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I2-Relative uniform convergence and Korovkin
type approximation

Sevda Yıldız

Abstract. In the present paper, an interesting type of convergence
named ideal relative uniform convergence for double sequences of func-
tions has been introduced for the first time. Then, the Korovkin type ap-
proximation theorem via this new type of convergence has been proved.
An example to show that the new type of convergence is stronger than
the convergence considered before has been given. Finally, the rate of
I2-relative uniform convergence has been computed.

1. Introduction

A compact subset of real numbers has been named S and the space of all
continuous real-valued functions on S has been named C (S). Let {Ln} be
a sequence of positive linear operators that maps C (S) to itself. Suppose
that the sequence {Ln (fr)} converges to fr uniformly on S for the functions
fr : x → xr, r = 0, 1, 2. Then, Korovkin [20] established that this function
sequence converges to f uniformly on S for every f ∈ C (S). Afterwards
Korovkin’s result has been extended in many directions (see, e.g., [1, 8, 10,
13, 14, 18, 26]). Recently, Demirci and Orhan [6] have presented statistically
relatively uniform convergence for single sequences and more recently, Okçu
Şahin and Dirik [25] have suggested this notion for double sequences (see
also [7]). The authors prove a Korovkin type theorem on C (S) via these
new types of convergence, and many researchers have used these notions
and their further generalizations for proving Korovkin type approximation
theorems on different spaces (see for instance [5, 9, 12, 19, 22, 31]). In this
paper, we define the notion of I2-relative uniform convergence that is a new
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and interesting type of convergence. We use this notion to prove a Korovkin
type theorem and we present an application that shows our theorem being a
non-trivial generalization of the classical and the ideal cases of the Korovkin’s
results. Finally, we study the rate of convergence via modulus of continuity.

2. Preliminaries

We begin by well known and important convergences for double sequences:
Pringsheim convergence and statistical convergence.

Let N be the set of all natural numbers and x = {xmn} be a double
sequence. Then x is said to be convergent in Pringsheim’s sense if and only if
for every ε > 0 there exists N = N(ε) ∈ N such that |xmn − l| < ε whenever
m,n > N. Here l is the P -limit of x, it is denoted by P − lim

m,n
xmn = l, and

we call such an x Pringsheim convergent or, more simply, “P -convergent”
(see [27]). Also, x = {xmn} is said to be bounded if and only if there exists
a positive number N such that |xmn| ≤ N for all (m,n) ∈ N2 = N × N. As
it is known, in contrast to the case of a single sequence, a convergent double
sequence need not be bounded.

In 1951, Fast [17] and Steinhaus [28] gave the now well known statisti-
cal convergence of single sequences, independently. Later on, this concept
was extended to double sequences by Moricz [24]. Let D ⊂ N2 be a two-
dimensional subset of positive integers and |D| denotes the cardinality of
D, then the double natural density of D is given by

δ2(D) := P − lim
i,j

|{m ≤ i, n ≤ j : (m,n) ∈ D}|
ij

whenever the limit exists. The number sequence x = {xmn} is statistically
convergent to l provided that for every ε > 0 the set

D := Dij(ε) := {m ≤ i, n ≤ j : |xmn − l| ≥ ε}
has natural density zero; in that case we write st2− lim

m,n
xmn = l. Obviously,

if a double sequence is P -convergent then it converges to the same value
statistically, but a statistically convergent double sequence may not be P -
convergent. In addition, please note that as in the case of P -convergence, a
statistically convergent double sequence need not be bounded.

The concept of uniform convergence of a sequence of functions relative
to a scale function was first given by Moore in [23]. Then, Chittenden [3]
gave a definition, which is equivalent to the definition given by Moore for
single sequences and Okçu Şahin and Dirik [25] extended this idea to double
sequences as follows:

Definition 1 (see [25]). A double function sequence {fm,n} defined on
any compact subset of the real two-dimensional space converges to the limit
function f relatively uniformly if there exists a function σ (x, y) defined on
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any compact subset of the real two-dimensional space (which in the literature
is called a scale function) such that for every ε > 0 there is an integer nε
such that for m,n > nε the inequality

|fmn (x, y)− f (x, y)| < ε |σ (x, y)|

holds uniformly in (x, y) . The double sequence {fm,n} is said to be conver-
gent uniformly relative to the scale function σ, briefly, relatively uniformly
convergent.

Kostyrko et al. [21] have defined I-convergence using the ideal I . This
type of convergence can be seen as a general form of statistical convergence.
A class I of subsets of X, a non-empty set, is called an ideal in X if and
only if (i) ∅ ∈ I, (ii) A,B ∈ I implies A ∪ B ∈ I and (iii) for each A ∈ I
and B ⊂ A we have B ∈ I. If {x} ∈ I for each x ∈ X then an ideal is called
admissible. If I is a non-trivial ideal in X (i.e. X /∈ I, I 6= {∅}) then the
family of sets F = {U ⊂ X : (∃A ∈ I) (U = X \A)} is a filter in X and we
call such a filter the filter associated with the ideal I. A non-trivial ideal I2
of N2 is called strongly admissible if {i} × N and N × {i} belong to I2 for
each i ∈ N. It is obvious that a strongly admissible ideal is admissible too.
Let

I02 =
{
B ⊂ N2 : (∃m (B) ∈ N) (i, j ≥ m (B)⇒ (i, j) /∈ B)

}
,

then I02 is a non-trivial strongly admissible ideal ([4]) and clearly I2 is
strongly admissible if and only if I02 ⊂ I2.

For the rest of the paper, we use I2 as a non-trivial strongly admissible
ideal in N2.

Now, we recall the ideal convergences for the sequences of functions and
then we introduce our new type of convergence.

Definition 2 (see [15]). A double sequence {fm,n} is said to be ideal
pointwise convergent to a function f on a set S2 ⊂ R2, written in short as
I2 − fmn → f on S2, if for every ε > 0 and for each (x, y) ∈ S2,{

(m,n) ∈ N2 : |fmn(x, y)− f(x, y)| ≥ ε
}
∈ I2. (1)

Definition 3 (see [16]). A double sequence {fm,n} is said to be ideal
uniformly convergent to a function f on a set S2 ⊂ R2, written in short as
I2 − fmn ⇒ f on S2, if for every ε > 0,{

(m,n) ∈ N2 : sup
(x,y)∈S2

|fmn(x, y)− f(x, y)| ≥ ε

}
∈ I2. (2)

Definition 4. A double sequence {fm,n} is said to be ideal relatively
uniformly convergent to a function f on a set S2 ⊂ R2 if there exists a
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function σ(x, y), called a scale function, with |σ(x, y)| 6= 0 such that{
(m,n) ∈ N2 : sup

(x,y)∈S2

∣∣∣∣fmn(x, y)− f(x, y)

σ(x, y)

∣∣∣∣ ≥ ε
}
∈ I2. (3)

We denote this by I2 − fmn ⇒ f (S2;σ).

It is worth noting that, if we take I2 = I02 and I2 = Iδ2 , the set of all
subsets of N2 with double natural density zero, then we get the concepts of
relative uniform convergence and statistical relative uniform convergence of
the double sequence of functions, respectively ([25]).

In view of the above definitions, we immediately have the following result.

Lemma 1. fmn ⇒ f on S2 implies I2 − fmn ⇒ f on S2, which also
implies I2 − fmn ⇒ f (S2;σ).

However, an example can be provided to show that the converse of Lemma
1 is not always true. The following is such an example.

Example 1. Let I2 = Iδ2 and B ∈ Iδ2 be an infinite set. For each

(m,n) ∈ N2, define gmn : [0, 1]2 → R by

gmn(x, y) =

{
mn2xy2, (m,n) ∈ B,
3mn2xy2

2+m2n3x2y4
, (m,n) /∈ B. (4)

Then it is seen to be Iδ2 − gmn ⇒ g = 0 ([0, 1]2 ;σ),

σ (x, y) =

{
1, x = 0 or y = 0,
1
xy2

, (x, y) ∈ (0, 1]× (0, 1] ,
(5)

however {gmn} is neither ideally (or statistically) uniform convergent nor

classically uniform convergent to the function g = 0 on the interval [0, 1]2 .

3. Ideal relative Korovkin type approximation

In this section, we handle the notion of I2-relative uniform convergence
to prove a Korovkin type approximation theorem for a double sequence of
positive linear operators defined on C

(
S2
)
. Note that C

(
S2
)

is a Banach

space with the norm ‖.‖ defined by ‖f‖ := sup
(x,y)∈S2

|f (x, y)| , f ∈ C
(
S2
)
.

Let L be a linear operator from C
(
S2
)

into itself. We denote the value

of L (f) at a point (x, y) ∈ S2 by L(f(s, t);x, y) or L(f ;x, y). In addition,
throughout this section, we use the test functions e0 (x, y) = 1, e1 (x, y) = x,
e2 (x, y) = y and e3 (x, y) = x2 + y2.

Before we continue, let us remind the classical and statistical forms of a
Korovkin’s type theorem.
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Theorem 1 ( see [30]). Let {Lmn} be a double sequence of positive linear
operators acting from C

(
S2
)

into itself. Then, for all f ∈ C
(
S2
)
,

Lmn (f) ⇒ f on S2

if and only if

Lmn (er) ⇒ er on S2, r = 0, 1, 2, 3.

Theorem 2 ( see [11]). Let {Lmn} be a double sequence of positive linear
operators acting from C

(
S2
)

into itself. Then, for all f ∈ C
(
S2
)
,

st2 − Lmn (f) ⇒ f on S2

if and only if

st2 − Lmn (er) ⇒ er on S2, r = 0, 1, 2, 3.

Now, we give the main approximation result of this section.

Theorem 3. Let {Lmn} be a double sequence of positive linear operators
acting from C

(
S2
)

into itself and let σ, σr be the scale functions (possibly

unbounded). Then, for all f ∈ C
(
S2
)
,

I2 − Lmn (f) ⇒ f (S2;σ) (6)

if and only if

I2 − Lmn (er) ⇒ er (S2;σr), r = 0, 1, 2, 3. (7)

Proof. In view of the hypotheses, since er ∈ C
(
S2
)

for each r = 0, 1, 2, 3,
the condition (7) follows from the condition (6). The chief point is in giving
the proof of the converse part. In the first step, by the continuity of f on
S2, f is bounded on S2 and we can write

|f (x, y)| ≤ Kf ,

where Kf = ‖f‖ . Also, since f is continuous on S2, we write that ∀ε >
0, ∃δ > 0 such that |f (x, y)− f (s, t)| < ε for all (x, y) ∈ S2 satisfying
|x− s| < δ and |y − t| < δ. Also, we get for all (x, y) , (s, t) ∈ S2 satisfying
|x− s| > δ and |y − t| > δ that

|f (x, y)− f (s, t)| ≤
2Kf

δ2

{
(x− s)2 + (y − t)2

}
.

Hence, we get for (x, y) , (s, t) ∈ S2 that

|f (x, y)− f (s, t)| < ε+
2Kf

δ2

{
(x− s)2 + (y − t)2

}
.

Since Lmn is linear and positive, we have that

|Lmn(f ;x, y)− f(x, y)| ≤ Lmn(|f (x, y)− f (s, t)| ;x, y)

+ |f(x, y)| |Lmn (e0;x, y)− e0(x, y)|
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≤ Lmn(ε+
2Kf

δ2

{
(x− s)2 + (y − t)2

}
;x, y)

+Kf |Lmn (e0;x, y)− e0(x, y)|

holds for every (x, y) ∈ S2 and m,n ∈ N. Also, using the square of differ-
ence and considering the linearity and positivity of Lmn again, the following
inequality is obtained from the above inequality:

|Lmn(f ;x, y)− f(x, y)| ≤ ε+

{
ε+Kf+

4Kf

δ2
E2

}
|Lmn (e0;x, y)− e0(x, y)|

+
4Kf

δ2
E |Lmn (e1;x, y)− e1(x, y)|

+
4Kf

δ2
E |Lmn (e2;x, y)− e2(x, y)|

+
2Kf

δ2
|Lmn (e3;x, y)− e3(x, y)| ,

where E := max {|x| , |y|}. Now choose σ(x, y)=max {|σr(x, y)| ; r=0, 1, 2, 3}
and multiply both sides of the above inequality by 1

|σ(x,y)| , the last inequality

implies that∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ (x, y)

∣∣∣∣ ≤ ε

|σ (x, y)|
+K

{∣∣∣∣Lmn (e0;x, y)− e0(x, y)

σ0 (x, y)

∣∣∣∣
+

∣∣∣∣Lmn (e1;x, y)− e1(x, y)

σ1 (x, y)

∣∣∣∣
+

∣∣∣∣Lmn (e2;x, y)− e2(x, y)

σ2 (x, y)

∣∣∣∣
+

∣∣∣∣Lmn (e3;x, y)− e3(x, y)

σ3 (x, y)

∣∣∣∣} ,
where K := max

{
ε+Kf +

4Kf

δ2
E2,

4Kf

δ2
E,

2Kf

δ2

}
. Thus, taking supre-

mum over (x, y) ∈ S2, we have

sup
(x,y)∈S2

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ (x, y)

∣∣∣∣
≤ sup

(x,y)∈S2

ε

|σ (x, y)|
+K

{
sup

(x,y)∈S2

∣∣∣∣Lmn (e0;x, y)− e0(x, y)

σ0 (x, y)

∣∣∣∣
+ sup

(x,y)∈S2

∣∣∣∣Lmn (e1;x, y)− e1(x, y)

σ1 (x, y)

∣∣∣∣ + sup
(x,y)∈S2

∣∣∣∣Lmn (e2;x, y)− e2(x, y)

σ2 (x, y)

∣∣∣∣
+ sup

(x,y)∈S2

∣∣∣∣Lmn (e3;x, y)− e3(x, y)

σ3 (x, y)

∣∣∣∣
}
. (8)
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Now, let r > 0 be given. Choose ε > 0 such that sup
(x,y)∈S2

ε
|σ(x,y)| < r. Then

D :=

{
(m,n) ∈ N2 : sup

(x,y)∈S2

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ (x, y)

∣∣∣∣ ≥ r
}

and

Dr :=

(m,n) ∈ N2 : sup
(x,y)∈S2

∣∣∣∣Lmn(er;x, y)− er(x, y)

σr (x, y)

∣∣∣∣ ≥
r − sup

(x,y)∈S2

ε
|σ(x,y)|

3K

,
r = 0, 1, 2, 3. In view of (8), clearly D ⊂

3⋃
r=0

Dr and by (7), Dr ∈ I2 for

r = 0, 1, 2, 3. Hence, by the definition of an ideal
3⋃
r=0

Dr ∈ I2, D ∈ I2.

Therefore we get
I2 − Lmn (f) ⇒ f (S2;σ).

Thus, we reach our required result. �

If the scale function is replaced by a nonzero constant, the following result
immediately follows from our Theorem 3.

Corollary 1 ( see [2]). Let {Lmn} be a double sequence of positive linear
operators acting from C

(
S2
)

into itself. Then, for all f ∈ C
(
S2
)
,

I2 − Lmn (f) ⇒ f on S2

if and only if
I2 − Lmn (er) ⇒ er on S2, r = 0, 1, 2, 3.

Now, we give an example that shows that our main theorem is a non-trivial
generalization of the classical and the ideal cases of the Korovkin results.

Example 2. Consider the following Bernstein operators (see [29]) given
by

Bmn (f ;x, y) =
m∑
k=0

n∑
l=0

f

(
k

m
,
l

n

)(
m
k

)(
n
l

)
xk (1− x)m−k yl (1− y)n−l ,

(9)

where (x, y) ∈ S2 = [0, 1]2 ; f ∈ C
(
S2
)
. Using these polynomials, we intro-

duce the following positive linear operators on C
(
S2
)

:

Lmn (f ;x, y) = (1 + gmn (x, y))Bmn (f ;x, y) , (10)

where gmn (x, y) is given by (4). Now, observe that

Lmn (e0;x, y) = (1 + gmn (x, y)) e0 (x, y) ,

Lmn (e1;x, y) = (1 + gmn (x, y)) e1 (x, y) ,
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Lmn (e2;x, y) = (1 + gmn (x, y)) e2 (x, y) ,

Lmn (e3;x, y) = (1 + gmn (x, y))

[
e3 (x, y) +

x− x2

m
+
y − y2

n

]
.

In the view of Iδ2 −gmn ⇒ g = 0 (S2;σ), σ (x, y) is given by (5), we conclude
that

Iδ2 − Lmn (er) ⇒ er (S2;σ) for each r = 0, 1, 2, 3.

Thus, by Theorem 3, we immediately see that

Iδ2 − Lmn (f) ⇒ f (S2;σ) for all f ∈ C
(
S2
)
.

Unfortunately, since {gmn} is neither ideally (or statistically) uniform con-
vergent nor classically uniform convergent to the function g = 0 on the
interval S2, we see that Theorem 1, Theorem 2 and Corollary 1 do not work
for our operators defined by (10). Consequently, it is shown that our version
is more general than those given before.

4. Rate of I2-relative uniform convergence

This section is devoted to computing the rate of I2-relative uniform con-
vergence. Let us remind that the modulus of continuity of a function f ∈
C(S2) is defined by

ω(f, δ) = sup√
(x−s)2+(y−t)2≤δ

|f(x, y)− f(s, t)| (δ > 0), f ∈ C(S2).

We start with the following definitions.

Definition 5. Let {amn} be a positive non-increasing double sequence.
We say that a sequence {fmn} is I2-relatively uniform convergent to f with
the rate of o (amn) if for every ε > 0,{

(m,n) ∈ N2 : sup
(x,y)∈S2

∣∣∣∣fmn(x, y)− f(x, y)

σ(x, y)

∣∣∣∣ ≥ εamn
}
∈ I2,

and this is written in short as

I2 − (fmn − f) = o(amn) (S2;σ).

Definition 6. Let {amn} be a positive non-increasing double sequence.
We say that a sequence {fmn} is I2-relatively uniform bounded with the rate
of O (amn) if there exists a positive number K such that{

(m,n) ∈ N2 : sup
(x,y)∈S2

∣∣∣∣fmn(x, y)

σ(x, y)

∣∣∣∣ ≥ Kamn
}
∈ I2,

and this is written in short as

I2 − (fmn) = O(amn) (S2;σ).
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Lemma 2. Let {fmn} and {gmn} be double sequences of functions belong-
ing to C(S2). Assume that {αmn} and {βmn} are positive non-increasing
double sequences such that I2 − (fmn − f) = o(αmn) (S2;σ0) and I2 −
(gmn − g) = o(βmn) (S2;σ1), |σr (x, y)| > 0 and σr (x, y) is unbounded
r = 0, 1. Then the following statements hold:

(i) I2−(fmn+gmn)−(f+g) = o(max {αmn, βmn}) (S2; max {|σr (x, y)|})
(ii) I2 − (fmn − f)(gmn − g) = o(αmnβmn) (S2;σ0 (x, y)σ1 (x, y)),

(iii) I2 − (λ(fmn − f)) = o(αmn) (S2;σ0 (x, y)) for any real number λ,

(iv) I2 −
√
|fmn − f | = o(αmn) (S2;

√
|σ0 (x, y)|).

Furthermore, actually, a similar statement holds true when ”o” is replaced
by ”O”.

Proof. (i) Assume that I2−(fmn − f) = o(αmn) (S2;σ0) and I2−(gmn − g)
= o(βmn) (S2;σ1). Also, for every ε > 0 define

H : =

{
(m,n) ∈ N2 : sup

(x,y)∈S2

∣∣∣∣(fn + gn) (x, y)− (f + g) (x, y)

σ (x, y)

∣∣∣∣ ≥ εγmn
}
,

H0 : =

{
(m,n) ∈ N2 : sup

(x,y)∈S2

∣∣∣∣fn (x, y)− f (x, y)

σ0 (x, y)

∣∣∣∣ ≥ ε

2
αmn

}
,

H1 : =

{
(m,n) ∈ N2 : sup

(x,y)∈S2

∣∣∣∣gn (x, y)− g (x, y)

σ1 (x, y)

∣∣∣∣ ≥ ε

2
βmn

}
,

where γmn = max {αmn, βmn} for every (m,n) ∈ N2 and
σ (x, y) = max {|σr (x, y)| ; r = 0, 1} . Then observe that H ⊂ H0 ∪ H1. By
assumption, H0, H1 ∈ I2, so that by the definition of an ideal, H0∪H1 ∈ I2,
H ∈ I2 which completes the proof of (i). The proofs of (ii), (iii) and (iv)
are similar to the proof of (i). Hence, we omit them. �

Lemma 3. Let {fmn} and {gmn} be function sequences belonging to C(S2)
satisfying 0 ≤ fmn ≤ gmn. Assume that {αmn} is a positive non-increasing
sequence such that I2 − gmn = o(αmn) (S2;σ), then I2 − fmn = o(αmn)
(S2;σ), |σ (x, y)| > 0 and σ (x, y) is unbounded. Moreover, the result holds
when ”o” is replaced by ”O”.

Proof. Since 0 ≤ fmn (x, y) ≤ gmn (x, y) for every (x, y) ∈ S2 and any
(m,n) ∈ N2, we have for every ε > 0,{

(m,n) ∈ N2 : sup
(x,y)∈S2

∣∣∣∣fmn (x, y)

σ (x, y)

∣∣∣∣ ≥ εαmn
}

⊂

{
(m,n) ∈ N2 : sup

(x,y)∈S2

∣∣∣∣gmn (x, y)

σ (x, y)

∣∣∣∣ ≥ εαmn
}
.

Using that I2 − gmn = o(αmn) (S2;σ), we obtain the result. �
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Now, we have the following result.

Theorem 4. Let {Lmn} be a double sequence of positive linear operators
acting from C

(
S2
)

into itself. Also, let {αmn} and {βmn} be positive non-
increasing double sequences. Assume that the following conditions hold:

(a) I2 − (Lmn(e0)− e0) = o(αmn) (S2;σ0),

(b) I2−ω(f, δmn)=o(βmn) (S2;σ1), where δmn(x, y)=
√
Lmn(ϕ(x,y);x, y)

with ϕ(x,y) (s, t) = (x− s)2 + (y − t)2 .
Then we have, for all f ∈ C(S2),

I2 − (Lmn(f)− f) = o(γmn) (S2;σ),

where γmn = max{αmn, βmn, αmnβmn} and
σ (x, y) = max {|σ0 (x, y)| , |σ1 (x, y)| , |σ0 (x, y)σ1 (x, y)|} , |σr (x, y)| > 0
and σr (x, y) is unbounded, r = 0, 1. It can be readily seen that, a similar
result holds when ”o” is replaced by ”O”.

Proof. Let f ∈ C(S2) and (x, y) ∈ S2. Since Lmn is linear, positive and
also, using the property

ω(f,
√
ϕ(x,y) (s, t)) ≤

(
1 +

ϕ(x,y) (s, t)

δ2

)
ω(f, δ)

of the modulus of continuity, we get, for any δ, that

|Lmn(f ;x, y)− f(x, y)|
≤ Lmn(|f (x, y)− f (s, t)| ;x, y) + |f(x, y)| |Lmn (e0;x, y)− e0(x, y)|

≤ Lmn(ω(f,
√
ϕ(x,y) (s, t));x, y) + |f(x, y)| |Lmn (e0;x, y)− e0(x, y)|

≤ ω(f, δ)Lmn(

(
1 +

ϕ(x,y) (s, t)

δ2

)
;x, y)

+ |f(x, y)| |Lmn (e0;x, y)− e0(x, y)|

≤ ω(f, δ)

{
Lmn (e0;x, y) +

1

δ2
Lmn

(
ϕ(x,y) (s, t) ;x, y

)}
+ |f(x, y)| |Lmn (e0;x, y)− e0(x, y)| .

Setting δ := δmn(x, y) =
√
Lmn(ϕ(x,y);x, y) we may write that

|Lmn(f ;x, y)−f(x, y)| ≤ 2ω(f, δmn) + ω(f, δmn) |Lmn(e0;x, y)− e0(x, y)|
+M |Lmn(e0;x, y)− e0(x, y)| ,

where M = ‖f‖ . In view of the above inequality, we may write

sup
(x,y)∈S2

∣∣∣∣Lmn(f ;x, y)− f(x, y)

σ(x, y)

∣∣∣∣
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≤ 2 sup
(x,y)∈S2

ω(f, δmn)

|σ1(x, y)|

+ sup
(x,y)∈S2

ω(f, δmn)

|σ1(x, y)|
sup

(x,y)∈S2

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣
+M sup

(x,y)∈S2

∣∣∣∣Lmn(e0;x, y)− e0(x, y)

σ0(x, y)

∣∣∣∣ .
Hence, using the conditions (a) and (b), Lemma 2 and Lemma 3 the proof
is complete. �
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