately useful for in-
formation on the development of the theory of Banach bundles are [17] and
[30].

The definition above of a Banach bundle then leads to the reasonably
natural definition of a bundle of Banach algebras. Suppose that

π : A =
•⋃

x∈X
{Ax : x ∈ X} → X is a Banach bundle where each Ax is a

Banach algebra. As noted above, with the bundle topology on A, the map
(z, w) 7→ z + w, A ∨ A → A is continuous. If in addition Γ(π) is closed
under pointwise multiplication, then we call π a bundle of Banach algebras;
this is equivalent to the continuity of the multiplication map (z, w) 7→ zw
from A ∨ A to A. If each Ax has identity ex, and if the identity selection e
(given by e(x) = ex) is actually in Γ(π), we say that π is an algebra bundle
with identity. (Even when each fiber Ax of A has an identity, A may yet not
be a bundle with identity. For example, we may identify c0([0, 1]) with the

section space Γ(π0) of the “spiky” bundle π0 : A =
•⋃
{K : x ∈ [0, 1]} → [0, 1]

with constant fiber K. Evidently, each fiber Kx = K has an identity, but the
identity selection is not in Γ(π). See [30].)

Given the notion of a bundle of Banach algebras, then it should be clear
what we mean by a bundle of Banach modules over a bundle of Banach
algebras. Let π be a bundle of Banach algebras Ax with section space Γ(π),
as above. Suppose that for each x ∈ X, Mx is a left (right, bi-) module

over Ax, and that ρ : M =
•⋃
{Mx : x ∈ X} → X is a bundle of Banach

spaces such that for each τ ∈ Γ(ρ) and α ∈ Γ(π) we have ατ ∈ Γ(ρ). (This
is equivalent to the continuity of the map (z, w) 7→ zw from A ∨M to M.)
Then ρ is a bundle of left Banach modules over the bundle π of Banach
algebras. Evidently, the same notions apply for right and bimodules. If the
algebra bundle π has identity, and if each Mx is unital as an Ax-module,
then clearly Γ(ρ) is unital as a Γ(π)-module. See [31] for this development.

Our investigation in Section 3 into how a condition sufficient for module
amenability might be hereditary is motivated by similar cases of Banach
bundles (of algebras, or just of spaces) π : E → X, where properties of
the Ex can be inherited by Γ(π). For example, in [16] it was shown that
Γ(π) has the approximation property if and only if each fiber Ex does also.
More recently, the present authors showed in [25] that if π is a Banach
algebra bundle with each fiber commutative, then Γ(π) satisfies spectral
synthesis if and only if each fiber does also. The papers [38] and [23] show
that several geometric properties of the Ex can be inherited by Γ(π). The
authors also showed, in [26], that if π is a bundle of Banach algebras, then
Γ(π) is amenable if and only if the fibers Ex are “uniformly amenable” in
a very reasonable definition of the term (see the reference for the meaning
of this). The present paper continues in this vein. (We also note here the
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importance for the notion of heredity of using the sup-norm on function
spaces S as described at the beginning of this section. For example, it is
evident that S = `1([0, 1]), when regarded as a space of functions from [0, 1]

to
•⋃
{Kx = K : x ∈ [0, 1]}, satisfies conditions 1) – 3) above; clearly each Kx

has a bounded approximate identity, but `1([0, 1]) does not.)
Following are some examples of module bundles over algebra bundles.

Here and elsewhere in the paper we will abuse notation slightly in the fol-
lowing fashion. Suppose that A is a Banach algebra, that I ⊂ A is a closed
ideal, and that M is a (left) A-module. Unless otherwise noted, by IM (or
by I ·M, if desirable for typographic clarity) we will mean the closure in M
of the set {am : a ∈ I,m ∈ M}. If M = AM, we say that M is an essential
A-module.

Example 1. Any Banach space over K is also a module over K. Let

ρ : E =
•⋃
{Ex : x ∈ X} → X be a Banach bundle, with each Ex a Banach

space over a common K, and let π : A = X ×K → X be the trivial bundle,
where A has its product topology and Γ(π) ' C(X). Then Γ(ρ) satisfies
conditions 1) – 4), so that ρ is a bundle of modules over π.

Example 2. Let E be a Banach module over the Banach algebra A,
and let C(X,E) be the space of continuous E-valued functions. Then
C(X,E) is a Banach module over C(X,A). We have C(X,E) ' Γ(ρ), where
ρ : X×E → X is the trivial bundle with constant fiber E and X×E has the
product topology; ρ is a bundle of Banach modules over the trivial bundle
π : X ×A → X (defined similarly).

Example 3. Suppose that for each x ∈ X, Ex is a Banach module over
the algebra Ax. Denote by ρ0 : E → X the spiky bundle with fibers Ex over
X (again, see [30]). Then Γ(ρ0) is the closure in the sup norm of the space
of choice functions with finite support. If π : A → X is any algebra bundle
with fibers Ax, then ρ0 is a module bundle over π.

Example 4. Let A be a Banach algebra, and let I be a collection of closed
ideals I ⊂ A. Suppose that I can be topologized as a compact Hausdorff
space in such a way that the map I 7→ ‖a+ I‖ from I to R+ is upper
semicontinuous for each a ∈ A. (In the language of [30], I is said to be
topologically compatible with A.) Let M be a Banach A-module. For I ∈ I,

set FI = M/IM, and let F =
•⋃
{FI : I ∈ I}. Then I 7→ ‖m+ IM‖ is upper

semicontinuous for each m ∈ M, so that ρ : F → X is a Banach module

bundle over the Banach algebra bundle π : A =
•⋃
{A/I : I ∈ I} → X.

In particular, if A is commutative with identity, and I is the collection of
maximal ideals ( = kernels of K-valued algebra homomorphisms on A) in
A, with its weak*-topology, and if M is an A-module, then I 7→ ‖a+ I‖
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and I 7→ ‖m+ IM‖ are upper semicontinuous for each a ∈ A and m ∈ M,
and so ρ and π satisfy the described conditions. (See [31].) Or, for another
example in this vein, the Dauns–Hofmann representation theorem (see, e.g.,
[21]) states that a C∗-algebra is isometrically isomorphic to the section space
of a certain bundle of (quotient) C∗-algebras.

Following are some salient facts regarding Banach bundles (algebra bun-
dles, module bundles) which we will use in Section 3 in proving the hereditary
nature of module amenability (to be defined therein).

I) If π : E → X is a Banach bundle, and F ⊂ Γ(π) is a closed linear sub-
space which is also a C(X)-module, set Fx = {σ(x) : σ ∈ F} = φx(F ), where
φx is the evaluation map at x; clearly Fx ⊂ Ex. If we set
(Fx)x = {σ ∈ Γ(π) : σ(x) ∈ Fx}, then F =

⋂
x∈X

(Fx)x. The subspace

and C(X)-module F is itself the section space of a bundle ρ1 : F → X
with fibers Fx. If σ ∈ Γ(π), then σ ∈ F if and only if σ(x) ∈ Fx for all
x. Moreover, there is a bundle π1 : E/F → X whose fibers over x are
(isometrically isomorphic to) Ex/Fx, and an isometric C(X)-isomorphism
Φ : Γ(π)/Γ(ρ1) = Γ(π)/F → Γ(π1), with the correspondence given by
[Φ(σ + F )](x) = σ(x) + Fx; we have ‖σ + F‖ = supx∈X ‖σ(x) + Fx‖ .

II) If π : E → X is a Banach bundle, and U ⊂ X is a closed subset, let
IU ⊂ C(X) denote the ideal of functions which vanish on U. Then, as a
special case of I), we have Γ(πU ) ' Γ(π)/IUΓ(π), where Γ(πU ) is the section

space of the restriction bundle πU : EU =
•⋃
{Ex : x ∈ U} → U (with EU given

its relative topology from E). Because of the Tietze theorem for bundles (see,
e.g., [29, Lemma 3.3] or [17, Corollary 4.5]), we can identify the restriction
bundle πU with its extension bundle π′U : E ′ → X, where E′x = 0 if x 6∈ U
and E′x = Ex if x ∈ U. Even more particularly, if Ix ⊂ C(X) is the maximal
ideal of functions in C(X) which vanish at x, we have Ex ' Γ(π)/IxΓ(π)
as a Banach space (and as the highly restricted “single point” section space
Γ(π′x) of the bundle π′x : E ′x → X, whose fibers are E′y = 0 if y 6= x, and
E′x = Ex).

III) Let π : E → X and ρ : F → X be Banach bundles, and let
T : Γ(π)→ Γ(ρ) be a continuous C(X)-homomorphism, i.e., T (fσ) = fT (σ)
for f ∈ C(X) and σ ∈ Γ(π). Then there exist induced linear maps
Tx : Ex → Fx which make this diagram commute:

Γ(π)
T−→ Γ(ρ)

↓ ↓
Ex −→

Tx
Fx

, (Figure 1)

where the downward arrows indicate evaluation of sections at x ∈ X. It
can be shown that ‖T‖ = supx ‖Tx‖ , and that T induces a continuous map
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T̃ : E → F which makes this diagram commute:

E T̃−→ F
π ↘ ↙ ρ

X

. (Figure 2)

Conversely, each continuous map T̃ : E → F which makes the diagram in

Figure 2 commute and such that (T̃ )x : Ex → Fx is linear (where (T̃ )x is the

restriction of (T̃ )x to Ex) describes a C(X)-homomorphism T : Γ(π)→ Γ(ρ),

defined by (Tσ)(x) = (T̃ )x(σ(x)).
IV) Recall from the beginning of this section that, if M is a C(X)-module,

we say that M is C(X)-locally convex provided that (among other character-
izations) we have ‖(f + g)m‖ = max{‖fm‖ , ‖gm‖} whenever f, g ∈ C(X)
with fg = 0, and m ∈M. A C(X)-locally convex module M is isometrically

C(X)-isomorphic to the section space Γ(π) of a bundle π : E =
•⋃
Ex → X,

where Ex = M/IxM . Conversely, each such section space is C(X)-locally
convex.

Of these Remarks, I) and II) can be found in the discussion in Chapter 9
of [17]; III) can be found in [30]; and IV) can be found in [17], Chapter 7.

We close this section with the following bibliographical note, taken in
large part from [24]. Banach bundles and their section spaces have been
around under a variety of labels for some time, to a variety of ends. The ter-
minology includes “upper semicontinuous function modules” [11], as noted
above; “Banach function modules” [7]; and “bundles of topological vector
spaces” [17]. A more categorical discussion of the matter can be found in,
e.g., [22] and [32]; the paper [19] and some of its references are also rele-
vant. Indeed, the basic ideas go back at least as far as 1949 [18] and 1951
[28], under the terminology “continuous sums” (of Banach spaces). The tie
between Banach bundles and function modules can be summarized by the
following. When X is compact, the section space of any Banach bundle
is a function module, and, conversely, any Banach C(X)-module M has a
norm-decreasing C(X)-module representation as the space of sections of a
certain “canonical” bundle π : E → X with fibers Ex = M/IxM, where
again IxM is the closed span of {fm : f ∈ C(X) and f(x) = 0, m ∈M} (see
[30]) – and, if M is C(X)-locally convex, this representation is an isometric
C(X)-isomorphism; this is the content of IV) above. See [15], and also [12]
and [14] for more connections, especially regarding bundles of algebras.

3. Module amenability and heredity

Let A and B be Banach algebras, where A is also a Banach B-bimodule.
The notion of module amenability (of A as a B-bimodule) was introduced
by M. Amini in [2] and its Corrigendum [3] as a generalization of the classic
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concept of amenability for Banach algebras (see [27]) with the goal of using
module amenability as a tool for studying certain aspects of semigroup al-
gebras. It was subsequently found that the antecedent conditions on A and
B which were used in [2] and [3] were inadequate to the purpose. Those
conditions were modified in [35] and [10], and have been used in a sizeable
number of papers by Amini and others since that time ([4]). (See, e.g., [8],
[9], [36], [6] or [5].) The actual definition of module amenability as intro-
duced in [2] has not changed over time. It is already known that, loosely
speaking and just as in the classical case of amenable Banach algebras, mod-
ule amenability is preserved by quotients and tensor products. (See various
of the papers cited above.) Our purpose is to investigate how the property
of module amenability (actually, a property sufficient for it), with the an-
tecedent conditions on A and B from [35] and [10] et seq., is hereditary for
appropriately specified spaces of algebra-valued functions. We now provide
specifics.

Definition 1 (see, e.g., [35] and [10]). Suppose that A and B are Banach
algebras such that A is a Banach B-bimodule, and let M be simultaneously
a Banach A- and B-bimodule. Suppose that the following compatibility
conditions of actions (of B acting on A) are satisfied:

(*) b(aa′) = (ba)a′ and (**) (aa′)b = a(a′b), a, a′ ∈ A, b ∈ B. (1)

Suppose also that

b(am) = (ba)m, a(bm) = (ab)m and (bm)a = b(ma) (2)

for all a ∈ A, b ∈ B, and m ∈M for the left actions of A and B on M , and
similarly for the right and two-sided actions of A and B on M . We then call
M a Banach A-B module.

If additionally we have

bm = mb (3)

for all b ∈ B and m ∈M, we say that M is a commutative A-B module.

Note that the commutativity of M as an A-B bimodule specifically refers
to the action of B on M, and that A itself may not be an A-B module
(although if A is a commutative B-module it will be so).

If M is a commutative A-B bimodule, then so is the dual space M∗, where
the multiplication is given as usual by

(fa)(m) = f(am), (af)(m) = f(ma)

and

(fb)(m) = f(bm) = f(mb) = (bf)(m)

for f ∈M∗, a ∈ A, b ∈ B, m ∈M.
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Let M be an A-B bimodule. Then an A-B module derivation of A is a
continuous linear map D : A→M which satisfies the properties

D(aa′) = D(a)a′ + aD(a′)

and

D(ba) = bD(a), D(ab) = D(a)b

for a, a′ ∈ A, b ∈ B. Note that D is a B-module map of A to M. If M is a
commutative A-B bimodule and m ∈M, define the map δm : A→M by

δm(a) = am−ma for a ∈ A and m ∈M.

It is straightforward to check that in the presence of the commutativity of
M and the compatibility conditions given in conditions (1) and (2) above,
δm is an A-B module derivation. We call a map of the form δm an inner
derivation.

We then make the following definition, originally appearing in [2] and [3],
and repeated in [35] and subsequent papers.

Definition 2. LetA andB be Banach algebras, and suppose thatA is also
a B-bimodule satisfying (*) of condition (1). Then A is said to be B-module
amenable ( = amenable as a B-module) if, whenever M is a commutative
A-B module satisfying condition (2) and D : A → M∗ is an A-B module
derivation, then D is inner, i.e., D = δm∗ for some m∗ ∈M∗.

Although we will not be using this homological characterization, we note
that this definition is equivalent to asserting that H1

B(A,M∗) = 0 for each
commutative A-B module M, where H1

B(A,M∗) denotes the first cohomol-
ogy group, relative to B, with coefficients in M∗.

In the case that B = K, any Banach A-bimodule M is automatically a
commutative A-K bimodule, and the definition of B-module amenability of
A reduces to the usual notion of amenability of a Banach algebra (see [27]).

Now, let A be a B-bimodule, and also consider A as a bimodule over itself.
Then the projective tensor product A⊗̂A is both an A- and a B-bimodule
under the actions b(a⊗a′) = (ba)⊗a′ and c(a⊗a′) = (ca)⊗a′, and similarly
for the right actions of B and A on A⊗̂A, where a, a′, c ∈ A and b ∈ B.
We let KB, the B-balanced kernel in A⊗̂A be the closed span in A⊗̂A of
elements of the form (ab) ⊗ a′ − a ⊗ (ba′), and set A ⊗B A := (A⊗̂A)/KB,
as in [37]. For a, a′ ∈ A, we will write an elementary element of A⊗B A as
a⊗B a′ = a⊗ a′ +KB, and use either as convenient for clarity.

Define the map ω : A⊗̂A → A by ω(a ⊗ a′) = aa′, and let JB be the
closure in A of ω(KB). Then ω induces a map

ω̃ : A⊗B A→ A/JB, a⊗ a′ +KB 7→ aa′ + JB,
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as in this diagram:

A⊗̂A ω−→ A
↓ ↓

A⊗B A = (A⊗̂A)/KB −→
ω̃

A/JB
. (Figure 3)

All maps involved are norm-decreasing. We have that KB is an A- and a B-
submodule of A⊗̂A, and JB is an A- and a B-submodule of A; hence A⊗BA
and A/JB are both A- and B-modules, and A/JB is an A-B module. (See
[35]).

For the following definition, recall that if B is a Banach algebra, and if
M is a Banach B-bimodule, we say that a net {bi} ⊂ B is a (two-sided)
approximate identity for M if both bim → m and mbi → m in norm in M ;
{bi} is a bounded approximate identity if for some q > 0 we have ‖bi‖ < q
for all i; left- and right-approximate identities are defined analogously.

Definition 3 (see [35]). Let A be a B-bimodule satisfying condition (1).
The algebra A is said to have a B-module approximate diagonal if there is
a bounded net {uλ} ⊂ A⊗B A such that

1) {ω̃(uλ)} is a bounded approximate identity (b.a.i.) for A/JB (that is,
for each a ∈ A we have

‖[ω̃(uλ)a− a] + JB‖ → 0 and ‖[aω̃(uλ)− a] + JB‖ → 0,

where the norms are taken in A/JB); and
2) for each a ∈ A, we have ‖uλa− auλ +KB‖ → 0 (where the norm is

taken in A/KB).
In 2), the multiplication is given by, for example, if uλ =

∑
ck⊗ c′k +KB,

then uλa =
∑
ck ⊗ (c′ka) +KB.

The following establishes the fundamental relationship between the
B-module amenability of A and the existence of a B-module approximate
diagonal when A⊗B A is a commutative A-B module.

Theorem 1 (see [35], Theorem 2.1). Let A and B be Banach algebras
such that A is a B-bimodule, and suppose that A ⊗B A is a commutative
A-B module. Then the following statements are equivalent:

1) A is B-module amenable and A/JB has a b.a.i.;
2) A has a B-module approximate diagonal.

(We omit a third part of this equivalence which is not necessary for our
purposes.)

Note that this theorem does not establish equivalent conditions for module
amenability per se. This is in contrast to the intrinsic characterization of
amenability of a Banach algebra which was proved in [20, p. 264], and used
by the authors in [26] to show that amenability was hereditary for certain
spaces of functions taking their values in (possibly varying) Banach algebras.
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It is easy to check the following: 1) if A is commutative as a B-module,
then A ⊗B A is commutative and JB = {0}; and 2) if A has a b.a.i. and
A⊗B A is commutative as a B-module, then so is A/JB.

Henceforth, unless otherwise noted, we will let X be a compact Hausdorff

space, and ρ : A =
•⋃
{Ax : x ∈ X} → X and π : B = {Bx : x ∈ X} → X

be bundles of Banach algebras such that the following standard assumptions
hold:

S1) each Ax is a Bx-bimodule satisfying condition (1);
S2) each Ax has a Bx-module approximate diagonal {uλx : λx ∈ Λx},

with ‖uλx‖ ≤ px, and the Bx-module approximate diagonals are uniformly
bounded with supx px < p <∞;

S3) each Ax ⊗Bx Ax is a commutative Bx-module;
S4) ρ is a bundle of bimodules over π.
Then, because the operations are pointwise-defined, Γ(ρ) is a Γ(π)-bimodule

which also satisfies condition (1). We will denote A := Γ(ρ) and B := Γ(π).
Note that each of A and B is also a C(X)-module, and that each of them is
necessarily commutative over C(X). Denote by KC(X) and KB the C(X)-

and B-balanced kernels, respectively, in A⊗̂A. Denote by JB ⊂ A the closure
of ω(KB), where ω : A⊗̂A → A is the multiplication map in Figure 3. We
will also generally assume that

S5) KC(X) ⊂ KB(⊂ A⊗̂A).

Before we prove a series of results leading up to the proof of Theorem 2,
we note that the condition S5) that KC(X) ⊂ KB may frequently hold.

Lemma 1. Let A and B satisfy S1)– S4) of the standard assumptions.
If B has an approximate identity {βi} for A, then KC(X) ⊂ KB, and KC(X)

is a B-bimodule. Especially, this is true when π is a bundle with identity
and ρ is a unital B-module.

Proof. Let {βi} ⊂ B be an approximate identity for A, and let σ, τ ∈ A,
f ∈ C(X), and β ∈ B. Let t = σf ⊗ τ − σ ⊗ fτ ∈ KC(X), and set

ti = (σf)βi ⊗ τ − σ ⊗ βi(τf) = σ(fβi)⊗ τ − σ ⊗ (fβi)τ ∈ KB.

We then have

‖ti − t‖ ≤ ‖f(σβi − σ)⊗ τ‖+ ‖σ ⊗ (βiτ − τ)f‖
≤ ‖f‖ (‖σβi − σ‖ ‖τ‖+ ‖βiτ − τ‖ ‖σ‖)
→ 0.

Since the ti are in the closed set KB, so also is t ∈ KB. It is then evident

that finite sums
n∑
k=1

(σkfk ⊗ τk − σk ⊗ fkτk) ∈ KC(X) are also in KB, and

since sums of this form are dense in KC(X), it follows that KC(X) ⊂ KB.
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Note also that

βt = β[(σf)⊗ τ − σ ⊗ (τf)]

= (βσ)f ⊗ τ − (βσ)⊗ f ∈ KC(X),

and similarly for right actions, so that KC(X) is a B-bimodule. �

We leave until later a demonstration of a condition sufficient to ensure
that B has a bounded approximate identity for A.

Lemma 2. Let A and B satisfy S1)– S5) of the standard assumptions,
and let JB ⊂ A be as defined. Then A ⊗C(X) A,A ⊗B A, and A/JB are
all C(X)-bimodules. Moreover, the induced map ω̃ : A ⊗B A → A/JB of
Figure 3 is a C(X)-module homomorphism.

Proof. Clearly, A⊗̂A, and hence A⊗C(X)A are C(X)-modules. Moreover,
for σβ ⊗ τ − σ ⊗ βτ ∈ KB and f ∈ C(X), we have

f(σβ ⊗ τ − σ ⊗ βτ) = (fσ)β ⊗ τ − (fσ)⊗ βτ ∈ KB,

and similarly for right action by f. Therefore, KB is a C(X)-module, and
hence A⊗B A is a C(X)-module.

To show that JB is a C(X)-module, let f ∈ C(X), and let β ∈ B and
σ, τ ∈ A. Then by linearity and continuity it suffices to observe that for
z = σβ ⊗ τ − σ ⊗ βτ ∈ KB (because the multiplication is pointwise, and f
is K-valued) we have

fω̃(z) = f(σβ)τ − fσ(βτ) = (f(σβ))τ − (fσ)(βτ)

= ω̃(f(σβ)⊗ τ − (fσ)⊗ (βτ))

= ω̃(fz)

∈ ω̃(KB) ⊂ JB(⊂ A),

and so A/JB is also a C(X)-module (and ω̃ is a C(X)-module homomor-
phism). �

Corollary 1. Let A and B satisfy S1)– S5) of the standard assump-
tions. We can identify JB ⊂ A with the section space Γ(η) of the bundle

η :
•⋃
JBx → X, so that A/JB can be identified with the section space of

a bundle χ :
•⋃
Ax/JBx → X, where for σ ∈ A we have σ + JB ↔ (x 7→

σ(x) + JBx) ∈ N = Γ(χ).

Proof. We note that JB is a C(X)-submodule (necessarily C(X)-locally
convex) of A, with fibers (isometric to) JBx . Thus, from I) of Section 2, the
C(X)-module A/JB is also C(X)-locally convex, and can be identified with

the section space Γ(χ) of the bundle χ :
•⋃
Ax/JBx → X. Then, again by I)

of Section 2, the correspondence between A/JB and Γ(χ) is as claimed. �
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Lemma 3. Let A and B satisfy S1)– S5) of the standard assumptions.
Then A ⊗B A is a C(X)-locally convex module. In particular, there is a

bundle ρ ⊗π ρ : M =
•⋃
Ax ⊗Bx Ax → X such that M := Γ(ρ ⊗π ρ) is

isometrically C(X)-isomorphic to A ⊗B A. The correspondence is given by
σ ⊗B τ := σ ⊗ τ +KB ↔ σ �B τ, where

(σ �B τ)(x) = σ(x)⊗Bx τ(x) = σ(x)⊗ τ(x) +KBx .

Proof. Since KC(X) ⊂ KB, it follows from ordinary algebraic considera-
tions that there is a C(X)-isomorphism

A⊗B A = (A⊗̂A)/KB ' [(A⊗̂A)/KC(X)]/[KB/KC(X)].

That the relation ' is also an isometry follows because all the maps involved
in proving the algebraic identity are norm-decreasing.

Having established the C(X)-isometric isomorphism between the two sides
of ', now consider the right-hand side. Since A is C(X)-locally convex, it
follows from [34, Theorem 1.2 and Proposition 1.5] that (A⊗̂A)/KC(X) =
A ⊗C(X) A can be identified with the section space Γ(ρ ⊗C(X) ρ) of a bun-

dle with fibers Ax⊗̂Ax, and the image of σ ⊗ τ + KC(X) ∈ (A⊗̂A)/KC(X)

is σ � τ ∈ Γ(ρ ⊗C(X) ρ), with (σ � τ)(x) = σ(x) ⊗ τ(x); in particular,
A ⊗C(X) A is C(X)-locally convex. Then KB/KC(X) is a C(X)-submodule

of (A⊗̂A)/KC(X), and therefore necessarily C(X)-locally convex. Under the
identification above, an element σβ ⊗ τ − σ ⊗ βτ + KC(X) ∈ KB/KC(X) is
mapped to σβ � τ − σ � βτ ∈ Γ(ρ⊗C(X) ρ), with

(σβ � τ − σ � βτ)(x) = σ(x)β(x)⊗ τ(x)− σ(x)⊗ β(x)τ(x)

∈ KBx

⊂ Ax⊗̂Ax.

The right-hand side of the isometric isomorphism is thus the quotient of
two C(X)-locally convex modules (i.e., section spaces), and we now apply
I) of Section 2 to the section spaces Γ(ρ ⊗C(X) ρ) ' (A⊗̂A)/KC(X) and
KB/KC(X) to obtain the result. In particular, we write σ ⊗B τ ↔ σ �B τ,
where (σ �B τ)(x) = σ(x)⊗Bx τ(x), and the equation

‖
∑

k σk ⊗B τk‖ = ‖
∑

k σk �B τk‖
= supx ‖

∑
k(σk �B τk) (x)‖

= supx ‖
∑

k σk(x)⊗Bx τk(x)‖

displays the isometry. �

Corollary 2. Let A and B satisfy S1)– S5) of the standard assumptions.
If each Ax ⊗Bx Ax is commutative as a Bx-module, then A⊗B A is commu-
tative as a B-module.
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Proof. Let Ω : A ⊗B A → M = Γ(ρ ⊗π ρ) be the isometric isomorphism
established in Lemma 3. Let σ, τ ∈ A, β ∈ B. For x ∈ X, we have

Ω(β(σ ⊗B τ))(x) = Ω((βσ)⊗B τ)(x) = (βσ)(x)⊗Bx τ(x)

= β(x)(σ(x)⊗Bx τ(x))

= (σ(x)⊗Bx τ(x))β(x)

= σ(x)⊗Bx (τ(x)β(x))

= Ω(σ ⊗B τβ)(x)

= Ω((σ ⊗B τ)β)(x),

i.e., Ω(β(σ⊗B τ)) = Ω((σ⊗B τ)β), so that β(σ⊗B τ) = (σ⊗B τ)β, and thus
A⊗B A is commutative. �

In the following, because of the identification of A ⊗B A and
M := Γ(ρ⊗π ρ), we will simply work with M without making the isometric
isomorphism explicit via a given map. The same will be true for N ' A/JB.
In doing this, we will be transferring the difficult task of finding norms in
quotient spaces to the perhaps easier task of finding pointwise norms (ad-
mittedly, of quotients) in section spaces.

Let A and B satisfy S1) – S5) of the standard assumptions, and let
{uλx : λx ∈ Λx} ⊂ Ax ⊗Bx Ax be the Bx-module approximate diagonal
for Ax. For λ ∈ Λ =

∏
x∈X

Λx, write λ(x) = λx and order Λ pointwise, i.e.,

λ′ ≥ λ if and only if λ′(x) ≥ λ(x) for each x ∈ X. Given λ ∈ Λ, for each
x ∈ X, choose and fix νλ(x) ∈ M such that νλ(x)(x) = uλx and such that∥∥νλ(x)∥∥ = ‖uλx‖ < p (where p is the uniform bound on the

∥∥uλ(x)∥∥); the
existence of such a νλ(x) is guaranteed by [30, Proposition 1.1]. For given
λ ∈ Λ, x ∈ X and σ ∈ A, and letting ω̃x : Ax⊗Bx Ax → Ax/JBx be the map
ω̃ of Figure 3 applied to Ax ⊗Bx Ax, note that we have∥∥νλ(x)(x)σ(x)− σ(x)νλ(x)(x) +KBx

∥∥ =
∥∥uλ(x)σ(x)− σ(x)uλ(x) +KBx

∥∥
→ 0,

and that both∥∥σ(x)ω̃(νλ(x)(x))− σ(x) + JBx

∥∥ =
∥∥σ(x)ω̃x(uλ(x))− σ(x) + JBx

∥∥→ 0,

and∥∥ω̃(νλ(x)(x))σ(x)− σ(x) + JBx

∥∥ =
∥∥ω̃x(uλ(x))σ(x)− σ(x) + JBx

∥∥→ 0,

where the norms are taken in the appropriate spaces.
We will construct a B-module approximate diagonal for A of norm less

than p.

Lemma 4. Let A and B satisfy S1)– S5) of the standard assumptions,
and let F = {σ1, . . . , σn} ⊂ A and m ∈ N be given. Suppose that
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ρ ⊗π ρ : M =
•⋃
Ax ⊗Bx Ax → X is the tensor product bundle. Then

there exists ξ = ξ(F,m) ∈M = Γ(ρ⊗π ρ) ' A ⊗BA such that
1) ‖ξ‖ < p

and, for each σ ∈ F ,
2) ‖ξσ − σξ‖ = supx ‖ξ(x)σ(x)− σ(x)ξ(x) +KBx‖ < 1/m (in M),
3) ‖ω̃(ξ)σ − σ‖ = supx

∥∥ω̃x(ξ)σ(x)− σ(x) +KJBx

∥∥ < 1/m and

‖σω̃(ξ)− σ‖ = supx
∥∥σ(x)ω̃x(ξ)− σ(x) + JBx

∥∥ < 1/m (both in N).
Here, if ξ =

∑
k

τk �B τ ′k, the multiplication is given by, say,

(ξσ)(x) =
∑

k
(τk �Bx τ

′
k)(x)σ(x) =

∑
k
τ(x)⊗Bx (τ ′(x)σ(x)).

Proof. Let m ∈ N and F ⊂ A be given. As above, write uλx = νλ(x)(x)

for νλ(x) ∈ M with νλ(x)(x) = uλx and
∥∥νλ(x)∥∥ = ‖uλx‖ ≤ px < p. Let

σk ∈ F, x ∈ X, and m ∈ N be given. Since {uλx} = {νλ(x)(x)} is a Bx-
module approximate diagonal for Ax, we can define λm,k ∈ Λ by choosing
λm,k(x) ∈ Λx such that if λ(x) ≥ λm,k(x) each of∥∥∥νλm,k(x)(x)σk(x)− σk(x)νλm,k(x)(x) +KBx

∥∥∥ < 1/m (in Ax ⊗Bx Ax), (†)∥∥∥ω̃(νλm,k(x)(x))σk(x)− σk(x) + JBx

∥∥∥ < 1/m (in Ax/JBx), (††)

and ∥∥∥σk(x)ω̃(νλm,k(x))(x)− σk(x) + JBx

∥∥∥ < 1/m (in Ax/JBx). (†††)

Then if λm ∈ Λ is such that λm ≥ max{λm,k : k = 1, . . . , n}, then the above
inequalities hold for each σ ∈ F and x ∈ X.

From the upper semicontinuity of the norm functions in M and N, we
can then choose a neighborhood Vx(F,m) of x such that if y ∈ Vx(F,m),
then

∥∥νλm(x)(y)σ(y)− σ(y)νλm(x)(y) +KBy

∥∥ < 1/m (in Ay ⊗By Ay), and
similarly for (††) and (†††), for all σ ∈ F.

Now, X is compact, so we can choose {xj : j = 1, . . . , s} ⊂ X such that
{Vj} = {Vxj (F,m), j = 1, . . . , s} also covers X. Let {fj : j = 1, . . . , s} be
a partition of unity subordinate to the Vj , and define ξ = ξ(F,m) ∈ M by
ξ =

∑s
j=1 fjνλm(xj). Because ‖νλm‖ < p, we then have, for y ∈ X,

‖ξ(y)‖ =

∥∥∥∥∥∥
s∑
j=1

fj(y)νλ(xj)(y)

∥∥∥∥∥∥
≤

∑
j s.t. y∈Vj

fj(y)
∥∥∥νλ(xj)(y)

∥∥∥ < ∑
j s.t. y∈Vj

fj(y)p

≤ p,

so that ‖ξ‖ ≤ p.
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Moreover, for y ∈ X and σ ∈ F, setting p′ = ‖ξ(y)σ(y)− σ(y)ξ(y)‖, we
have

p′ =

∥∥∥∥∥ ∑
j s.t. y∈Vj

fj(y)
[
νλm(xj)(y)σ(y)− σ(y)νλm(xj)(y)

]
+KBy

∥∥∥∥∥
≤

∑
j s.t. y∈Vj

fj(y)
∥∥∥νλm(xj)(y)σ(y)− σ(y)νλm(xj)(y) +KBy

∥∥∥
<

∑
j s.t. y∈Vj

fj(y) · (1/m) ≤ 1/m,

so that ‖ξσ − σξ‖ < 1/m (in M) for each σ ∈ F.
Similarly, both ‖ω̃(ξ)σ − σ‖ < 1/m and ‖σω̃(ξ)− σ‖ < 1/m (in N) for

each σ ∈ F. �

Corollary 3. Let A and B satisfy S1)– S5) of the standard assumptions.
Then A has a B-module approximate diagonal (of norm p).

Proof. We adapt the proof of Proposition 1.2 of [13].
Set Ψ = {(F,m) : F ⊂ A is finite, m ∈ N}, and order Ψ by

(F ′,m′) > (F,m) if F ′ ⊃ F and m′ > m. Then, by Lemma 4, for each pair
(F,m) ∈ Ψ there exists ξ ∈ M, with ‖ξ‖ ≤ p, such that all of
‖ξσ − σξ‖ < 1/m, ‖ω̃(ξ)σ − σ‖ < 1/m, and ‖σω̃(ξ)− σ‖ < 1/m hold for
all σ ∈ F. In particular, for a given σ0 ∈ A, and m0 ∈ N, there ex-
ists (F0,m0) ∈ Ψ, with σ0 ∈ F0, such that if (F ′,m′) > (F0,m0) then
‖ξ′σ0 − σ0ξ′‖ , ‖ω̃(ξ′)σ0 − σ0‖ , and ‖σ0ω̃(ξ′)− σ0‖ are all less than
1/m′ < 1/m0, where ξ′ = ξ′(F ′,m′) is constructed as in the proof of Lemma
4. Thus, {ξ = ξ(F,m) : F ⊂ A,m ∈ N} is a B-module approximate diagonal
for A. �

Theorem 2. Let A and B satisfy S1)– S5) of the standard assumptions.
Then A is B-module amenable and A/JB has a bounded approximate iden-
tity.

Proof. By Corollary 3, A has a B-module approximate diagonal, and so by
Theorem 1 it is B-module amenable (and A/JB has a bounded approximate
identity). �

The sequence of results ending in Theorem 2 shows that if we are given
conditions S1)– S5), then a B-module approximate diagonal for A (and
hence the B-module amenability of A and the existence of a bounded ap-
proximate identity in A/JB) is inherited from the fibers Ax and Bx. What
of the converse? Does the commutativity of A⊗B A as a B-module and ex-
istence of a B-module approximate diagonal for A (and hence the B-module
amenability of A and the existence of a bounded approximate identity in
A/JB) imply the same things for the fibers Ax and Bx? The answer is yes,
as can easily be seen. For, identify A ⊗B A as the section space Γ(ρ ⊗π ρ)
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whose existence is established in Lemma 3. If this section space is a com-
mutative B-module, then the proof of Lemma 2 shows that each Ax⊗Bx Ax
is a commutative Bx-module. Moreover, if {νλ} ⊂ A ⊗B A is a B-module
approximate diagonal for A, then {φx(νλ)} is a Bx-module approximate di-
agonal for Ax, where φx : Γ(⊗πρ) ' A⊗B A→ Ax ⊗Bx Ax is the evaluation
map. Since ‖φx‖ ≤ 1, these Bx-module approximate diagonals are uniformly
bounded. A similar argument can be applied to {ω̃(νλ)} ⊂ A/JB to obtain
uniformly bounded approximate identities in the spaces Ax/JBx .

We can also modify some assumptions about the Ax and Bx.

Proposition 1. Let A and B be Banach algebras such that A is a com-
mutative B-module satisfying conditions (1) and (2) (on A and B), and
hence also the condition that a(ba′) = (ab)a′, for a, a′ ∈ A, b ∈ B, so that
A is a commutative A-B module. If A is B-module amenable, then it has a
bounded approximate identity.

Proof. This is Proposition 2.2 of [2], taking into account the remarks
in [3]. �

Lemma 5. If A is a commutative A-B module which is also B-module
amenable, then it has a B-module approximate diagonal.

Proof. Let ω : A⊗̂A → A be the multiplication map, a, a′ ∈ A, b ∈ B,
and let KB ⊂ A⊗̂A be the B-balanced kernel in A⊗̂A. Then
ab ⊗ a′ − a ⊗ ba′ ∈ KB, and as noted in the statement of Proposition 1,
we have ω(ab ⊗ a′ − a ⊗ ba′) = (ab)a′ − a(ba′) = 0. Hence ω(KB) = 0, and
A/JB = A, which by the preceding proposition has a bounded approximate
identity. Thus, by Theorem 1, A has a B-module approximate diagonal. �

Corollary 4. Suppose that A and B satisfy S1)– S5) of the standard as-
sumptions and that each pair Ax, Bx satisfies the additional condition noted
in the hypothesis of Proposition 1. Then A has a bounded approximate iden-
tity.

Proof. It can be easily checked that A and B also satisfy the condition of
Theorem 1. Hence, as in the proof of Lemma 5, JB = 0, and so A/JB = A
has a bounded approximate identity. �

The standard examples for the heritability of amenability, in its usual
sense, are the following: 1) if A is amenable, then C(X,A) is amenable;
and 2) if {Ax : x ∈ X} is a collection of uniformly amenable algebras (see

[26, Definition 2.6]), then c0(X,
•⋃
{Ax : x ∈ X}), the c0-sum of the Ax,

is amenable. The following is the analogue of those examples for module
amenability.

Corollary 5. Let B be a fixed Banach algebra. Suppose that ρ : A =
•⋃
{Ax : x ∈ X} → X is a bundle of Banach algebras such that each
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Ax is a B-bimodule. Suppose further that the Ax have uniformly bounded
B-module approximate diagonals, and that A = Γ(ρ) is a B-bimodule (under
the operations (bσ)(x) = bσ(x) and (σb)(x) = σ(x)b) and that KC(X) ⊂ KB.
Then A has a B-module approximate diagonal. As consequences, then

1) if the fixed algebra A has a B-module approximate diagonal, then so
does A = C(X,A); and

2) c0(X,
•⋃
{Ax : x ∈ X}) has a B-module approximate diagonal.

Proof. If A is a B-module, then it is also a C(X,B)-module. For, let
f ∈ C(X), b ∈ B, and σ ∈ A. Define f ∗ b ∈ C(X,B) by (f ∗ b)(x) = f(x)b;
we then have (f ∗ b)σ ∈ A. But C(X,B) is the closed span in the uniform
norm of elements of the form f ∗b, so that if β ∈ C(X,B) it follows by density
that βσ ∈ A also. Note that B is isometrically a subspace of C(X,B) under
the correspondence b ↔ 1 ∗ b, where 1 is the constant function on X with
value 1. From this, it is clear that KB, the closed span in A⊗̂A of elements of
the form σb⊗τ−σ⊗bτ, is a subset of KC(X,B). To show that KC(X,B) ⊂ KB,
we simply repeat the density and linearity arguments used to show that A
is a C(X,B)-module.

We thus have

A⊗B A = (A⊗̂A)/KB = (A⊗̂A)/KC(X,B) = A⊗C(X,B) A.

If we now regard C(X,B) as the section space of the trivial bundle
ρ : X×B → X, the result follows from Theorem 2 and its preceding lemmas.

As for cases 1) and 2) they now follow by regarding C(X,A) as the section

space of the trivial bundle ρ : X×A→ X, and c0(X,
•⋃
{Ax : x ∈ X}) as the

section space of the spiky bundle ρ0 :
•⋃
{Ax : x ∈ X} → X. �

Note that the condition KC(X) ⊂ KB will hold if B has an approximate
identity for A; this can be shown using the same ideas as in Lemma 1.

We had promised earlier to produce a condition sufficient for B to have
an approximate identity for A.

Proposition 2. Let ρ : A =
•⋃
{Ax : x ∈ X} → X and π : B =

•⋃
{Bx :

x ∈ X} → X be bundles of Banach algebras such that each Ax is a (left)
Bx-module and such that A :=Γ(ρ) is a module over B := Γ(π). Suppose
further that the Bx have uniformly bounded (left) approximate identities
{bλx : λx ∈ Λx} for the Ax. Then B has a bounded (left) approximate iden-
tity for A; conversely, if B has a bounded (left) approximate identity for A,
then the Bx have uniformly bounded (left) approximate identities for the Ax.

Proof. Choose p > sup{‖bλx‖ : λx ∈ Λx, x ∈ X}. Let Λ =
∏
{Λx : x ∈ X},

and write λ(x) = λx. For each λ(x), choose and fix βλ(x) ∈ B such that

βλ(x)(x) = bλx and such that
∥∥βλ(x)∥∥ = ‖bλx‖ < p. Now, as in the proof



136 TERJE HILL AND DAVID A. ROBBINS

of Lemma 4 and Corollary 3, given a finite set F ⊂ A and m ∈ N, we can
construct a net {β(F,m) : F ⊂ A is finite and m ∈ N} ⊂ B such that
‖β(F,m)‖ < p and such that for each σ ∈ A, ‖β(F,m)σ − σ‖ → 0; again
the net is ordered by (F ′,m′) > (F,m) if F ′ ⊃ F and m′ > m. As for the
converse, note that the evaluation map φx : A 7→ Ax is norm decreasing, so
that if {βi} is an approximate identity bounded by p for A, then for x ∈ X,
{βi(x)} is an approximate identity bounded by p for Ax. �

Note that even if we do not assume that the approximate identities {bλx}
above are uniformly bounded, we will still obtain an approximate identity
in B for A.

Recall that a (left) A-module M is said to be essential provided that
M = AM.

Proposition 3. Suppose that ρ : M → X is a bundle of (left) Banach
modules over π : A → X, and that each Mx is essential as an Ax-module.
Then M = Γ(ρ) is essential as an A = Γ(π)-module. The converse also
holds.

Proof. Consider W := span{ασ : α ∈ A, σ ∈M}. By hypothesis, for each
x ∈ X the space Wx = span{α(x)σ(x) : σ ∈ A, σ ∈M} is dense in Mx. It is
evident that since both A and M are C(X)-modules, so is W. Then by the
Stone–Weierstrass theorem for section spaces of bundles [17, Corollary 4.3],
W is dense in M; i.e., M is essential as an A-module.

The converse holds by the same argument used in Proposition 2. �

Recall that the Cohen Factorization Theorem (see, e.g., [13, Theorem
16.5]) states that if M is an essential (left) A-module, and A has a bounded
approximate identity, then M can be factored over A, i.e., if z ∈ M, there
exists a ∈ A and y ∈ M such that z = ay. We then obtain the following
corollary to Propositions 2 and 3, which provides a sort of uniform factor-
ization for section spaces of module bundles over section spaces of algebra
bundles.

Corollary 6. Suppose that ρ : M → X is a bundle of (left) Banach
modules over the algebra bundle π : A → X; set M := Γ(ρ) and A := Γ(π).
If the fibers Ax have uniformly bounded (left) approximate identities, and if
each Mx is essential as an Ax-module, then M factors as an A-module. If
σ = ατ for α ∈ A and σ, τ ∈ M, then this factorization of σ determines a
factorization of σ(x) for each x ∈ X.

4. Irreducibility of modules over algebra bundles

It is well known that non-zero irreducible C(X)-modules are of dimen-
sion one. In [33] this result was demonstrated using the fact that C(X) is
essentially the section space of the trivial bundle π : X × K → X. In this
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section we show that an analogous result is true for irreducible modules over
the section spaces of certain algebra bundles. Recall that to say a (left)
module M 6= 0 is irreducible over the algebra A means that the only closed
submodules of M are {0} and M itself. Evidently, if M is one-dimensional,
it is irreducible.

Suppose that dimM ≥ 2, and that M is irreducible. Then either
AM = {0} or AM = M . If AM = {0}, then every proper closed sub-
space of M is a closed submodule, so that M is not irreducible. Hence
AM = M, and in terms of irreducibility we need only worry about essential
modules of dimension ≥ 2.

In this section, we assume that M 6= 0 is a (left) module over both C(X)
and A, where π : A → X is an algebra bundle with fibers Ax, A = Γ(π),
that A is itself essential as an A-module (so that A2 = A), and that M
is unital as a C(X)-module and essential as an A-module. (Especially, an
A-module M may also be taken to be a C(X)-module if A has a identity
e of norm one and M is unital over A: if f ∈ C(X) and m ∈ M, we
set f · m := (fe) · m, and then, aside from the easily checked arithmetic
conditions, we have ‖f ·m‖ = ‖fe ·m‖ ≤ ‖fe‖ ‖m‖ ≤ ‖f‖ ‖m‖.)

Lemma 6. Suppose that π : A → X is an algebra bundle with fibers
Ax. Set A := Γ(π). Let M 6= 0 be an A-irreducible (and hence A-essential)
C(X)- and A-module, which is unital as a C(X)-module, and suppose also
that A2 = A. Then M is C(X)-locally convex.

Proof. Let U ⊂ X be a closed subset, and set

IU = {f ∈ C(X) : f(U) = 0}.

Then it is easy to check that IUA is the C(X)-submodule of sections in A
which vanish on U. Now, let U, V ⊂ X be closed, with U ∪ V = X, so that
IUIV = 0. Then either IUA ·M or IV A ·M is 0. For if both

IUA ·M = IV A ·M = M,

(which is the only other possibility, since M is irreducible over A), then
because IU and IV are scalar-valued and hence commute with A, we have

M = IV A ·M = IV A·(IUA ·M) = IV IUA
2 ·M = 0,

which is clearly impossible.
Suppose now that M is not C(X)-locally convex. We may then find

f, g ∈ C(X) and m ∈M such that fg = 0 and

‖(f + g)m‖ 6= max{‖fm‖ , ‖gm‖}.

Set U = f−1({0}) and V = g−1({0}); then U ∪ V = X.
Assume that ‖(f + g)m‖ > max{‖fm‖ , ‖gm‖}. Then (f + g)m 6= 0, so

that at least one of fm, gm 6= 0, say fm 6= 0, i.e., IUA ·M = IUM 6= 0.
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Hence IV A ·M = 0, and so gm = 0, and thus the strict inequality does not
hold.

Similarly, suppose that ‖(f + g)m‖ < max{‖fm‖ , ‖gm‖}. Then fm 6= 0,
say, which forces gm = 0, which again negates the inequality. Hence

‖(f + g)m‖ = max{‖fm‖ , ‖gm‖},

and M is C(X)-locally convex. �

Thus, from IV) of Section 2, there is a C(X)-isometric isomorphism˜ : M → Γ(ρ), where ρ : F → X is the canonical bundle of M (as a
C(X)-module) with fibers Fx = M/IxM = M/(IxA ·M). We will identify
M with Γ(ρ), without making the isomorphic correspondence explicit. Note
also that A is by definition C(X)-locally convex, and that A/IxA ' Ax. In
the standard way, we can regard Fx as an A/IxA-module, and hence as an
Ax-module. Thus, ρ is a bundle of modules over a bundle of algebras, and
action of A on M ' Γ(ρ) is given pointwise. Since M ' Γ(ρ) is an essential
A-module, each Fx is also an essential Ax-module; see Proposition 3. To the
point for our purposes, note that since M = A ·M, we have IxM = IxA ·M,
so that IxM is both an A- and C(X)-submodule of M ; hence by the A-
irreducibility of M we have for each x ∈ X that IxM = {0} or IxM = M.
Thus Fx = M/IxM = M or Fx = 0. Note that for any fixed x ∈ X, the bun-
dle ρ′ : F′ → X whose fibers are F ′y = 0, if y 6= x, and F ′x = Fx = M/IxM is
what we called in II) of Section 2 a single-point bundle of modules over the
algebra bundle A, where the action of α ∈ A on σ ∈ Γ(ρ′) is given pointwise.

Suppose for the moment that there exist x 6= y ∈ X such that
Fx = Fy = M. Choose disjoint neighborhoods U and V of x and y, respec-
tively, and let f, g ∈ C(X) be supported on U and V with f(x) = g(y) = 1.
Regarding M as the space of sections Γ(ρ), with fibers M or {0}, it is then
easy to check that fM = fA·M and gM = gA·M are distinct A-submodules
of M, so that by the A-irreducibility of M only one of them, say fM, is non-
trivial, and hence isometrically isomorphic to M. It is then apparent that the
action of A on M is given by α ·m = α(x) ·m. Thus, Γ(ρ) 'M is the section
space of a single-point bundle, and M is irreducible as an Ax-module.

We have thus proved the following result.

Proposition 4. Assume that the conditions of Lemma 6 hold. Then
there exists a unique x ∈ X such that the action of α ∈ A on M is given
by αm := α(x) ·m (α ∈ A,m ∈M) and such that M is Ax-irreducible (and
hence Ax-essential).

We close the paper with two remarks concerning the total space E and
section space Γ(π) of a Banach bundle π : E → X. They are surely known,
but we include them here for the record.
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Remark 1. Let π : E → X be a Banach bundle with fibers Ex (x ∈ X),

and let S ⊂ X be a dense subset. Then ES =
•⋃
{Ex : x ∈ S} is dense in

E when E is given its bundle topology and ES is given its relative topology
inherited from E . (Proof: Let z ∈ Ex ⊂ E , and let

T = T (U, σ, ε) = {w ∈ E : π(w) ∈ U and ‖w − σ(π(w))‖ < ε}
be a tube around z, where U is a neighborhood of x, σ ∈ Γ(π), and ε > 0;
from Section 2, T is a subbasic neighborhood around z in E . Since S is dense
in X, there exists s ∈ S ∩ U. Evidently, σ(s) ∈ T ∩ Es.)

Remark 2. The above observation about density of a set of fibers leads
to a reasonable conjecture as to a sort of Stone–Weierstrass result regarding
density of a set of section, perhaps something like “let S ⊂ X be dense, and
suppose that M ⊂ Γ(π) is a C(X)-submodule such that {σ(s) : σ ∈ M} is
dense in Es for each s ∈ S. Then M is dense in Γ(π)”. This conjecture is
false. Let X = [0, 1], and identify c0(X) with the section space of the spiky
bundle π0 : E → X, where Ex = K for all x ∈ X. Set

M = {f ∈ c0(X) : f(x) = 0 if x is irrational}.
Then Ms = {f(s) : f ∈M} = K for each s in the dense set S = Q ∩X, but
clearly M is not dense in c0(X).
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