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On the Fibonacci quaternion sequence with
quadruple-produce components

ORHAN DISKAYA AND HAMZA MENKEN

ABSTRACT. This paper examines the Fibonacci quaternion sequence
with quadruple-produce components, and demonstrates a golden-like ra-
tio and some identities for this sequence. Its generating and exponential
generating functions are given. Along with these, its series and binomial
sum formula are established.

1. Introduction

Quaternions were examined by William Rowan Hamilton (1805—1865)
as an extension of the complex numbers. There has been an increasing
interest in algebra problems on quaternion field since many algebra problems
on the quaternion field were encountered in some of the applied sciences,
such as differential geometry, quantum physics, geostatics, and analysis [6].
A quaternion is a hyper-complex number. As usual, let C and R denote
the fields of the complex and real numbers, respectively. Let Q be a four-
dimensional vector space over R with an ordered basis, denoted by 1,1, j, k.
A quaternion is defined by the following equation:

q = qo+iq1 + jg2 + kgs,

where qo, ¢1, g2 and g3 are real numbers [17].
In [3, 11], the quaternion multiplication is defined by the rules

12=1, ?=42=k"=-1
ij=—ji=k, jk=-kj=1i, ki=—ik=]j.

Multiplication of quaternions is associative and non-commutative.
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Let ¢ = qo + iq1 + jg2 + kg3 and p = po + ip1 + jp2 + kp3 be any two
quaternions. Then the addition and subtraction of them are

qFp=1(q Fpo) +ilq1 Fp1)+jlg2 Fp2) + k(gs F p3),

and multiplication of them is

qp = (CJOPO — q1p1 — q2p2 — CJ3P3) + i(Qopl + q1po + q2p3 — Q3p2)
+ j(qop2 + q2p0 + q3p1 — q1p3) + k(qop3 + q3po + q1p2 — q2p1)-

The conjugate and norm of a quaternion are
q=q0—1q1 — jq2 — kg3
and
N(q) = qq = a3 +4i + a3 + 65

More information about the quaternions can be found in [1, 6, 10, 17].
Horadam [8] described the nth Fibonacci quaternion as

Qn :Fn+iFn+1 +an+2+an+3a

where F), represents the nth Fibonacci number.

In [5] a non-homogeneous third-order recursive sequence is studied as a
generalization of Fibonacci numbers and various identities are given. In [4]
the authors introduce and study the Lucas generalized incomplete Fibonacci
polynomials and give some properties of them. In [6] the Fibonacci quater-
nions are studied. In [15] the g-analogues of the incomplete Fibonacci and
Lucas polynomials are studied and some properties are given. In [13] the au-
thors define an upper bound of the third Hankel determinant for a subclass
of g-starlike functions associated with k-Fibonacci numbers. In the survey
article [14] the importance and widespread applications of the ¢- in analysis
are given in detail.

In the present work we define the Fibonacci quaternion sequence with
quadruple-produce components, and we investigate its various properties.

2. The Fibonacci quaternion sequence with
quadruple-produce components

The number expressed by Q(a,b,c,d) is defined at the set of quaternion
integers (a,b,c,d) = a + ib + jc + kd, where a,b,c,d € Z. The Fibonacci
sequence {f,},~, is defined by

Fo=0, Fi=1, and Fuio=F,11+F, (1)

for all n > 0. Here, F, is the nth Fibonacci number [4, 15, 13]. First few
terms of this sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The
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recurrence involves the characteristic equation 22 — z — 1 = 0. The roots of
this equation are

=(1+V5)/2 and B=(1-+5)/2. (2)

From this we derive that « + 8 =1, a— 8 = /5, and a8 = —1. The
conclusions of [12] reveal that the following identities hold:

E,
li_>m "+l — % (Golden ratio), (3)
n—oo
s
— = F,, (Binet formula), (4)
o —
m
Z F, = F42 —1 (Fibonacci sum), (5)
Z E,z" P (Generating function), (6)
o
F ar _ Bz
Z —Tw" S (Exp. generating function), (7)
= n! a—pf
o
F 1
ngo tnfl =21 (Fibonacci series), (8)
L /m
> ( )Fn = Fy,, (Binomial sum). (9)
n
n=0

In [2, 7,9, 10, 16], the number Q(a, b, ¢, d) is defined by the four-dimensional
recurrences

Qa+2,b,c,d) = Q(a+1,b,c,d) + Q(a, b, c,d), (10)
Qa,b+2,¢,d) = Q(a,b+1,c,d) + Q(a,b, c,d), (11)
Q(a,b,c+2,d) = Q(a,b,c+ 1,d) + Q(a,b,c,d), (12)
Q(a,b,c,d+2) =Q(a,b,c,d+ 1) + Q(a,b,c,d), (13)

where
@(0,0,0,0) =0, Q(1,0,0,0)=1, (0,1,0,0) =71,
Q(0,0,1,0) =7, Q(0,0,0,1) =%k, Q(1,1,0,0) =1+1,
Q(1,0,1,0) =147, Q(1,0,0,1) =1+k,
Q(1,1,1,0)=1+i+j, Q(1,1,0,1)=1+1i+k,
Q(1,0,1,1)=1+j+k, Q0,1,1,0) =1+ 7,
Q(0,1,0,1) =i+ k, Q(0,0,1,1) =3+ k,
QO,1,1,1)=i+j5+k QL1,1,1)=1+i+7j+k.
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Therefore, the number Q(a, b, ¢, d) has a Fibonacci recurrence for each coor-
dinate. From (10), the case b = ¢ =d = 0 gives

Q(a+2,0,0,0) = Q(a+1,0,0,0) + Q(a,0,0,0),
and by the initial conditions Q(0,0,0,0) = 0 and Q(1,0,0,0) = 1, we obtain

Q(a,0,0,0) = F,.

The case b =1 and ¢ = d = 0 gives

Q(a+2,1,0,0) = Q(a+1,1,0,0) + Q(a, 1,0,0),
and with the initial conditions Q(0,1,0,0) = ¢ and Q(1,1,0,0) = 1+ ¢ we
obtain

Q(a,1,0,0) = F, +iF441.

The case c =1 and b = d = 0 gives

Q(a+2,0,1,0) = Q(a+1,0,1,0) + Q(a,0,1,0),

and with the initial conditions Q(0,0,1,0) = j and Q(1,0,1,0) =1+ j we
obtain
Q(a,0,1,0) = F, + jFo41.

The case d =1 and b = ¢ = 0 gives
Q(a+2,0,0,1) = Q(a+1,0,0,1) + Q(a,0,0,1),

and with the initial conditions Q(0,0,0,1) = k and Q(1,0,0,1) = 1+ k we
obtain
Q(a,0,0,1) = Fy + kFypsr.

The case b=c =1 and d = 0 gives
Qla+2,1,1,0) =Q(a+1,1,1,0) + Q(a, 1,1,0),
and with the initial conditions Q(0,1,1,0) = i+j and Q(1,1,1,0) = 1+i+j
we obtain
Q(a,1,1,0) = Fy, + (i + j) Fat1-
The case b=d =1 and ¢ = 0 gives
Qa+2,1,0,1) = Q(a +1,1,0,1) + Q(a, 1,0, 1),

and with the initial conditions Q(0,1,0,1) =i+k and Q(1,1,0,1) = 1+i+k
we obtain

Q(a,1,0,1) = Fy + (i + k) Fap1.
The case c=d =1 and b = 0 gives

Q(a+2,0,1,1) =Q(a+1,0,1,1) + Q(a,0,1,1),

and with the initial conditions Q(0,0,1,1) = j+k and Q(1,0,1,1) = 1+j+k
we obtain

Q(a,0,1,1)=F,+ (j + k) Fot1.
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The case b=c=d =1 gives
Q(a + 27 17 17 1) = Q(a + 17 17 17 ]‘) + Q(a7 17 1? 1)’

and with the initial conditions Q(0,1,1,1) =i+ j + k and Q(1,1,1,1) =
1+1i4 5+ k we obtain

1,0,1,d
0,1,1,d
1,1,1,d

OO O0OLO0OLO0L

(

(

(1, )
( ) =
(0,0,1,d) =
(1,1,0,d) =
( ) =
( ) =
( ) =

Q(a,1,1,1) = Fo + (i + j + k) Fuqr.
In the same way, from the recurrence (11) we have
Q(0,5,0,0) = iFp,
Q(1,0,0,0) = iFp + Fpy1,
Q(0,0,1,0) = iFp + jFpiq,
Q(0,b,0,1) = iFy + kFyy1,
Q(1,b,1,0) = iFy + (1 + j) Fyy1,
Q(1,b,0,1) = iF} + (1 + k) Fyy1,
Q(0,0,1,1) = iFy + (j + k) Fis1,
Q(1,b,1,1) =iFy + (1 + j + k) Fyq1.
From the recurrence (12) we also get
Q(0,0,¢,0) = jFe,
Q(1,0,¢,0) = jFe + Feya,
Q(0,1,¢,0) = jFe 4 iFey,
Q(0,0,¢,1) = jFe + kFeqa,
Q(1,1,¢,0) = jFc + (1 + i) Fey,
Q(1,0,¢,1) = jFe + (1 + k) Feq,
Q(0,1,¢,1) = jFe + (i + k) Feqa,
QL 1,¢,1)=jF.+ (1 +i+k)Feia.
From the recurrence (13) we get

0,0,0,d) = kFy,

1,0,0,d) = kFy + Fi41,

0,1,0,d) = kFy +iF 441,

=kFq+ jFay,

= kFy+ (1+i)Fyyq,
— kFy+ (14 j)Fyp,
— kFy+ (i + §)Fau,
= kFy+ (1+i+§)Far.
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Considering the method of Harman [7], the recurrence (11), and the initial
conditions Q(a,0,0,0) = F, and Q(a,1,0,0) = F, + iF,1, it follows that

Q(a,b,0,0) = Fy_1Q(a,0,0,0) + FyQ(a, 1,0,0)
= Fy 1 Fy + Fy(Fy + iFyir) = (Fy_1 + Fy)Fy + iFyFors
=Fp1 Fy +iFpFaq.
From (11), together with the initial conditions Q(a,0,1,0) = F,+jF, 1 and
Q(a,1,1,0) = F, + (i + j) Fyay1, it follows that
Q(a,b,1,0) = F,_1Q(a,0,1,0) + F,Q(a,1,1,0)
= Fb—l(Fa +jFa+1) + Fb(Fa + (2 +j)Fa+1)
=Fy 1 Fy +jFy 1 For1 + FyFo + (i + j) FyFoya
=k Fo4+ iy Fovr + jFp1Fag.
From (11), together with the initial conditions Q(a,0,0,1) = F, + kF,11
and Q(a,1,0,1) = F, + (i + k) Fy41, it follows that
Q(a,b,0,1) = F,_1Q(a,0,0,1) + F4Q(a, 1,0,1)
= Fy_1(Fy + kFay1) + Fy(Fa+ (i + k) Fayr)
= Fy 1 Fy + kFy 1 Fuy1 + FyFy + (i + k) FyFaia
= Fpp1Fy +ibpFoiq + kFpp1Fota.
From (11), together with the initial conditions Q(a,0,1,1) = Fo+(j+k) Fat1
and Q(a,1,1,1) = F, + (i + j + k) Fy41, it follows that
Q(a,b,0,1) = F,_1Q(a,0,0,1) + F;Q(a,1,0,1)
=L 1 (Fa+(J+k)Foyr) + Fp(Fo+ (1 4+ j + k) Farr)
=Fy 1 Fu+ (G + k) Fy1Fopr + By Fo +iFyFogr + (5 + k) FyFaya
=l 1 Fo +iFpyFon + (5 + k) Fopr Fagr
With the recurrence (12) and the initial conditions Q(a,b,0,0) = Fy1Fy +
i1FpFatq and Q(a,b,1,0) = Fp 1 Fy + iFpyFyi1 + jFyi1Fat1, it follows that
Q(a,b,c,0) = F._1Q(a,b,0,0) + F.Q(a,b,1,0)
=1 (Fpy1 Fo +iFyFypn) + Fe(Fpy1 Fo +iFyFyn + By 1 Fay)
=Fe by Fotibe 1 Fybori+FeFpp FotibeFpbo+jFcFy1Fapn
=Fep Py By +iFei FyFayy + JF Py Faya.
From (12), together with the initial conditions Q(a,b,0,1) = Fy 1 F, +
iFyFop1+kFyp1 Farr and Q(a,b,1,1) = Fy o Fy+iFp Fop1 + (G +k) Foy1 Fara,
it follows that
Q(a,b,c,1) = F,_1Q(a,b,0,1) + F.Q(a,b,1,1)
= Fe1(Fp1 Fo + il Fon + kFyp1 Fota)
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+ Fe(Fyp1Fo + iFyFoy1 + (5 + k) Foy1 Fagn)
=Fe by Fy+iFe 1 FyFap +kFe 1By Fapn
+ FeFpp1 By + iFe By For + (5 + k) FeFpi1 Fa
=FFyalby+iFe FyFop + jF Fy For1 + kF i1 Fop1 Foga
It follows from the recurrence (13) and the initial conditions Q(a,b,c,0) =
Ferr By Fy+ il FyFypq + jFFy 1 Fopr and Q(a,b,¢,1) = Foyp1 Fpp1 Fo +
b1 FpFo1 + jEcFpr1Fay1 + kFey1 Fyp1 Foqn that
Q(a,b,c,d) = F3_1Q(a,b,c,1) + FyQ(a,b,c, 1)
= Fy 1(Fep1 Fyp1 Fy +iF o1 Fy Foyy + jFeFy 1 Foygr)

+ Fy(Fepr Fypr FotiFep1 FyFopr+ jF Fy 1 Fupi b kEe 1 Fyp1 Foqn).
Hence, we obtain the Fibonacci quaternion sequence with quadruple-produce
components as

Qa,b,c,d) = Fgp1 Foy1 Fyp1 Fo +iFg Fep1 FyFougy (14)
+jFap FeFy1 Foyr + kFgF o1 Fyp1Foyr.

The conjugate of the Fibonacci quaternion sequence with quadruple-produce
components is

Q(a,b,c,d) = Fgy1Fer1Fy 1 Foy — iFg Fep FyFapn (15)
—JjFa FeFy Forn — kEFgFep1Fpp1Foqa.

Some numerical examples of Q(a, b, ¢, d) are

Q(0,0,0,0) =0,

Q(L,1,1,1)=1+i+j+k,

Q(2,2,2,2) =8+ 8i + 85 + 8k,

Q(2,0,1,3) =3+ 65 + 4k,

Q(1,2,3,4) = 30 + 15 + 205 + 18k.
If we take a = n, b =n, c =n and d = n, we obtain

Q(n,n,n,n) = FSHFn(l +i+j+k).
We can designate it as
Q(n,0,0,0) =F,, QO0,n+1,0,0)=1iF,41,
Q(0,0,n+2,0) = jFh12, Q(0,0,0,n+ 3) = kF, 3.
By using the relations above, we reach the Fibonacci quaternion
Qn = Q(n,0,0,0) + Q(0,n+1,0,0) + Q(0,0,n +2,0) + Q(0,0,0,n + 3)
=F,+iFp1 + jFhio+ kF,ys.
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3. Main results

In this section, it will be indicated how golden-like ratio, and some iden-
tities for the Fibonacci quaternion sequence with quadruple-produce com-
ponents (14) are obtained. The generating and the exponential generating
functions, and its series and binomial sum formula will be derived.

We can state the golden-like ratio for the Fibonacci quaternion sequence
with quadruple-produce components. We obtain golden-like ratios of the
Fibonacci quaternion sequence with quadruple-produce components below
using (3):

Q(a, b, c,d)

1. — 3 1 . . k
o EERE, O UFiHItE),

and likewise,

a,b,e,d 1 L
un A ) =—(1+i+j+k)
CL,b,C,d*)OO Fd+1Fc+1Fb+1Fa+1 ¢
or
lim Qn+1,n+1,n+1,n+1) _ 4t
n—00 Q(na n,n, n)

Proposition 1. If a,b, c,d are positive integers, then
A.Q(a,b,e,d) + Q(a,b,c,d) = 2Fg 1 Fey1 Fypi1 Fy,
B. Q(a,b,c, d)m = F3+1Fc2+1sz+1F3 + F3+1Fc2+1FbQFa2+1
+ F FOF A Fiy + FiFA A F A FY,
C. Q(a,b,e,d)Q(ab,¢,d) = —Fi Fiu F Fy — Fig Fog FFY,
— i F R Fo = FLF2 F g Fo - 2F g1 Fe Fy FoQ(a, b, ¢, d),
D. Q(a,b,¢,d)* + Q(a,b, ¢, d)Q(a, b, ¢, d) = 2Fy1 Fuy1Fy1 FuQ(a, b, ¢, d).

Proof. The claims A and B are obvious because of the properties (14) and
(15) of quaternions, and the claims C and D follow by easy calculations. [

Theorem 1. The Fibonacci sum, for the Fibonacci quaternion sequence
with quadruple-produce components, is

m

Gs= Y Qlabed =0+i+j+k)(Fnws—1)° (Fnp2—1).
d,c,b,a=0

Proof. Using (14) and (5), we write

m m
Gs = Z Fop1Fepi by Fo +0 Z Fo1FeriFyFoa
d,c,b,a=0 d,c,b,a=0
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m m
+i Y FapFeFyFarr+k > FyFep1FyFa
d,c,b,a=0 d,c,b,a=0

= > FapaFepiFopy (P2 — 1) +i Y FapFepaFy (Frgs — 1)
d,c,b=0 d,c,b=0

m m
+J Z Fap1Felyy1 (Frpz — 1)+ k Z FaFei1Fyp (Fys — 1)
d,c,b=0 d,c,b=0

m (e.)
= Z For1For1 (Frgs—1)(Fpyo—1)+1 Z Fop1Fey1 (Frgs—1)(Fpy2—1)
d,c=0 d,c=0

m m
+ 3D FuniFe+ kY FaFeqr | (Fgs —1)°

d,c=0 d,c=0
= (Z Fypq+i ZFcHl) (Frnts — 1)* (Fruga — 1)
d=0 d=0
+5>  Farr (Fogs = 1)° (Fuga = 1) + kY Fy(Fgs —1)°
d=0 d=0

=(+i+j+k) (Fnis— 1% (Fna — 1)
O

Theorem 2. The generating function, for the Fibonacci quaternion se-
quence with quadruple-produce components, is

. > atbtct+d __ ; 1 r
Gq() —dC%OQ(a,b,c,d)x —(1+Z+J+k)m‘

Proof. Using (14) and (6), we write

o o
b d | b d
Go(x)= Y FupFe1 Py Foa i N Fy Fop FyFapqa®totet
d,c,b,a=0 d,c,b,a=0

o0 o0
- btctd btctd
+7J E Fup1 FoFpi Fypqz®ttete 4k § FyFey1Fppq Fypqz®totet
d,c,b,a=0 d,c,b,a=0

oo
b+c+d €z
= § Fd+1Fc+1Fb+1fU+c+ T 5
l—xz—=z
d,c,b=0

o
1
. b+c+d
+ Zd Eb OFd+1Fc+1Fb$ <1_$_$2>
767 —
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o0
, 1
+J Z Fyp1 FoFyaet? <>

d,c,b=0 l-z—a?
- btetd 1
+ kd,;b:o FyFo1 By (H_ZCQ>
S ctd 1 X
:d,cZ:OFdHFCHx <1_1’_$2> (1—1’—»’52>
S ct+d 1 x
+Zd§0FdHFC+1x <1_5L’_332> (1—55—332)
55 +d 1 ?
- ct+d 1 ?
+ kd,zc::() FyFe. 1z (1—:c—a;2>

> 1 2 T
=N Fy 2t
dz_% A1 (1—:()—332) <1—x—a:2>
oo 2
1 x
+Zdz;) AL <11:x2> <1xac2>
> 1 2 T
+]Z 1T <l—m—x2> <l—x—x2>

d=0

3
+kZFd:c (1_93_562)
o r
(1—x—ax2)*

—(1+itj+k)

O

Theorem 3. The exponential generating function, for the Fibonacci
quaternion sequence with quadruple-produce components, is

Z Qa,5,¢,d) arpicra

albleld!
d,c,b,a=0

B ' . ea:p_eﬁx aeax_l@eﬁaz 3
_(1+z—|—j+k)< = >< = ) ,

where a and § are defined by (2).
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Proof. Using (14) and (7), we write

0o 0
Fygi1Fey1Fy 1 F, Fy 1 F. 1 EF,
EQ (x) _ Z d+18c+1Lb+114a a+b+c+d_|_ Z d+1Lc+1 L a+1 xa+b+c+d

albleld! albleld!
d,c,b,a=0 d,c,b,a=0
o0 o0
. Fd+1F Fb+1Fa+1 a+b+c+d Fch+1Fb+1Fa+1 a+b+c+d
i albleld! Tk alad "
d,c,b,a=0 d,c,b,a=0
i Fop1Fer1Fp btctd e — efe
el a—p
d,c,b=0 e
o F F...F ar Bx
i Z d+1Lc+1 bxb+c+d <ae Be >
11! _
Pl bleld! a—pf
(o)
Far1FeFost pierq ((0e™ — B
+J Z T opldar F a—3
d,c,b=0
o0
FaFer1Fopi1 picia o — 56&:
tk Z T oldar © a—B
d,c,b=0

_ Z Fd+1Fc+1 c+d et — eﬁw ae*? — ﬁeﬁx
— cld! oa—f a—f

4+ Z Fd+1Fc+l chd e — G’Bm ae®® — ﬁ@ﬁx
cld! a— a—p
2

=
1235 Fl (20220
+kz Fﬁrl C+d< a:geﬁr>2

_ZFdJrl d( a:;&”) <aea::geﬁw>2
T () (e
o ZFd“ A ()
O ()
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60{
:(1—|—z'—|—j+k)<

ruple-produce components is

:c_eﬁa: aeaz_ﬂeﬁm 3
) ()

Theorem 4. The series of the Fibonacci quaternion sequence with quad-

Q(a,b,c,d) t3 L
Z fatbretdia — (12 —¢ 1)4(1 +itg+k).
d,c,b,a=0
Proof. Using (14) and (8), we write
P ~ FypFop1 By Fy ~ FypFor1 By Faqq
s Z tatbtctd+d Z tatbtctd+4
d,c,b,a=0 d,c,b,a=0
o0 o0
. Fy1FeFy 1 Fota FaFep1Fyi1Fot
tJ Z tatbtct+d+4 +k Z tatbtctd+4
d,c,b,a=0 d,c,b,a=0
[ee] [e.e]
_ Z Fyp1Fep1Fp e Z Fy1Fep1 Fy 1
= e e ¢ Je brerd g
> Fy.F.F, 1 > FyF.F 1
. d+1LcL'p+1 dtc+14b+1
I d%j—o rordiz @2 _p_1 " kdgj—o fterdt2 12 _¢_ ]
_ Z Fd+1Fc+1 1 L i Fy1Fe 1
it tetd+1 —t— 1)2 om0 tetd+1 (t2 —t— 1)2
Fd+1F 1 Fch+1 1
+J Z tetd —t— 1 +k Z tctd —t— 1)2
d,c=0
o .3
_ Z(t Fup1 | Fup n 3 Fy11 +k:t Fd) 1
= 2\ vz ) e a1 (12 — ¢ — 1)3
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The work of [5] provides insight into the proof of the following theorem.

Theorem 5. The binomial sum, for the Fibonacci quaternion sequence

with quadruple-produce components, is

Fp = i (i;) (T) <7Z> <T:)Q(a, be,d)=(1+i+j+ k) F3 1 Fom.

d,c,b,a=0
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Proof. Using (14) and (9), we write

) () ()
() () ()it
() () () st
C b

e S )R

S

S

For1Fer1Fpp1 Fom

. m\ [m
( C> < b > Fop1Fep1FyFomy
d,c,b=0

m
< b ) Fo1FeFypi1Fomia

m m
( C) < b > FaFey1For1Fomya

m
m . ™m m
) ( >Fd+1Fc+1F2m+1F2m+Z § < ) < )Fd+1Fc+1F2m+1F2m
c d c

d,c=0

. Uk m m Ui m m
+J Z (d) <C>Fd+1FcF22m+1+k Z (d) (C>Fch+1F22m+1

d,c=0

m
m . m
d>Fd+1F22m+lF2m +1i dEO (d>Fd+1F22m+1F2m

m m
. m m
+J E <d>Fd+1F22m+1F2m +k E <d)FdF23m+1
d=0

d=0
= +i+j+k)Fs, 1 Fom.
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