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On the Fibonacci quaternion sequence with
quadruple-produce components

Orhan Dişkaya and Hamza Menken

Abstract. This paper examines the Fibonacci quaternion sequence
with quadruple-produce components, and demonstrates a golden-like ra-
tio and some identities for this sequence. Its generating and exponential
generating functions are given. Along with these, its series and binomial
sum formula are established.

1. Introduction

Quaternions were examined by William Rowan Hamilton (1805−1865)
as an extension of the complex numbers. There has been an increasing
interest in algebra problems on quaternion field since many algebra problems
on the quaternion field were encountered in some of the applied sciences,
such as differential geometry, quantum physics, geostatics, and analysis [6].
A quaternion is a hyper-complex number. As usual, let C and R denote
the fields of the complex and real numbers, respectively. Let Q be a four-
dimensional vector space over R with an ordered basis, denoted by 1, i, j, k.
A quaternion is defined by the following equation:

q = q0 + iq1 + jq2 + kq3,

where q0, q1, q2 and q3 are real numbers [17].
In [3, 11], the quaternion multiplication is defined by the rules

12 = 1, i2 = j2 = k2 = −1

ij = −ji = k, jk = −kj = i, ki = −ik = j.

Multiplication of quaternions is associative and non-commutative.
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Let q = q0 + iq1 + jq2 + kq3 and p = p0 + ip1 + jp2 + kp3 be any two
quaternions. Then the addition and subtraction of them are

q ∓ p = (q0 ∓ p0) + i(q1 ∓ p1) + j(q2 ∓ p2) + k(q3 ∓ p3),

and multiplication of them is

qp = (q0p0 − q1p1 − q2p2 − q3p3) + i(q0p1 + q1p0 + q2p3 − q3p2)

+ j(q0p2 + q2p0 + q3p1 − q1p3) + k(q0p3 + q3p0 + q1p2 − q2p1).

The conjugate and norm of a quaternion are

q = q0 − iq1 − jq2 − kq3

and

N(q) = qq = q2
0 + q2

1 + q2
2 + q2

3.

More information about the quaternions can be found in [1, 6, 10, 17].
Horadam [8] described the nth Fibonacci quaternion as

Qn = Fn + iFn+1 + jFn+2 + kFn+3,

where Fn represents the nth Fibonacci number.

In [5] a non-homogeneous third-order recursive sequence is studied as a
generalization of Fibonacci numbers and various identities are given. In [4]
the authors introduce and study the Lucas generalized incomplete Fibonacci
polynomials and give some properties of them. In [6] the Fibonacci quater-
nions are studied. In [15] the q-analogues of the incomplete Fibonacci and
Lucas polynomials are studied and some properties are given. In [13] the au-
thors define an upper bound of the third Hankel determinant for a subclass
of q-starlike functions associated with k-Fibonacci numbers. In the survey
article [14] the importance and widespread applications of the q- in analysis
are given in detail.

In the present work we define the Fibonacci quaternion sequence with
quadruple-produce components, and we investigate its various properties.

2. The Fibonacci quaternion sequence with
quadruple-produce components

The number expressed by Q(a, b, c, d) is defined at the set of quaternion
integers (a, b, c, d) = a + ib + jc + kd, where a, b, c, d ∈ Z. The Fibonacci
sequence {Fn}n≥0 is defined by

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn (1)

for all n ≥ 0. Here, Fn is the nth Fibonacci number [4, 15, 13]. First few
terms of this sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The
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recurrence involves the characteristic equation x2 − x− 1 = 0. The roots of
this equation are

α = (1 +
√

5)/2 and β = (1−
√

5)/2. (2)

From this we derive that α + β = 1, α − β =
√

5, and αβ = −1. The
conclusions of [12] reveal that the following identities hold:

lim
n→∞

Fn+1

Fn
= φ (Golden ratio), (3)

αn − βn

α− β
= Fn (Binet formula), (4)

m∑
n=0

Fn = Fm+2 − 1 (Fibonacci sum), (5)

∞∑
n=0

Fnx
n =

x

1− x− x2
(Generating function), (6)

∞∑
n=0

Fn
n!
xn =

eαx − eβx

α− β
(Exp. generating function), (7)

∞∑
n=0

Fn
tn+1

=
1

t2 − t− 1
(Fibonacci series), (8)

m∑
n=0

(
m

n

)
Fn = F2m (Binomial sum). (9)

In [2, 7, 9, 10, 16], the number Q(a, b, c, d) is defined by the four-dimensional
recurrences

Q(a+ 2, b, c, d) = Q(a+ 1, b, c, d) +Q(a, b, c, d), (10)

Q(a, b+ 2, c, d) = Q(a, b+ 1, c, d) +Q(a, b, c, d), (11)

Q(a, b, c+ 2, d) = Q(a, b, c+ 1, d) +Q(a, b, c, d), (12)

Q(a, b, c, d+ 2) = Q(a, b, c, d+ 1) +Q(a, b, c, d), (13)

where
Q(0, 0, 0, 0) = 0, Q(1, 0, 0, 0) = 1, Q(0, 1, 0, 0) = i,

Q(0, 0, 1, 0) = j, Q(0, 0, 0, 1) = k, Q(1, 1, 0, 0) = 1 + i,

Q(1, 0, 1, 0) = 1 + j, Q(1, 0, 0, 1) = 1 + k,

Q(1, 1, 1, 0) = 1 + i+ j, Q(1, 1, 0, 1) = 1 + i+ k,

Q(1, 0, 1, 1) = 1 + j + k, Q(0, 1, 1, 0) = i+ j,

Q(0, 1, 0, 1) = i+ k, Q(0, 0, 1, 1) = j + k,

Q(0, 1, 1, 1) = i+ j + k, Q(1, 1, 1, 1) = 1 + i+ j + k.
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Therefore, the number Q(a, b, c, d) has a Fibonacci recurrence for each coor-
dinate. From (10), the case b = c = d = 0 gives

Q(a+ 2, 0, 0, 0) = Q(a+ 1, 0, 0, 0) +Q(a, 0, 0, 0),

and by the initial conditions Q(0, 0, 0, 0) = 0 and Q(1, 0, 0, 0) = 1, we obtain

Q(a, 0, 0, 0) = Fa.

The case b = 1 and c = d = 0 gives

Q(a+ 2, 1, 0, 0) = Q(a+ 1, 1, 0, 0) +Q(a, 1, 0, 0),

and with the initial conditions Q(0, 1, 0, 0) = i and Q(1, 1, 0, 0) = 1 + i we
obtain

Q(a, 1, 0, 0) = Fa + iFa+1.

The case c = 1 and b = d = 0 gives

Q(a+ 2, 0, 1, 0) = Q(a+ 1, 0, 1, 0) +Q(a, 0, 1, 0),

and with the initial conditions Q(0, 0, 1, 0) = j and Q(1, 0, 1, 0) = 1 + j we
obtain

Q(a, 0, 1, 0) = Fa + jFa+1.

The case d = 1 and b = c = 0 gives

Q(a+ 2, 0, 0, 1) = Q(a+ 1, 0, 0, 1) +Q(a, 0, 0, 1),

and with the initial conditions Q(0, 0, 0, 1) = k and Q(1, 0, 0, 1) = 1 + k we
obtain

Q(a, 0, 0, 1) = Fa + kFa+1.

The case b = c = 1 and d = 0 gives

Q(a+ 2, 1, 1, 0) = Q(a+ 1, 1, 1, 0) +Q(a, 1, 1, 0),

and with the initial conditions Q(0, 1, 1, 0) = i+j and Q(1, 1, 1, 0) = 1+i+j
we obtain

Q(a, 1, 1, 0) = Fa + (i+ j)Fa+1.

The case b = d = 1 and c = 0 gives

Q(a+ 2, 1, 0, 1) = Q(a+ 1, 1, 0, 1) +Q(a, 1, 0, 1),

and with the initial conditions Q(0, 1, 0, 1) = i+k and Q(1, 1, 0, 1) = 1+i+k
we obtain

Q(a, 1, 0, 1) = Fa + (i+ k)Fa+1.

The case c = d = 1 and b = 0 gives

Q(a+ 2, 0, 1, 1) = Q(a+ 1, 0, 1, 1) +Q(a, 0, 1, 1),

and with the initial conditions Q(0, 0, 1, 1) = j+k and Q(1, 0, 1, 1) = 1+j+k
we obtain

Q(a, 0, 1, 1) = Fa + (j + k)Fa+1.
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The case b = c = d = 1 gives

Q(a+ 2, 1, 1, 1) = Q(a+ 1, 1, 1, 1) +Q(a, 1, 1, 1),

and with the initial conditions Q(0, 1, 1, 1) = i + j + k and Q(1, 1, 1, 1) =
1 + i+ j + k we obtain

Q(a, 1, 1, 1) = Fa + (i+ j + k)Fa+1.

In the same way, from the recurrence (11) we have

Q(0, b, 0, 0) = iFb,

Q(1, b, 0, 0) = iFb + Fb+1,

Q(0, b, 1, 0) = iFb + jFb+1,

Q(0, b, 0, 1) = iFb + kFb+1,

Q(1, b, 1, 0) = iFb + (1 + j)Fb+1,

Q(1, b, 0, 1) = iFb + (1 + k)Fb+1,

Q(0, b, 1, 1) = iFb + (j + k)Fb+1,

Q(1, b, 1, 1) = iFb + (1 + j + k)Fb+1.

From the recurrence (12) we also get

Q(0, 0, c, 0) = jFc,

Q(1, 0, c, 0) = jFc + Fc+1,

Q(0, 1, c, 0) = jFc + iFc+1,

Q(0, 0, c, 1) = jFc + kFc+1,

Q(1, 1, c, 0) = jFc + (1 + i)Fc+1,

Q(1, 0, c, 1) = jFc + (1 + k)Fc+1,

Q(0, 1, c, 1) = jFc + (i+ k)Fc+1,

Q(1, 1, c, 1) = jFc + (1 + i+ k)Fc+1.

From the recurrence (13) we get

Q(0, 0, 0, d) = kFd,

Q(1, 0, 0, d) = kFd + Fd+1,

Q(0, 1, 0, d) = kFd + iFd+1,

Q(0, 0, 1, d) = kFd + jFd+1,

Q(1, 1, 0, d) = kFd + (1 + i)Fd+1,

Q(1, 0, 1, d) = kFd + (1 + j)Fd+1,

Q(0, 1, 1, d) = kFd + (i+ j)Fd+1,

Q(1, 1, 1, d) = kFd + (1 + i+ j)Fd+1.
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Considering the method of Harman [7], the recurrence (11), and the initial
conditions Q(a, 0, 0, 0) = Fa and Q(a, 1, 0, 0) = Fa + iFa+1, it follows that

Q(a, b, 0, 0) = Fb−1Q(a, 0, 0, 0) + FbQ(a, 1, 0, 0)

= Fb−1Fa + Fb(Fa + iFa+1) = (Fb−1 + Fb)Fa + iFbFa+1

= Fb+1Fa + iFbFa+1.

From (11), together with the initial conditions Q(a, 0, 1, 0) = Fa+jFa+1 and
Q(a, 1, 1, 0) = Fa + (i+ j)Fa+1, it follows that

Q(a, b, 1, 0) = Fb−1Q(a, 0, 1, 0) + FbQ(a, 1, 1, 0)

= Fb−1(Fa + jFa+1) + Fb(Fa + (i+ j)Fa+1)

= Fb−1Fa + jFb−1Fa+1 + FbFa + (i+ j)FbFa+1

= Fb+1Fa + iFbFa+1 + jFb+1Fa+1.

From (11), together with the initial conditions Q(a, 0, 0, 1) = Fa + kFa+1

and Q(a, 1, 0, 1) = Fa + (i+ k)Fa+1, it follows that

Q(a, b, 0, 1) = Fb−1Q(a, 0, 0, 1) + FbQ(a, 1, 0, 1)

= Fb−1(Fa + kFa+1) + Fb(Fa + (i+ k)Fa+1)

= Fb−1Fa + kFb−1Fa+1 + FbFa + (i+ k)FbFa+1

= Fb+1Fa + iFbFa+1 + kFb+1Fa+1.

From (11), together with the initial conditions Q(a, 0, 1, 1) = Fa+(j+k)Fa+1

and Q(a, 1, 1, 1) = Fa + (i+ j + k)Fa+1, it follows that

Q(a, b, 0, 1) = Fb−1Q(a, 0, 0, 1) + FbQ(a, 1, 0, 1)

= Fb−1(Fa + (j + k)Fa+1) + Fb(Fa + (i+ j + k)Fa+1)

= Fb−1Fa + (j + k)Fb−1Fa+1 + FbFa + iFbFa+1 + (j + k)FbFa+1

= Fb+1Fa + iFbFa+1 + (j + k)Fb+1Fa+1.

With the recurrence (12) and the initial conditions Q(a, b, 0, 0) = Fb+1Fa +
iFbFa+1 and Q(a, b, 1, 0) = Fb+1Fa + iFbFa+1 + jFb+1Fa+1, it follows that

Q(a, b, c, 0) = Fc−1Q(a, b, 0, 0) + FcQ(a, b, 1, 0)

= Fc−1(Fb+1Fa + iFbFa+1) + Fc(Fb+1Fa + iFbFa+1 + jFb+1Fa+1)

= Fc−1Fb+1Fa+iFc−1FbFa+1+FcFb+1Fa+iFcFbFa+1+jFcFb+1Fa+1

= Fc+1Fb+1Fa + iFc+1FbFa+1 + jFcFb+1Fa+1.

From (12), together with the initial conditions Q(a, b, 0, 1) = Fb+1Fa +
iFbFa+1 +kFb+1Fa+1 and Q(a, b, 1, 1) = Fb+1Fa+iFbFa+1 +(j+k)Fb+1Fa+1,
it follows that

Q(a, b, c, 1) = Fc−1Q(a, b, 0, 1) + FcQ(a, b, 1, 1)

= Fc−1(Fb+1Fa + iFbFa+1 + kFb+1Fa+1)
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+ Fc(Fb+1Fa + iFbFa+1 + (j + k)Fb+1Fa+1)

= Fc−1Fb+1Fa + iFc−1FbFa+1 + kFc−1Fb+1Fa+1

+ FcFb+1Fa + iFcFbFa+1 + (j + k)FcFb+1Fa+1

= Fc+1Fb+1Fa + iFc+1FbFa+1 + jFcFb+1Fa+1 + kFc+1Fb+1Fa+1.

It follows from the recurrence (13) and the initial conditions Q(a, b, c, 0) =
Fc+1Fb+1Fa + iFc+1FbFa+1 + jFcFb+1Fa+1 and Q(a, b, c, 1) = Fc+1Fb+1Fa +
iFc+1FbFa+1 + jFcFb+1Fa+1 + kFc+1Fb+1Fa+1 that

Q(a, b, c, d) = Fd−1Q(a, b, c, 1) + FdQ(a, b, c, 1)

= Fd−1(Fc+1Fb+1Fa + iFc+1FbFa+1 + jFcFb+1Fa+1)

+ Fd(Fc+1Fb+1Fa+iFc+1FbFa+1+jFcFb+1Fa+1+kFc+1Fb+1Fa+1).

Hence, we obtain the Fibonacci quaternion sequence with quadruple-produce
components as

Q(a, b, c, d) = Fd+1Fc+1Fb+1Fa + iFd+1Fc+1FbFa+1

+ jFd+1FcFb+1Fa+1 + kFdFc+1Fb+1Fa+1.
(14)

The conjugate of the Fibonacci quaternion sequence with quadruple-produce
components is

Q(a, b, c, d) = Fd+1Fc+1Fb+1Fa − iFd+1Fc+1FbFa+1

− jFd+1FcFb+1Fa+1 − kFdFc+1Fb+1Fa+1.
(15)

Some numerical examples of Q(a, b, c, d) are

Q(0, 0, 0, 0) = 0,

Q(1, 1, 1, 1) = 1 + i+ j + k,

Q(2, 2, 2, 2) = 8 + 8i+ 8j + 8k,

Q(2, 0, 1, 3) = 3 + 6j + 4k,

Q(1, 2, 3, 4) = 30 + 15i+ 20j + 18k.

If we take a = n, b = n, c = n and d = n, we obtain

Q(n, n, n, n) = F 3
n+1Fn(1 + i+ j + k).

We can designate it as

Q(n, 0, 0, 0) = Fn, Q(0, n+ 1, 0, 0) = iFn+1,

Q(0, 0, n+ 2, 0) = jFn+2, Q(0, 0, 0, n+ 3) = kFn+3.

By using the relations above, we reach the Fibonacci quaternion

Qn = Q(n, 0, 0, 0) +Q(0, n+ 1, 0, 0) +Q(0, 0, n+ 2, 0) +Q(0, 0, 0, n+ 3)

= Fn + iFn+1 + jFn+2 + kFn+3.
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3. Main results

In this section, it will be indicated how golden-like ratio, and some iden-
tities for the Fibonacci quaternion sequence with quadruple-produce com-
ponents (14) are obtained. The generating and the exponential generating
functions, and its series and binomial sum formula will be derived.

We can state the golden-like ratio for the Fibonacci quaternion sequence
with quadruple-produce components. We obtain golden-like ratios of the
Fibonacci quaternion sequence with quadruple-produce components below
using (3):

lim
a,b,c,d→∞

Q(a, b, c, d)

FdFcFbFa
= φ3(1 + i+ j + k),

and likewise,

lim
a,b,c,d→∞

Q(a, b, c, d)

Fd+1Fc+1Fb+1Fa+1
=

1

φ
(1 + i+ j + k)

or

lim
n→∞

Q(n+ 1, n+ 1, n+ 1, n+ 1)

Q(n, n, n, n)
= φ4.

Proposition 1. If a, b, c, d are positive integers, then

A. Q(a, b, c, d) +Q(a, b, c, d) = 2Fd+1Fc+1Fb+1Fa,

B. Q(a, b, c, d)Q(a, b, c, d) = F 2
d+1F

2
c+1F

2
b+1F

2
a + F 2

d+1F
2
c+1F

2
b F

2
a+1

+ F 2
d+1F

2
c F

2
b+1F

2
a+1 + F 2

dF
2
c+1F

2
b+1F

2
a+1,

C. Q(a, b, c, d)Q(a, b, c, d) = −F 2
d+1F

2
c+1F

2
b+1F

2
a − F 2

d+1F
2
c+1F

2
b F

2
a+1

−F 2
d+1F

2
c F

2
b+1F

2
a+1−F 2

dF
2
c+1F

2
b+1F

2
a+1+2Fd+1Fc+1Fb+1FaQ(a, b, c, d),

D. Q(a, b, c, d)2 +Q(a, b, c, d)Q(a, b, c, d) = 2Fd+1Fc+1Fb+1FaQ(a, b, c, d).

Proof. The claims A and B are obvious because of the properties (14) and
(15) of quaternions, and the claims C and D follow by easy calculations. �

Theorem 1. The Fibonacci sum, for the Fibonacci quaternion sequence
with quadruple-produce components, is

GS =

m∑
d,c,b,a=0

Q(a, b, c, d) = (1 + i+ j + k) (Fm+3 − 1)3 (Fm+2 − 1) .

Proof. Using (14) and (5), we write

GS =

m∑
d,c,b,a=0

Fd+1Fc+1Fb+1Fa + i

m∑
d,c,b,a=0

Fd+1Fc+1FbFa+1
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+ j
m∑

d,c,b,a=0

Fd+1FcFb+1Fa+1 + k
m∑

d,c,b,a=0

FdFc+1Fb+1Fa+1

=
m∑

d,c,b=0

Fd+1Fc+1Fb+1 (Fm+2 − 1) + i
m∑

d,c,b=0

Fd+1Fc+1Fb (Fm+3 − 1)

+ j

m∑
d,c,b=0

Fd+1FcFb+1 (Fm+3 − 1) + k

m∑
d,c,b=0

FdFc+1Fb+1 (Fm+3 − 1)

=

m∑
d,c=0

Fd+1Fc+1 (Fm+3−1)(Fm+2−1)+i

∞∑
d,c=0

Fd+1Fc+1 (Fm+3−1)(Fm+2−1)

+

j m∑
d,c=0

Fd+1Fc + k
m∑

d,c=0

FdFc+1

 (Fm+3 − 1)2

=

(
m∑
d=0

Fd+1 + i

m∑
d=0

Fd+1

)
(Fm+3 − 1)2 (Fm+2 − 1)

+ j

m∑
d=0

Fd+1 (Fm+3 − 1)2 (Fm+2 − 1) + k

m∑
d=0

Fd (Fm+3 − 1)3

= (1 + i+ j + k) (Fm+3 − 1)3 (Fm+2 − 1) .

�

Theorem 2. The generating function, for the Fibonacci quaternion se-
quence with quadruple-produce components, is

GQ(x) =
∞∑

d,c,b,a=0

Q(a, b, c, d)xa+b+c+d = (1 + i+ j + k)
x

(1− x− x2)4
.

Proof. Using (14) and (6), we write

GQ(x)=

∞∑
d,c,b,a=0

Fd+1Fc+1Fb+1Fax
a+b+c+d+i

∞∑
d,c,b,a=0

Fd+1Fc+1FbFa+1x
a+b+c+d

+ j
∞∑

d,c,b,a=0

Fd+1FcFb+1Fa+1x
a+b+c+d + k

∞∑
d,c,b,a=0

FdFc+1Fb+1Fa+1x
a+b+c+d

=
∞∑

d,c,b=0

Fd+1Fc+1Fb+1x
b+c+d

(
x

1− x− x2

)

+ i

∞∑
d,c,b=0

Fd+1Fc+1Fbx
b+c+d

(
1

1− x− x2

)
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+ j
∞∑

d,c,b=0

Fd+1FcFb+1x
b+c+d

(
1

1− x− x2

)

+ k
∞∑

d,c,b=0

FdFc+1Fb+1x
b+c+d

(
1

1− x− x2

)

=
∞∑

d,c=0

Fd+1Fc+1x
c+d

(
1

1− x− x2

)(
x

1− x− x2

)

+ i

∞∑
d,c=0

Fd+1Fc+1x
c+d

(
1

1− x− x2

)(
x

1− x− x2

)

+ j
∞∑

d,c=0

Fd+1Fcx
c+d

(
1

1− x− x2

)2

+ k
∞∑

d,c=0

FdFc+1x
c+d

(
1

1− x− x2

)2

=

∞∑
d=0

Fd+1x
d

(
1

1− x− x2

)2( x

1− x− x2

)

+ i

∞∑
d=0

Fd+1x
d

(
1

1− x− x2

)2( x

1− x− x2

)

+ j

∞∑
d=0

Fd+1x
d

(
1

1− x− x2

)2( x

1− x− x2

)

+ k

∞∑
d=0

Fdx
d

(
1

1− x− x2

)3

= (1 + i+ j + k)
x

(1− x− x2)4
.

�

Theorem 3. The exponential generating function, for the Fibonacci
quaternion sequence with quadruple-produce components, is

EQ(x) =

∞∑
d,c,b,a=0

Q(a, b, c, d)

a!b!c!d!
xa+b+c+d

= (1 + i+ j + k)

(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)3

,

where α and β are defined by (2).
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Proof. Using (14) and (7), we write

EQ(x)=

∞∑
d,c,b,a=0

Fd+1Fc+1Fb+1Fa
a!b!c!d!

xa+b+c+d+i

∞∑
d,c,b,a=0

Fd+1Fc+1FbFa+1

a!b!c!d!
xa+b+c+d

+ j
∞∑

d,c,b,a=0

Fd+1FcFb+1Fa+1

a!b!c!d!
xa+b+c+d + k

∞∑
d,c,b,a=0

FdFc+1Fb+1Fa+1

a!b!c!d!
xa+b+c+d

=
∞∑

d,c,b=0

Fd+1Fc+1Fb+1

b!c!d!
xb+c+d

(
eαx − eβx

α− β

)

+ i

∞∑
d,c,b=0

Fd+1Fc+1Fb
b!c!d!

xb+c+d
(
αeαx − βeβx

α− β

)

+ j

∞∑
d,c,b=0

Fd+1FcFb+1

b!c!d!
xb+c+d

(
αeαx − βeβx

α− β

)

+ k
∞∑

d,c,b=0

FdFc+1Fb+1

b!c!d!
xb+c+d

(
αeαx − βeβx

α− β

)

=
∞∑

d,c=0

Fd+1Fc+1

c!d!
xc+d

(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)

+ i

∞∑
d,c=0

Fd+1Fc+1

c!d!
xc+d

(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)

+ j

∞∑
d,c=0

Fd+1Fc
c!d!

xc+d
(
αeαx − βeβx

α− β

)2

+ k

∞∑
d,c=0

FdFc+1

c!d!
xc+d

(
αeαx − βeβx

α− β

)2

=

∞∑
d=0

Fd+1

d!
xd
(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)2

+ i

∞∑
d=0

Fd+1

d!
xd
(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)2

+ j
∞∑
d=0

Fd+1

d!
xd
(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)2

+ k
∞∑
d=0

Fd
d!
xd
(
αeαx − βeβx

α− β

)3
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= (1 + i+ j + k)

(
eαx − eβx

α− β

)(
αeαx − βeβx

α− β

)3

.

�

Theorem 4. The series of the Fibonacci quaternion sequence with quad-
ruple-produce components is

Fs =
∞∑

d,c,b,a=0

Q(a, b, c, d)

ta+b+c+d+4
=

t3

(t2 − t− 1)4
(1 + i+ j + k).

Proof. Using (14) and (8), we write

Fs =
∞∑

d,c,b,a=0

Fd+1Fc+1Fb+1Fa
ta+b+c+d+4

+ i
∞∑

d,c,b,a=0

Fd+1Fc+1FbFa+1

ta+b+c+d+4

+ j

∞∑
d,c,b,a=0

Fd+1FcFb+1Fa+1

ta+b+c+d+4
+ k

∞∑
d,c,b,a=0

FdFc+1Fb+1Fa+1

ta+b+c+d+4

=
∞∑

d,c,b=0

Fd+1Fc+1Fb+1

tb+c+d+3

1

t2 − t− 1
+ i

∞∑
d,c,b=0

Fd+1Fc+1Fb
tb+c+d+2

1

t2 − t− 1

+ j
∞∑

d,c,b=0

Fd+1FcFb+1

tb+c+d+2

1

t2 − t− 1
+ k

∞∑
d,c,b=0

FdFc+1Fb+1

tb+c+d+2

1

t2 − t− 1

=

∞∑
d,c=0

Fd+1Fc+1

tc+d+1

1

(t2 − t− 1)2
+ i

∞∑
d,c=0

Fd+1Fc+1

tc+d+1

1

(t2 − t− 1)2

+ j

∞∑
d,c=0

Fd+1Fc
tc+d

1

(t2 − t− 1)2
+ k

∞∑
d,c=0

FdFc+1

tc+d
1

(t2 − t− 1)2

=

∞∑
d=0

(
t3Fd+1

td+2
+ i

t3Fd+1

td+2
+ j

t3Fd+1

td+2
+ k

t3Fd
td+1

)
1

(t2 − t− 1)3

=
t3

(t2 − t− 1)4
(1 + i+ j + k).

�

The work of [5] provides insight into the proof of the following theorem.

Theorem 5. The binomial sum, for the Fibonacci quaternion sequence
with quadruple-produce components, is

FB =

m∑
d,c,b,a=0

(
m

d

)(
m

c

)(
m

b

)(
m

a

)
Q(a, b, c, d)=(1 + i+ j + k)F 3

2m+1F2m.
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Proof. Using (14) and (9), we write

FB =

m∑
d,c,b,a=0

(
m

d

)(
m

c

)(
m

b

)(
m

a

)
Fd+1Fc+1Fb+1Fa

+ i

m∑
d,c,b,a=0

(
m

d

)(
m

c

)(
m

b

)(
m

a

)
Fd+1Fc+1FbFa+1

+ j
m∑

d,c,b,a=0

(
m

d

)(
m

c

)(
m

b

)(
m

a

)
Fd+1FcFb+1Fa+1

+ k
m∑

d,c,b,a=0

(
m

d

)(
m

c

)(
m

b

)(
m

a

)
FdFc+1Fb+1Fa+1

=

m∑
d,c,b=0

(
m

d

)(
m

c

)(
m

b

)
Fd+1Fc+1Fb+1F2m

+ i
m∑

d,c,b=0

(
m

d

)(
m

c

)(
m

b

)
Fd+1Fc+1FbF2m+1

+ j
m∑

d,c,b=0

(
m

d

)(
m

c

)(
m

b

)
Fd+1FcFb+1F2m+1

+ k

m∑
d,c,b=0

(
m

d

)(
m

c

)(
m

b

)
FdFc+1Fb+1F2m+1

=

m∑
d,c=0

(
m

d

)(
m

c

)
Fd+1Fc+1F2m+1F2m+i

m∑
d,c=0

(
m

d

)(
m

c

)
Fd+1Fc+1F2m+1F2m

+ j
m∑

d,c=0

(
m

d

)(
m

c

)
Fd+1FcF

2
2m+1 + k

m∑
d,c=0

(
m

d

)(
m

c

)
FdFc+1F

2
2m+1

=
m∑
d=0

(
m

d

)
Fd+1F

2
2m+1F2m + i

m∑
d=0

(
m

d

)
Fd+1F

2
2m+1F2m

+ j
m∑
d=0

(
m

d

)
Fd+1F

2
2m+1F2m + k

m∑
d=0

(
m

d

)
FdF

3
2m+1

= (1 + i+ j + k)F 3
2m+1F2m.

�
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