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Stability of nanobeams and nanoplates with
defects

Hina Arif and Jaan Lellep

Abstract. The sensitivity of critical buckling load and critical stress
concerning different geometrical and physical parameters of Euler–Bern-
oulli nanobeams with defects is studied. Eringen’s nonlocal theory of
elasticity is used for the determination of critical buckling load for stepped
nanobeams subjected to axial loads for different support conditions. An
analytical approach to study the impact of discontinuities and boundary
conditions on the critical buckling load and critical stress of nanobeams
has been developed. Critical buckling loads of stepped nanobeams are
defined under the condition that the nanoelements are weakened with
stable crack-like defects. Simply supported, clamped and cantilever
nanobeams with steps and cracks are investigated in this article. The
presented results are compared with the other available results and are
found to be in a close agreement.

1. Introduction

Nanomaterials are of great importance in the field of physics, chemistry
and engineering. Because of the special mechanical, electronic and electri-
cal properties, nanomaterials are the fundamental components of various
nanocomposites and nanoelectromechanical systems. Some well-known ex-
amples of nanomaterials are nanoparticles, nanotubes and nanowires. Beam-
like nanostructures are widely used in civil, mechanical and aerospace engi-
neering [3]. Nanobeam plays an important role in the field of nanotechnology.

Because of the various practical applications, static and dynamic analysis
of nanobeams have been carried out by the researchers. The experimental
and atomistic simulation results indicate that the small length scale may not
be neglected at nanoscale. Due to this reason, the classical local continuum
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theories fail to analyse the nanostructures. So the use of nonlocal theories
like strain gradient theory, couple stress theory, modified couple stress the-
ory also called Eringen’s elasticity theory is necessary to analyse nanoscale
structures.

In the present paper, Eringen’s nonlocal theory of elasticity is used to
analyse the stability of Euler–Bernoulli nanobeams. Eringen [14, 15] devel-
oped a promising theory to investigate the nanomaterials without ignoring
the internal length scale and accounts for the forces acting between atoms.
Static and dynamic problems of stability were successfully carried out by
using nonlocal theory of elasticity. Some of the dynamic problems involving
the determination of frequencies of natural vibrations of nanobeams/rods
are carried out by Bagdatli [9], Lellep and Lenbaum [20], Roostai and Hagh-
panahi [27], Lu et al. [24] and also by Li et al. [23]. The buckling analysis
of nanobeams/rods was carried out with the help of nonlocal theory of elas-
ticity by Adali [1], Emam [13], Reddy [29, 30], Challamel et al. [10, 11] and
others.

Wang et al. [33, 34, 35] applied Timoshenko beam theory for the buckling
analysis of micro and nanorods. Similarly Murma and Pradhan [25] inves-
tigated carbon nanotubes embedded in an elastic medium by using Timo-
shenko beam theory. A review article on the behaviour of thin-walled carbon
nanotubes is presented by Arash and Wang [4]. The Euler–Bernoulli, Tim-
oshenko, Reddy and Levinson beam theories were reformulated by Reddy
[30]. Reddy [29] also used Eringen’s nonlocal constitutive relations to anal-
yse static and dynamic stability of beams and plates with different boundary
conditions. Lu et al. [24], Thai [32], Reddy [29], Li et al. [23] and Wang et
al. [35] used the analytical approach to analyse the dynamic behaviour of
nanobeams. Ansari and Sahmoni [2] presented the comparison of different
beam theories applied to the anlysis of nanobeams. Wang at al. [35], Zhang
et al. [36], and Kumar et al. [18] examine the stability of nanobeams under
conservative loading and analyse the impact of nonlocal parameters and the
influence of different boundary conditions on the critical buckling loads and
postcritical states of nanobeams.

Since conducting experiments at nanolevel is difficult to handle, the math-
ematical modelling plays an important role in the field of nanotechnology.
Efforts have been made by researchers to develop efficient analytical and
numerical techniques for obtaining the desired results. In the present pa-
per, an analytical approach is developed to study the influence of physical
and geometrical parameters on the stability of nanobeams/plates. Stepped
nanobeams of rectangular cross-section weakened with crack-like defects are
considered here. An attempt has been made to study the influence of cracks
on the buckling analysis of nanobeams/plates. Nanobeams with different
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support conditions are investigated in the present paper. The obtained re-
sults are found to be in good agreement with the existing results of other
researchers.

2. Model description

Consider a nanobeam/plate of length l under the axial compression P .
The coordinates are introduced in such a manner that the origin is considered
to be at the centre of the left-hand edge of the nanobeam. A nanobeam/plate
having a step at x = ak, k = 1, . . . , n, is investigated in the present paper.
It is assumed that the nanobeam/plate has a rectangular cross-section with
the width b = constant and the height h as

h = hk = const, for x ∈ (ak, ak+1), k = 0, . . . , n. (1)

The quantities ak are assumed to be constants, with a0 = 0, an+1 = l. It
is assumed that the nanobeam of length l has a defect at the step-location
x = ak, k = 1, . . . , n. The defect is considered to be a stable surface crack
of length ck, which is assumed to be uniformly penetrated throughout the
width of the nanobeam as shown in Figure 1.

Figure 1. n-stepped nanobeam with cracks.
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The aim of the present paper is to determine the critical buckling loads
of stepped nanobeams weakened by cracks and to investigate the influence
of discontinuities like cracks, steps and various boundary conditions on the
critical buckling loads of nanobeams. Similarly the sensitivity of critical
buckling loads to some other physical and geometrical parameters is also
studied. Simply supported, clamped and cantilever nanobeams/plates (see
Figure 2) are investigated here.

Figure 2. Nanobeams with different support conditions.

3. Nonlocal constitutive equations for Euler–Bernoulli
nanobeams

According to Eringen’s nonlocal theory of elasticity [14, 15], the stress
state at a reference point x in a continuum medium depends not only on
the strain state at x but also on the strain states at all other points x′ of
the medium. The constitutive equation in the nonlocal elasticity can be
presented as (see [2, 7, 14, 15, 20, 26, 29])

σij(x) =

∫
V
K(|x− x′|, τ)tijdV (x′), ∀x ∈ V. (2)

Here K is the nonlocal kernel function which shows the effect of the strain
at the point x′ on the stress at the point x. In (2) the quantities σij and tij
represent the nonlocal stress tensor and the local stress tensor, respectively.
The integration covers the entire volume V of the medium, τ is the scale
effect which is based on the internal and external length characteristics and
is defined as

τ =
eoa

l̄
. (3)
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In (3) eo is the material constant, a is the lattice parameter and l̄ is the size
of the sample. A simplified version of the nonlocal constitutive relations for
Euler–Bernoulli nanobeams can be described as (see [14, 15, 20, 26, 29])

σxx − (eoa)2
∂2

∂x2
σxx = Eεxx, (4)

where εxx is the normal strain and E represents the Young’s modulus of
elasticity. Equation (4) can be written in terms of the bending moment M
as

M − η∂
2M

∂x2
= Mc, (5)

where η = (eoa)2 is the nonlocal length scale parameter and the value of
eoa ≤ 2nm. Here Mc is the value of the bending moment in the classical
theory of elasticity and can be defined, as in [33], by

Mc = −EIk
∂2w

∂x2
, (6)

where Ik represents the second moment of the cross-section. For a beam of
rectangular cross-section having width b and the height hk as defined by (1),
one has

Ik =
bh3k
12

, k = 0, . . . , n. (7)

In (6) w stands for the lateral displacement. The bending moment M
for nonlocal theory of elasticity can be calculated by substituting (5) in (6).
This yields finally

M = −(EIk − ηP )w′′, (8)

for x ∈ (ak, ak+1), k = 0, . . . , n. It should be mentioned that P is the com-
pressive load and is treated here as a positive constant. Then the equilibrium
conditions for the Euler–Bernoulli nanobeams have the form ([16], [22]),

Q = M ′, (9)

Q′ = Pw′′, (10)

where Q represents the shear force. Eliminating Q from (9) and (10) results
in

M ′′ − Pw′′ = 0. (11)

Substituting M from (8) to (11) yields a fourth order ordinary differential
equation with respect to the lateral displacement w for x ∈ (ak, ak+1) as

wIV + λ2kw
′′ = 0, (12)

where

λk =

(
P

EIk − ηP

) 1
2

, k = 0, . . . , n. (13)
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The general solution of (12) can be presented as

w = Ak cosλkx+Bk sinλkx+ Ckx+Dk, (14)

for x ∈ (ak, ak+1), k = 0, . . . , n. Here Ak, Bk, Ck and Dk are integration
constants.

While constructing the solutions of the stability problems of nanobeams,
we have to fit together the solutions of (14) for segments (ak, ak+1) so that
the corresponding continuity and jump conditions along with the boundary
requirements are satisfied. For the nanobeam clamped at both ends, the
transverse displacement w and the slope of the transverse displacement w′

must vanish at both ends. In such a case

w(0) = w′(0) = 0, (15)

w(l) = w′(l) = 0. (16)

In the case of a nanobeam simply supported at both ends the transverse
displacement w and the bending moment M must vanish at both ends.
Taking (8) into account one can state that in this case

w(0) = w′′(0) = 0, (17)

w(l) = w′′(l) = 0. (18)

However, in the case of a cantilever nanobeam one has

w(0) = w′(0) = 0, (19)

M(l) = 0, Q(l) = Pw′(l). (20)

4. Continuity conditions and the local compliance

The physical considerations show that the displacement w = w(x), the
bending moment M and the shear force Q are continuous everywhere, in
particular at x = ak, k = 1, . . . , n. Therefore,

w(ak − 0) = w(ak + 0), (21)

similarly for the bending moment M and the shear force Q, making use of
(8) and (9) one can assert that

(EIk−1 − ηP )w′′(ak − 0) = (EIk − ηP )w′′(ak + 0), (22)

and

(EIk−1 − ηP )w′′′(ak − 0) = (EIk − ηP )w′′′(ak + 0), (23)

for every k = 1, . . . , n. However, according to Dimarogonas et al. [12] and
Wang et al. [34], the slope w′ has finite jumps passing the cross sections with
stable cracks. The cracks are treated with the help of the rotating spring
model [12]. Denoting

θk = w′(ak + 0)− w′(ak − 0), (24)
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one can consider θk as a generalized coordinate and Mk as the generalized
force Mk = M(ak). It is known in the analytical mechanics that

θk = CokMk, (25)

for k = 1, . . . , n. In (25) Cok represents the additional compliance due to the
crack (defect) located at the cross section x = ak, k = 1, . . . , n. It is already
shown by many researchers [5, 6, 19, 21] that

Cok =
72π(1− ν2)
Ebh2ok

f(sk). (26)

In (26) hok = min(hk−1, hk) and sk = ck
hok

, whereas ν stands for the Poisson

ratio. The function f(sk) in (26) is defined as

f(sk) =

∫ sk

0
yF 2(y)dy, (27)

where F = F (sk) represents the stress correction function which can be
specified by the interpolation of experimental data. Efforts have been made
by many researchers to develop the best experimental approximation for
calculation of the stress intensity factor. A review of the results is presented
in the handbook by Tada et al. [31]. Following these results, one can use
the correction function F (sk) as

F (sk) =

√
tanπ sk

2

π sk
2

.
0.923 + 0.199(1− sinπ sk

2 )4

cosπ sk
2

. (28)

Freund and Herrmann [17] suggested a shape correction function for larger
cracks as

F (sk) =

{
1.99− 2.47sk + 12.97s2k − 23.17s3k + 24.8s4k, 0 < sk < 0.5,

0.663(1− sk)−3/2, 0.5 < sk < 1.
(29)

It is important to note that the correction functions for specimens of different
shapes loaded in different manner should have different forms. Similarly,
the type of crack (an intrinsic, a surface crack or an array crack) plays an
important role in defining the shape of correction function [31].

Thus, it follows from (24)–(27) that the jump of the slope of the displace-
ment can be defined as

w′(ak + 0) = w′(ak − 0)− Cok(EIk − ηP )w′′(ak + 0), (30)

for k = 1, . . . , n, where Cok is defined by (25)–(29) and Ik is defined by (7).

5. Critical buckling load

Consider the case of one-stepped nanobeam clamped at both ends. For
the one-stepped nanobeam, according to (14)

w = Ao cosλox+Bo sinλox+ Cox+Do, x ∈ (0, a), (31)
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w = A1 cosλ1x+B1 sinλ1x+ C1x+D1, x ∈ (a, l). (32)

The boundary conditions (15) with the equality (31) furnish the relations

Do = −Ao, Co = −λoBo. (33)

The support conditions (16) with (32) result in

A1 cosλ1l +B1 sinλ1l + C1l +D1 = 0,

λ1(−A1 sinλ1l +B1 cosλ1l) + C1 = 0,

which leads to the relations

C1 = λ1(A1 sinλ1l −B1 cosλ1l),

D1 = −A1(cosλ1l + lλ1 sinλ1l) +B1(lλ1 cosλ1l − sinλ1l). (34)

The substitution of (33) and (34) in (31) and (32) presents the deflection of
the nanobeam in the form

w = Ao(cosλox− 1) +Bo(sinλox− λox)

for x ∈ (0, a) and

w = A1(cosλ1x+ λ1x sinλ1l − cosλ1l − lλ1 sinλ1l)

+B1(sinλ1x− λ1x cosλ1l − sinλ1l + lλ1 cosλ1l)

for x ∈ (a, l).
The displacement w = w(x) is continuous at x = a if (21) is satisfied,

A1(cosλ1a + λ1a sinλ1l − cosλ1l − lλ1 sinλ1l) +B1(sinλ1a− λ1a cosλ1l

− sinλ1l + lλ1 cosλ1l)−Ao(cosλoa− 1)−Bo(sinλoa− λoa) = 0. (35)

The continuity of the bending moment M and the shear force Q is verified
by making use of (22) and (23) as

λ21(ηP − EI1)(A1 cosλ1a+B1 sinλ1a)− λ2o(ηP − EIo)(Ao cosλoa

+Bo sinλoa) = 0, (36)

and

λ31(ηP − EI1)(−A1 sinλ1a+B1 cosλ1a)− λ3o(ηP − EIo)(−Ao sinλoa

+Bo cosλoa) = 0. (37)

The jump conditions (30) lead to the equation

A1λ1(− sinλ1a+ sinλ1l − λ1Co1(EI1 − ηP ) cosλ1a) +B1λ1(cosλ1a

− cosλ1l − λ1Co1(EI1 − ηP ) sinλ1a) +Aoλo sinλoa

−Boλo(cosλoa− 1) = 0. (38)

The system (35)–(38) is a linear algebraic system with respect to Ao, Bo and
A1, B1. Equalizing its determinant ∆ to zero, one calculates the eigenvalues
λo and λ1, which leads to calculating the values of critical buckling loads for
clamped nanobeams by taking (13) into account.
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The critical buckling loads for simply supported and cantilever nanobeams
can be determined by following the papers by Arif and Lellep [5, 6]. The
boundary conditions for simply supported and cantilever nanobeams are
presented by (17)–(20).

6. Numerical results

Calculations are carried out by considering the nanobeams/plates of con-
stant thickness and one stepped nanobeams/plates of length l having a crack
of length c at the step location a, uniformly penetrated throughout the thick-
ness h1 of the stepped column of the nanobeams. Nanobeams with various
boundary conditions are taken into account for calculating the values of criti-
cal buckling loads Pcr and critical stresses σcr to solve the stability problems.
Influence of discontinuities like steps, cracks and various boundary conditions
on the stability of nanobeams is investigated as well as the impact of physi-
cal and geometrical parameter on the sensitivity of critical buckling load is
studied here. Clamped (C-C), simply supported (S-S) and cantilever (C-F)
nanobeams are investigated for the calculations. Results are shown in the
Figures 3 – 9 and in Tables 1 – 4. Whereas, in Figures 10 – 12, the comparison
of the results obtained in the current paper with those obtained by Wang et
al. [35] is presented.
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Figure 3. Critical buckling loads of simply supported nanobeams.

In Figures 3 – 5, the relationship between the critical buckling load Pcr

and the thickness h of the nanobeam without a step and a crack is shown
for nanobeams of different lengths. Various boundary conditions are applied
to solve the problems of buckling. It can be seen from Figures 3 – 5, that
the values of the critical buckling load increase with increasing the thickness
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of the nanobeam and the values of the critical buckling load decrease by in-
creasing the length of the nanobeams. Another observation to be mentioned
here is the impact of boundary conditions on the values of the critical buck-
ling loads of nanobeams. Calculations are carried out by fixing the same
physical parameters for nanobeams with various boundary conditions. It
can be seen that the values of the critical buckling loads are the highest in
the case of clamped nanobeams whereas the cantilever nanobeams are much
weaker than the clamped and simply supported nanobeams. The values of
critical buckling loads for cantilever nanobeams are the lowest ones for these
cases.
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Figure 4. Critical buckling loads of clamped nanobeams.

Figures 6 – 8 reveal the effect of boundary conditions and physical parame-
ters like length l and Young’s modulus E on the values of critical stresses σcr
of the nanobeams without a step and a crack. Results presented in Figures
6 – 8 show the strong impact of Young’s modulus on the values of critical
stresses for nanobeams with various boundary conditions. The values of
the critical stresses increase significantly by increasing the value of Young’s
modulus and the values of the critical stresses decrease with increasing the
length of the nanobeams. Additionally, it can be seen that the values of
critical stresses are higher in the case of clamped nanobeams and these are
the lowest in the case of cantilever nanobeams.
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Figure 5. Critical buckling loads of cantilever nanobeams.
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Figure 6. Critical stresses of simply supported nanobeams.

Critical buckling loads Pcr of nanobeams of constant thickness as well as
of stepped nanobeams including a crack at the step location are presented
in Tables 1 – 4. Nanobeams of length l = 100nm and width b = 20nm are
considered in the numerical experiments, whereas the value of Young’s mod-
ulus is fixed as E = 200GPa. Tables 1 – 4 reveal the fact that the values of
critical buckling loads for clamped nanobeams are always higher than those
of simply supported and cantilever nanobeams. The values of critical buck-
ling loads for cantilever nanobeams are always smaller than those of simply
supported and clamped nanobeams. In Tables 1, 2 results are presented
for nanobeams without a step and a crack. Table 1 reveals the impact of



232 HINA ARIF AND JAAN LELLEP

60 65 70 75 80 85 90 95 100

l

0

100

200

300

400

500

600

cr

Clamped nanobeams

E=50
E=100

E=150
E=200

E=250

h = 50 nm
b = 20 nm
 = 2

Figure 7. Critical stresses of clamped nanobeams.
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Figure 8. Critical stresses of cantilever nanobeams.

height to length ratio on the critical buckling loads of nanobeams with var-
ious boundary conditions. It can be seen that the value of critical buckling
loads decreases monotonically by decreasing the value of height to length
ratio of the nanobeam/plate. Table 2 presents the relationship between the
non-dimensional length scale parameter η and the critical buckling loads Pcr

of nanobeam/plate with various boundary conditions. One can see that the
higher is the value of the nonlocal parameter, the smaller will be the value
of the critical buckling load. Although the value of the nonlocal parameter
has a little impact on the critical buckling loads of nanobeams, in the case
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Table 1. Impact of height to length ratio h/l on the critical
buckling loads of nanobeams with various boundary condi-
tions.

h/l Clamped Simply supported Cantilever

0.5 1.6320e+05 4.1042e+04 1.0276e+04
0.4 8.3561e+04 2.1014e+04 5.2612e+03
0.3 3.5252e+04 8.8651e+03 2.2196e+03
0.2 1.0445e+04 2.6267e+03 657.6491

Table 2. Relationship of non-dimensional length scale pa-
rameter η to the critical buckling loads of nanobeams with
various boundary conditions.

η Clamped Simply supported Cantilever

1 8.3889e+04 2.1034e+04 5.2625e+03
2 8.3561e+04 2.1014e+04 5.2612e+03
3 8.3235e+04 2.0993e+04 5.2599e+03
4 8.2911e+04 2.0972e+04 5.2586e+03

of nano-structures one can never neglect the impact of nonlocal length scale
parameter while solving the static or dynamic stability problems.

Table 3. Effect of height to length ratio h1/l of the stepped
column on the critical buckling loads of nanobeams with var-
ious boundary conditions.

h1/l Clamped Simply supported Cantilever

0.4 2.6279e+4 1.9148e+3 50.7417
0.3 2.9668e+3 5.3561e+2 28.5147
0.2 1.7869e+3 14.5270 12.6488
0.1 2.3080e+2 9.1770 3.1440

In Tables 3, 4 results are presented for one stepped nanobeams including
a crack at the step location. Here the height-to-length ratio of the first
step is taken as ho/l = 0.5, the value of the Poisson ratio as ν = 0.38, and
the crack length as s = 0.6. Table 3 reveals the effect of the height-to-
length ratio of the stepped column on the value of critical buckling loads of
nanobeams with various boundary conditions. One can see that the value
of the critical buckling loads monotonically decreases with decreasing the
height-to-length ratio of the stepped column. In Table 4 the relationship
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Table 4. Relationship of critical buckling loads to the crack
locations of nanobeams with various boundary conditions.

a/l Clamped Simply supported Cantilever

0.4 2.6279e+4 1.9148e+3 50.7417
0.3 1.1010e+4 9.13232+2 43.4723
0.2 8.3906e+3 5.3891e+2 38.0203
0.1 4.8331e+3 3.2631e+2 33.7798

between the critical buckling load and the crack location of the nanobeams
with various boundary conditions is presented. The height-to-length ratio of
the stepped column is chosen as h1/l = 0.4. It can be seen that the values
of the critical buckling loads decrease monotonically by decreasing the value
of the crack location of the nanobeam. It can be observed that the impact
of boundary conditions on the stability of stepped nanobeams with cracks
remains the same as in the case of nanobeams of constant thickness.

60 65 70 75 80 85 90 95 100

l 

50

100

150

200

250

300

350

400

450

P
cr s=0.7

s=0.6

s=0.5

E = 200 GPa
a = 30 nm
h

0
 = 50 nm

h
1
 = 40 nm

 = 1.5

Figure 9. Impact of cracks on the critical buckling loads of
cantilever nanobeams.

Figure 9 reveals the influence of crack length s on the stability of a one-
stepped cantilever nanobeam. Figure 9 shows that the bigger is the value
of crack length, the smaller is the critical buckling load of the stepped
nanobeam. It also shows that the value of the critical buckling load for
stepped nanobeams with cracks decreases with increasing the length of the
nanobeam.
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Figure 10. Comparison of results for simply supported
nanobeams with Wang et al. [35].
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The results presented in the current article are compared with those ob-
tained by Wang et al. [35] in Figures 10 – 12. Here the dotted lines cor-
respond to the values of critical buckling loads of [35] and the solid lines
correspond to the current solutions. It can be observed from Figures 10 – 12
that the results of the current paper are quite close to those obtained by
Wang et al. [35].
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7. Conclusions

The stability analysis of an axially loaded nanobeam/plate has been car-
ried out. Stepped nanobeams with cracks at the re-entrant corners of the
steps are considered here for the determination of critical buckling loads. An
analytical method has been developed to investigate the effect of discontinu-
ities like cracks, steps, and various boundary conditions on the stability of
nanobeams. Calculations are carried out for simply supported, clamped and
cantilever nanobeams. The effect of the nonlocal length scale parameter on
the stability of nanobeams has been investigated. It is shown that the values
of the critical buckling loads for clamped nanobeams are always higher than
those of simply supported and cantilever nanobeams. Cantilever nanobeams
provide the smallest values of the critical buckling loads in comparison to
clamped and simply supported nanobeams. The effect of crack length and
the crack location on the stability of stepped nanobeam has been investi-
gated. It is also shown that the results of the present paper are close to
those obtained by Wang et al. [35].
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