Equalities between the BLUEs and BLUPs under the partitioned linear fixed model and the corresponding mixed model

Stephen J. Haslett, Jarkko Isotalo, and Simo Puntanen

Abstract. In this article we consider the partitioned fixed linear model $F: y = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \epsilon$ and the corresponding mixed model $M: y = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 u + \epsilon$, where ϵ is a random error vector and u is a random effect vector. In 2006, Isotalo, Möls, and Puntanen found conditions under which an arbitrary representation of the best linear unbiased estimator (BLUE) of an estimable parametric function of β_1 in the fixed model F remains BLUE in the mixed model M. In this paper we extend the results concerning further equalities arising from models F and M.

1. Introduction

Let the partitioned linear fixed effects model be

$F = \{y, \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2, \mathbf{V}\} = \{y, \mathbf{X} \beta, \mathbf{V}\},$

i.e., the n-dimensional observable random vector y is of the form

$y = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \epsilon, \quad \text{cov}(\epsilon) = \mathbf{V}, \quad \text{E}(\epsilon) = 0,$

where $\mathbf{X}_1 \in \mathbb{R}^{n \times p_1}$ and $\mathbf{X}_2 \in \mathbb{R}^{n \times p_2}$ are known matrices, $p_1 + p_2 = p$, $\beta_i \in \mathbb{R}^{p_i}$, $i = 1, 2$, are vectors of unknown fixed effects. The covariance matrix \mathbf{V} of the random error vector ϵ is assumed to be known.

Consider the linear mixed model M which is obtained from F by replacing the fixed vector β_2 with the random effect vector u:

$M: y = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 u + \epsilon, \quad \text{cov}(\epsilon) = \mathbf{V}, \quad \text{E}(\epsilon) = 0,$
where \(\mathbf{X}_1 \) and \(\mathbf{X}_2 \) are as in \(\mathcal{F} \), \(\beta_1 \) is a vector of unknown fixed effects, \(\mathbf{u} \) is an unobservable vector of random effects with \(\text{E}(\mathbf{u}) = \mathbf{0} \), \(\text{cov}(\mathbf{u}) = \mathbf{D} \), \(\text{cov}(\mathbf{\varepsilon}, \mathbf{u}) = \mathbf{0} \); \(\mathbf{V} \) and \(\mathbf{D} \) are assumed to be known. In this situation we have

\[
\text{cov}(\mathbf{\varepsilon}) = \begin{pmatrix} \mathbf{V} & 0 \\ 0 & \mathbf{D} \end{pmatrix}, \quad \text{cov}(\mathbf{y}) = \begin{pmatrix} \Sigma & \mathbf{X}_2 \mathbf{D} \\ \mathbf{D} \mathbf{X}_2' & \mathbf{D} \end{pmatrix}.
\]

Notice that under \(\mathcal{F} \) we have \(\text{cov}(\mathbf{y}) = \mathbf{V} \) but under \(\mathcal{M} \), \(\text{cov}(\mathbf{y}) = \Sigma \).

As for notation, \(r(\mathbf{A}) \), \(\mathbf{A}^- \), \(\mathbf{A}^+ \), \(\mathcal{C}(\mathbf{A}) \), and \(\mathcal{C}(\mathbf{A})^\perp \), denote, respectively, the rank, a generalized inverse, the (unique) Moore–Penrose inverse, the column space, and the orthogonal complement of \(\mathcal{C}(\mathbf{A}) \). By \(\mathbf{A}^\perp \) we denote any matrix satisfying \(\mathcal{C}(\mathbf{A}^\perp) = \mathcal{C}(\mathbf{A})^\perp \). Furthermore, we will write \(\mathbf{P}_\mathbf{A} = \mathbf{A A}^+ = \mathbf{A}^\prime \mathbf{A}^{-1} \mathbf{A}^\prime \) to denote the orthogonal projector onto \(\mathcal{C}(\mathbf{A}) \). The orthogonal projector onto \(\mathcal{C}(\mathbf{A})^\perp \) is denoted as \(\mathbf{Q}_\mathbf{A} = \mathbf{I}_n - \mathbf{P}_\mathbf{A} \), where \(\mathbf{I}_n \) refers to the \(a \times a \) identity matrix and \(a \) is the number of rows of \(\mathbf{A} \). We use the short notations

\[
\mathbf{M} = \mathbf{I}_n - \mathbf{P}_\mathbf{X} \in \{ \mathbf{X}^\perp \}, \quad \mathbf{M}_i = \mathbf{I}_n - \mathbf{P}_{\mathbf{X}_i} \in \{ \mathbf{X}_i^\perp \}, \quad i = 1, 2.
\]

Let \(\mathbf{K} \in \mathbb{R}^{k \times p} \). Then a linear statistic \(\mathbf{A}_i \mathbf{y} \) is said to be a linear unbiased estimator (LUE) for \(\mathbf{K} \beta \) in \(\mathcal{F} \) if its expectation is equal to \(\mathbf{K} \beta \), which happens if and only if \(\mathbf{K}' = \mathbf{X}' \mathbf{A}' \); then \(\mathbf{K} \beta \) is said to be estimable. The LUE \(\mathbf{A}_i \mathbf{y} \) is the best linear unbiased estimator, BLUE, of estimable \(\mathbf{K} \beta \) if \(\mathbf{A}_i \mathbf{y} \) has the smallest covariance matrix in the Löwner sense among all LUEs of \(\mathbf{K} \beta \):

\[
\text{cov}(\mathbf{A}_i \mathbf{y}) \preceq \text{cov}(\mathbf{A}_# \mathbf{y}) \quad \text{for all } \mathbf{A}_# \in \mathbb{R}^{k \times n} : \mathbf{A}_# \mathbf{X} = \mathbf{K}.
\]

Correspondingly, the linear predictor \(\mathbf{B}_i \mathbf{y} \) is said to be unbiased (LUP) for a \(q \)-dimensional random vector \(\mathbf{g} = \mathbf{K}_1 \beta_1 + \mathbf{J} \mathbf{u} \) under \(\mathcal{M} \) if the expected prediction error is zero, i.e., \(\text{E}(\mathbf{g} - \mathbf{B}_i \mathbf{y}) = \mathbf{0} \) for all \(\beta_1 \); here \(\mathbf{K}_1 \in \mathbb{R}^{q \times p_1} \) and \(\mathbf{J} \in \mathbb{R}^{q \times p_2} \). Now a LUP \(\mathbf{B}_i \mathbf{y} \) is the best linear unbiased predictor, BLUP for \(\mathbf{g} \) if it minimizes the covariance matrix of the prediction error among all LUPs, i.e., we have the Löwner ordering

\[
\text{cov}(\mathbf{g} - \mathbf{B}_i \mathbf{y}) \preceq \text{cov}(\mathbf{g} - \mathbf{B}_# \mathbf{y}) \quad \text{for all } \mathbf{B}_# \in \mathbb{R}^{q \times n} : \mathbf{B}_# \mathbf{X}_1 = \mathbf{K}_1.
\]

Suppose we are interested in comparing the BLUE of \(\mathbf{K}_1 \beta_1 \) under \(\mathcal{F} \) and \(\mathcal{M} \). To do this we have to assume that \(\mathbf{K}_1 \beta_1 \) is estimable in both models.

By Groß and Puntanen [21 Lemma 1], \(\mathbf{K}_1 \beta_1 \) is estimable under \(\mathcal{F} \) if and only if \(\mathcal{C}(\mathbf{K}_1') \subset \mathcal{C}(\mathbf{X}_1 \mathbf{M}_2) \), i.e., \(\mathbf{K}_1 = \mathbf{L M}_2 \mathbf{X}_1 \) for some matrix \(\mathbf{L} \). Thus if we wish to consider the estimation of all estimable parametric functions of \(\beta_1 \) under \(\mathcal{F} \), then it is equivalent to consider \(\mathbf{M}_2 \mathbf{X}_1 \beta_1 \). In other words, the reason to concentrate on estimating \(\theta_1 = \mathbf{M}_2 \mathbf{X}_1 \beta_1 \) is that the properties obtained are valid for all parametric functions of the type \(\mathbf{K}_1 \beta_1 \) that are estimable under the partitioned model \(\mathcal{F} \).
Clearly if \(K_1 \beta_1 \) is estimable under \(F \) then it is estimable under \(M \).

It is well known that \(\mu_1 = X_1 \beta_1 \) is estimable in \(F \) if and only if
\[
\mathcal{C}(X_1) \cap \mathcal{C}(X_2) = \{0\}.
\] (1)

This follows from the requirement \(\mathcal{C}(X'_1) \subseteq \mathcal{C}(X'_1 M_2) \), i.e., \(\mathcal{C}(X'_1) = \mathcal{C}(X'_1 M_2) \), which holds if and only if (1) holds.

For Lemma 1.1, characterizing the BLUE, see, e.g., Rao [20, p. 282], and the BLUP, see, e.g., Christensen [1, p. 294], and [12, p. 1015]. For further references, see Haslett et al. [3, 4]. For the general reviews of the BLUP-properties, see, e.g., Tian [23, 24].

Lemma 1.1. Consider the models \(F \) and \(M \), and denote \(\Sigma = X_2 DX'_2 + V \). Then the following statements hold.

(a) \(A_1 y \) is the BLUE for estimable \(K \beta \) under \(F \) if and only if
\[
A_1 (X : VM) = (K : 0), \quad \text{i.e.,} \quad A_1 \in \{ P_{K \beta | F} \}.
\]

(b) \(A_2 y \) is the BLUE for estimable \(K_1 \beta_1 \) under \(M \) if and only if
\[
A_2 (X_1 : M_1) = (K_1 : 0), \quad \text{i.e.,} \quad A_2 \in \{ P_{K_1 \beta_1 | M} \}.
\]

(c) \(A_3 y \) is the BLUP for \(J u \) under \(M \) if and only if
\[
A_3 (X_1 : M_1) = (0 : JDJ'M_1), \quad \text{i.e.,} \quad A_3 \in \{ P_{J u | M} \}.
\]

(d) \(A_4 y \) is the BLUP for \(g = K_1 \beta_1 + J u \) under \(M \) if and only if
\[
A_4 (X_1 : M_1) = (K_1 : JDJ'M_1), \quad \text{i.e.,} \quad A_4 \in \{ P_{g | M} \}.
\]

Remark 1.1. Notice the difference between the notations like
\[
P_A = AA^+, \quad \{ P_{K_1 \beta_1 | M} \}.
\]

Above \(P_A \) is the (unique) orthogonal projector onto \(\mathcal{C}(A) \), while \(\{ P_{K_1 \beta_1 | M} \} \) is a set of matrices \(A_2 \) satisfying \(A_2 (X_1 : M_1) = (K_1 : 0) \).

If \(A_2 \in \{ P_{K_1 \beta_1 | M} \} \) and \(A_3 \in \{ P_{J u | M} \} \), i.e.,
\[
\begin{pmatrix} A_2 \\ A_3 \end{pmatrix} (X_1 : M_1) = \begin{pmatrix} K_1 & 0 \\ 0 & JDJ'M_1 \end{pmatrix},
\] (2)

then premultiplying (2) by \((I_q : I_p) \) we immediately see that
\[
A_2 + A_3 \in \{ P_{K_1 \beta_1 + J u | M} \},
\]
i.e., under \(M \) we have
\[
\text{BLUP}(K_1 \beta_1 + J u) = \text{BLUE}(K_1 \beta_1) + \text{BLUP}(J u).
\] (3)

It is well known, see, e.g., Rao [20], that
\[
G = X(X'W^X)^{-1}X'W^+.
\] (4)
where
\[W = X_1X_1' + X_2X_2' + V = XX' + V \] \hspace{1cm} (5)
is one solution to the equation \(A(X : VM) = (X : 0) \); recall that \(\mu = X\beta \) is always estimable in \(\mathcal{F} \). The matrix \(G \) is unique for the choice of generalized inverses marked as “−−” but to obtain uniqueness for \(G \) (which somewhat simplifies our considerations) we have to choose the Moore–Penrose inverse \(W^+ \) in the end of the expression \((4) \).

Below are some solutions to equations appearing in Lemma 1.1 (for references, see, e.g., [19, Ch. 10]):

\[G_{\mu_1|\mathcal{F}} = X_1(X_1'M_2X_1)^{-1}X_1'M_2 \in \{ P_{\mu_1|\mathcal{F}} \}, \]
\[G_{\theta_1|\mathcal{F}} = M_2G_{\mu_1|\mathcal{F}} \in \{ P_{\theta_1|\mathcal{F}} \}, \]
\[G_{\theta_2|\mathcal{F}} = M_1X_2(X_2'M_1X_2)^{-1}X_2'M_1 \in \{ P_{\theta_2|\mathcal{F}} \}, \]
\[G_{\mu_1|\mathcal{M}} = X_1(X_1'W_mX_1)^{-1}X_1'W^+_m \in \{ P_{\mu_1|\mathcal{M}} \}, \]
\[G_{\theta_1|\mathcal{M}} = M_2G_{\mu_1|\mathcal{M}} \in \{ P_{\theta_1|\mathcal{M}} \}, \]
\[G_{X_2u|\mathcal{M}} = X_2DX_2'M_1(M_1\Sigma M_1)^+M_1 \in \{ P_{X_2u|\mathcal{M}} \}, \]
\[G_{M_1X_2u|\mathcal{M}} = M_1G_{X_2u|\mathcal{M}} \in \{ P_{M_1X_2u|\mathcal{M}} \}, \]
where \(\theta_2 = M_1X_2\beta_2 \) and
\[W_m = X_1X_1' + \Sigma = X_1X_1' + X_2DX_2' + V. \] \hspace{1cm} (6)
The matrices \(\tilde{M}_1 \) and \(\tilde{M}_2 \) are defined as
\[\tilde{M}_1 = M_1(M_1WM_1)^+M_1, \quad \tilde{M}_2 = M_2(M_2WM_2)^+M_2. \]
Moreover, see, e.g., [19, Ch. 15],
\[\tilde{M}_2 = M_2(M_2WM_2)^+M_2 = M_2(M_2WM_2)^+ = (M_2WM_2)^+. \]
Obviously, denoting \(W_1 = X_1X_1' + V \), we have
\[M_2W = M_2W_1 = M_2W_m, \quad M_1W_m = M_1\Sigma. \]

It is not necessary to choose \(W \) and \(W_m \) as in \((5) \) and in \((6) \). For example, \(W \) could be replaced with \(W_* = XUU'X' + V \) such that \(\mathcal{C}(W_*) = \mathcal{C}(X : V) \); see, e.g., [19, Sec. 12.3].

The solutions to equations in Lemma 1.1 dealing with \(\mathcal{F} \) are unique if and only if \(\mathcal{C}(W) = \mathbb{R}^n \) while those dealing with \(\mathcal{M} \) are unique if and only if \(\mathcal{C}(W_m) = \mathbb{R}^n \). The general solution for \(A \) in
\[A(X_1 : X_2 : VM) = (M_2X_1 : 0 : 0) \]
can be expressed, e.g., as
\[A_0 = G_{\theta_1|\mathcal{F}} + EQ_W = M_2X_1(X_1'M_2X_1)^{-1}X_1'M_2 + EQ_W, \]
where \(E \in \mathbb{R}^{n \times n} \) is free to vary. By the consistency of the model \(\mathcal{F} \) it is meant that \(y \) lies in \(\mathcal{C}(W) \) with probability 1. Thus under the consistent
In the consistent linear model \mathcal{F}, the estimators Ay and By are said to be equal (with probability 1) if

$$Ay = By \text{ for all } y \in \mathcal{C}(X : V) = \mathcal{C}(X : VM) = \mathcal{C}(X) \oplus \mathcal{C}(VM),$$

where \oplus refers to the direct sum. In (7) we are dealing with the “statistical” equality of the estimators Ay and By. In (7) y refers to a vector in \mathbb{R}^n, while in the notation $\text{cov}(Ay)$ we understand y as a random vector. We may consider, for example, the equation

$$G_{\theta_1 | \mathcal{F}} = \text{BLUE}(\theta_1 | \mathcal{F}), \quad G_{\theta_1 | \mathcal{M}} = \text{BLUE}(\theta_1 | \mathcal{M}),$$

which are short notations for phrases like “$G_{\theta_1 | \mathcal{M}}$ is the BLUE for θ_1 under \mathcal{F}” etc. However, writing the equalities like

$$\text{BLUE}(\mu_1 | \mathcal{F}) = \text{BLUE}(\mu_1 | \mathcal{M}),$$

may cause problems when the representations are not unique.

Isotalo et al. [11] found conditions under which an arbitrary representation of the BLUE of $\theta_1 = M_2X_1\beta_1$ under the fixed model \mathcal{F} remains the BLUE for θ_1 under the mixed model \mathcal{M}. This kind of property can be denoted shortly as

$$\{\text{BLUE}(\theta_1 | \mathcal{F})\} \subseteq \{\text{BLUE}(\theta_1 | \mathcal{M})\},$$

or, equivalently as $\{P_{\theta_1 | \mathcal{F}}\} \subseteq \{P_{\theta_1 | \mathcal{M}}\}$, where the sets $\{P_{\theta_1 | \mathcal{F}}\}$ and $\{P_{\theta_1 | \mathcal{M}}\}$ are defined as in Lemma 1.1

$$A \in \{P_{\theta_1 | \mathcal{F}}\} \iff A(X_1 : X_2 : VM) = (M_2X_1 : 0 : 0),$$

$$B \in \{P_{\theta_1 | \mathcal{M}}\} \iff B(X_1 : VM) = (M_2X_1 : 0).$$

In this paper we generalize the results of Isotalo et al. [11] by considering the following relations:

$$\text{BLUE}(M_2X_1\beta_1 | \mathcal{F}) \text{ vs } \text{BLUP}(M_2X_1\beta_1 + X_2u | \mathcal{M}),$$

$$\text{BLUE}(M_2X_2\beta_2 | \mathcal{F}) \text{ vs } \text{BLUP}(M_2X_2u | \mathcal{M}),$$

$$\text{BLUE}(X\beta | \mathcal{F}) \text{ vs } \text{BLUP}(X_1\beta_1 + X_2u | \mathcal{M}).$$

The case of two linear fixed models $\mathcal{B}_i = \{y_i, X_i, V_i\}$, $i = 1, 2$, with different covariance matrices is extensively studied by Mitra and Moore [18]. Haslett et al. [7] provide a review of conditions under which BLUEs/BLUPs
in one linear mixed model are also BLUE/BLUPs in another (with possibly different design matrices and covariance structures).

We end this section with a useful lemma.

Lemma 1.2. Using the earlier notation, the following statements hold:

(a) \(M = I_n - P_{(X_1;X_2)} = I_n - (P_{X_2} + P_{M_2X_1}) = M_2Q_{M_2X_1} = Q_{M_2X_1}M_2 \),
(b) \(r(M_2X_1) = r(X_1) - \dim \mathcal{C}(X_1) \cap \mathcal{C}(X_2) \),
(c) \(r(AB) = r(A) - \dim \mathcal{C}(A') \cap \mathcal{C}(B)^\perp \),
(d) \(\mathcal{C}(W^+ X)^\perp = \mathcal{C}(W M : Q_W) = \mathcal{C}(V M : Q_W) \),
(e) \(\mathcal{C}(X_2 : \Sigma M) = \mathcal{C}[M_2(M_2WM_2)^+M_2X_1 : Q_W]^\perp \),
(f) \(\mathcal{C}[A(A'B)^\perp]^\perp = \mathcal{C}(A) \cap \mathcal{C}(B) \).

For part (b) and (c), see, e.g., [17, Cor. 6.2]. For (d), see, e.g., [16, Lemma 4] and [20, Sec. 2]. For (e), see [11, Lemma, p. 72], and for (f), see [21, Compl. 7, p. 118].

2. Equality between the BLUEs

Isotalo et al. [11, Sec. 2] proved the following result:

Theorem 2.1. The following statements hold.

(a) An arbitrary BLUE for \(\theta_1 = M_2X_1\beta_1 \) under \(F \) provides also the BLUE for \(\theta_1 \) under the mixed model \(M \), i.e.,

\[
\{ \text{BLUE}(\theta_1 | F) \} \subseteq \{ \text{BLUE}(\theta_1 | M) \},
\]

i.e., \(\{ P_{\theta_1|F} \} \subseteq \{ P_{\theta_1|M} \} \), holds if and only if

\[
\mathcal{C}(\Sigma M_1) \subseteq \mathcal{C}(X_2 : VM).
\]

(b) The reverse relation \(\{ \text{BLUE}(\theta_1 | M) \} \subseteq \{ \text{BLUE}(\theta_1 | F) \} \), i.e.,

\[
\{ P_{\theta_1|M} \} \subseteq \{ P_{\theta_1|F} \},
\]

holds if and only if

\[
\mathcal{C}(X_2 : VM) \subseteq \mathcal{C}(R : \Sigma M_1), \text{ i.e., } \mathcal{C}(X_2) \subseteq \mathcal{C}(R : \Sigma M_1),
\]

where the matrix \(R \) has property \(\mathcal{C}(R) = \mathcal{C}(X_1) \cap \mathcal{C}(X_2) \).

Actually, the matrix \(R \) in (11) was erroneously missing in [11]. Notice that the equivalence of the two inclusions in (11) follows from \(\mathcal{C}(VM) = \mathcal{C}(\Sigma M) \subseteq \mathcal{C}(\Sigma M_1) \), which is based on

\[
\mathcal{C}(M) = \mathcal{C}(M_1QM_1X_2) \subseteq \mathcal{C}(M_1).
\]

The inclusion \(\mathcal{C}(R : \Sigma M_1) \subseteq \mathcal{C}(X_2 : VM) \) and thereby \(\{ P_{\theta_1|M} \} = \{ P_{\theta_1|F} \} \) holds if and only if

\[
\mathcal{C}(R : \Sigma M_1) \subseteq \mathcal{C}(X_2 : VM).
\]

Moreover, it is interesting to observe that \(\mathcal{C}(VM_1) \) is equivalent to

\[
\mathcal{C}(X_2 : VM).
\]
Namely, writing \(P_{(X_2:VM)} = P_{X_2} + P_{M_2:VM} \), it is easy to confirm that
\[
P_{(X_2:VM)}V_{M_1} = V_{M_1} \iff P_{(X_2:VM)}\Sigma_{M_1} = \Sigma_{M_1}.
\]

If \(\mu_1 = X_1\beta_1 \) is estimable under \(\mathcal{F} \), i.e., \(\mathcal{C}(X_1) \cap \mathcal{C}(X_2) = \{0\} \), we immediately observe that (11) simplifies into \(\mathcal{C}(X_2) \subseteq \mathcal{C}(\Sigma_{M_1}) \). Moreover, we can obtain the following corollary.

Corollary 2.1. Let \(\mu_1 = X_1\beta_1 \) is estimable under \(\mathcal{F} \). Then the following statements are equivalent:

- (a) \(\mathcal{C}(X_1) \subseteq \mathcal{C}(\mu_1 | \mathcal{M}) \)
- (b) \(\mathcal{C}(\mu_1 | \mathcal{M}) = \{\text{BLUE}(\mu_1 | \mathcal{F})\} \)
- (c) \(\mathcal{C}(X_2 : VM) \subseteq \mathcal{C}(\Sigma_{M_1}) \)
- (d) \(\mathcal{C}(X_2 : VM) = \mathcal{C}(\Sigma_{M_1}) \)
- (e) \(\mathcal{C}(X_2) \subseteq \mathcal{C}(\Sigma_{M_1}) \)

Proof. The equivalence of (a), (c) and (e) follows from Theorem 2.1. Assuming the disjointness \(\mathcal{C}(X_1) \cap \mathcal{C}(X_2) = \{0\} \), we observe, using (c) of Lemma 1.2 that
\[
r(X_2 : \Sigma M) = r(X_2) + r(\Sigma M) = r(X_2) + r(\Sigma M_1 Q_{M_1 X_2})
\]
\[
= r(X_2) + r(\Sigma M_1) - \dim \mathcal{C}(M_1 \Sigma) \cap \mathcal{C}(M_1 X_2)
\]
\[
\geq r(X_2) + r(\Sigma M_1) - r(M_1 X_2) = r(\Sigma M_1).
\]

Thereby, if (c) holds, then (12) implies that necessarily (d) holds, which further is equivalent to (b).

Remark 2.1. Isotalo et al. [11, p. 72] considered also the condition under which there exists at least one representation of the BLUE of \(\theta_1 \) under \(\mathcal{F} \) which is also BLUE of \(\theta_1 \) under \(\mathcal{M} \). This means that there exists a matrix \(\mathcal{A} \) such that \(\mathcal{A} \in \{P_{\theta_1} | \mathcal{F}\} \cap \{P_{\theta_1} | \mathcal{M}\} \), i.e., \(\mathcal{A} \) satisfies the equation
\[
\mathcal{A}(X_1 : X_2 : \Sigma M_1 : \Sigma M) = (M_2 X_1 : 0 : 0 : 0).
\]

It is clear that \(\mathcal{A} \Sigma M_1 = 0 \) implies \(\mathcal{A} \Sigma M = 0 \) and so (13) is equivalent to
\[
\mathcal{A}(X_1 : X_2 : \Sigma M_1) = (M_2 X_1 : 0 : 0).
\]

Now (14) has a solution for \(\mathcal{A} \) if and only if
\[
\mathcal{N}(X_1 : X_2 : \Sigma M_1) \subseteq \mathcal{N}(M_2 X_1 : 0 : 0),
\]
where \(\mathcal{N}(\cdot) \) refers to the nullspace. The corresponding conditions for further relations appearing in this article can be introduced (we will omit them).

It is interesting to consider the “statistical” equality
\[
\mathcal{G}_{\theta_1 | \mathcal{F}} y = \mathcal{G}_{\theta_1 | \mathcal{M}} y
\]
in deeper details. In particular we can consider two cases:
\[
y \in \mathcal{C}(W) = \mathcal{C}(X_1 : X_2 : V), \quad y \in \mathcal{C}(W_m) = \mathcal{C}(X_1 : X_2 D : V).
\]
Recall that in the fixed model \mathcal{F} the “permissible observation space” for the response variable y is $\mathcal{C}(\mathbf{W})$ while in the mixed model \mathcal{M} it is $\mathcal{C}(\mathbf{W}_m)$. Now the following corollary is straightforward to confirm.

Corollary 2.2. Consider the models \mathcal{F} and \mathcal{M}.

(a) The following statements are equivalent:
 (i) $G_{\theta_1 | \mathcal{F}} y = G_{\theta_1 | \mathcal{F}} y$ for all $y \in \mathcal{C}(\mathbf{W}) = \mathcal{C}(\mathbf{X}_1 : \mathbf{X}_2 : \mathbf{V})$,
 (ii) $G_{\theta_1 | \mathcal{F}}(\mathbf{X}_1 : \mathbf{X}_2 : \mathbf{VM}) = (\mathbf{M}_2 \mathbf{X}_1 : 0 : 0)$,
 (iii) $G_{\theta_1 | \mathcal{F}} \in \{P_{\theta_1 | \mathcal{F}}\}$, i.e., $G_{\theta_1 | \mathcal{F}} y = \text{BLUE}(\theta_1 | \mathcal{F})$.

(b) The following statements are equivalent:
 (i) $(G_{\theta_1 | \mathcal{F}} + \text{EQ}_{\mathbf{W}_m}) y = G_{\theta_1 | \mathcal{F}} y$ for all $y \in \mathcal{C}(\mathbf{W})$ and for all \mathbf{E},
 (ii) $(G_{\theta_1 | \mathcal{F}} + \text{EQ}_{\mathbf{W}_m})(\mathbf{X}_1 : \mathbf{X}_2 : \mathbf{VM}) = (\mathbf{M}_2 \mathbf{X}_1 : 0 : 0)$ for all \mathbf{E},
 (iii) $\{\text{BLUE}(\theta_1 | \mathcal{F})\} \subseteq \{\text{BLUE}(\theta_1 | \mathcal{F})\}$.

(c) The following statements are equivalent:
 (i) $G_{\theta_1 | \mathcal{F}} y = G_{\theta_1 | \mathcal{F}} y$ for all $y \in \mathcal{C}(\mathbf{W}_m) = \mathcal{C}(\mathbf{X}_1 : \Sigma)$,
 (ii) $(G_{\theta_1 | \mathcal{F}} + \text{EQ}_{\mathbf{W}_m}) y = G_{\theta_1 | \mathcal{F}} y$ for all $y \in \mathcal{C}(\mathbf{W}_m)$ and for all \mathbf{E},
 (iii) $G_{\theta_1 | \mathcal{F}}(\mathbf{X}_1 : \Sigma \mathbf{M}_1) = (\mathbf{M}_2 \mathbf{X}_1 : 0)$,
 (iv) $\{\text{BLUE}(\theta_1 | \mathcal{F})\} \subseteq \{\text{BLUE}(\theta_1 | \mathcal{F})\}$.

3. Equality of a particular BLUE and BLUP

In this section we consider the relation

\[\text{BLUE}(\mathbf{M}_2 \mathbf{X}_1 \beta_1 | \mathcal{F}) \text{ versus } \text{BLUP}(\mathbf{M}_2 \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \mathbf{u} | \mathcal{M}). \]

Recall, by (3), that under \mathcal{M} we have

\[\text{BLUP}(\mathbf{M}_2 \mathbf{X}_1 \beta + \mathbf{X}_2 \mathbf{u}) = \text{BLUE}(\mathbf{M}_2 \mathbf{X}_1 \beta_1) + \text{BLUP}(\mathbf{X}_2 \mathbf{u}) \]

\[= \text{BLUE}(\mathbf{M}_2 \mathbf{X}_1 \beta_1) + \mathbf{X}_2 \text{BLUP}(\mathbf{u}). \]

By Lemma [1.1] $\mathbf{L} y$ is the BLUP for $\mathbf{\eta}_1 = \mathbf{M}_2 \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \mathbf{u}$ if and only if

\[\mathbf{L}(\mathbf{X}_1 : \Sigma \mathbf{M}_1) = (\mathbf{M}_2 \mathbf{X}_1 : \mathbf{X}_2 \mathbf{D} \mathbf{X}_1 \mathbf{M}_1), \quad (15) \]

where $\Sigma = \mathbf{X}_2 \mathbf{D} \mathbf{X}_1 + \mathbf{V}$. The general solution to \mathbf{L} in (15) can be expressed as

\[\mathbf{L}_0 = \mathbf{M}_2 \mathbf{X}_1 (\mathbf{X}_1 \mathbf{W}_m \mathbf{X}_1)^{-1} \mathbf{X}_1 \mathbf{W}_m^+ + \mathbf{X}_2 \mathbf{D} \mathbf{X}_1 \mathbf{M}_1 (\mathbf{M}_1 \Sigma \mathbf{M}_1)^+ \mathbf{M}_1 + \text{EQ}_{\mathbf{W}_m}, \]

where $\mathbf{E} \in \mathbb{R}^{n \times n}$ is free to vary and $\mathbf{W}_m = \mathbf{X}_1 \mathbf{X}_1^+ + \Sigma$. Suppose that \mathbf{L}_0 provides also the BLUE for $\theta_1 = \mathbf{M}_2 \mathbf{X}_1 \beta_1$ under the fixed model \mathcal{F}. Then \mathbf{L}_0 has to satisfy, for every \mathbf{E}, the fundamental BLUE equation

\[\mathbf{L}_0(\mathbf{X}_1 : \mathbf{X}_2 : \mathbf{VM}) = \mathbf{L}_0(\mathbf{X}_1 : \mathbf{X}_2 : \Sigma \mathbf{M}) = (\mathbf{M}_2 \mathbf{X}_1 : 0 : 0). \quad (16) \]

Trivially the \mathbf{X}_1-part of (16) holds. Moreover, we must have

\[(G_{\theta_1 | \mathcal{F}} + G_{\mathbf{X}_2 \mathbf{u} | \mathcal{F}} + \text{EQ}_{\mathbf{W}_m})(\mathbf{X}_2 : \Sigma \mathbf{M}) = (0 : 0) \quad \text{for all } \mathbf{E}, \]
which implies that \(\mathcal{C}(X_2) \subseteq \mathcal{C}(W_m) = \mathcal{C}(X_1 : \Sigma M_1) \), and thereby
\[
\mathcal{C}(W) = \mathcal{C}(W_m), \quad X_2 = X_1A + \Sigma M_1B = X_1A + W_mB_1B
\] (17)
for some \(A \) and \(B \). We further must have
\[
(G_{\theta_1|_{\mathcal{M}}} + G_{X_2u|_{\mathcal{M}}})(X_2 : \Sigma M) = (0 : 0). \tag{18}
\]
Consider first the \(\Sigma M \)-part of (18). In view of (15) we have
\[
(G_{\theta_1|_{\mathcal{M}}} + G_{X_2u|_{\mathcal{M}}})\Sigma M_1 = X_2DX_2'M_1,
\]
which further implies
\[
(G_{\theta_1|_{\mathcal{M}}} + G_{X_2u|_{\mathcal{M}}})\Sigma M_1Q_{M_1}X_2 = X_2DX_2'M_1Q_{M_1}X_2 = 0, \tag{19}
\]
i.e., \((G_{\theta_1|_{\mathcal{M}}} + G_{X_2u|_{\mathcal{M}}})\Sigma M = 0 \), and thereby \(\Sigma M \)-part of (18) holds. For the \(X_2 \)-part in (18) we must have
\[
(G_{\theta_1|_{\mathcal{M}}} + G_{X_2u|_{\mathcal{M}}})X_2 = M_2X_1(X'_1W_m^{-1}X_1)\Sigma M_1X_2 = 0,
\]
which clearly holds if and only if
\[
G_{\theta_1|_{\mathcal{M}}}X_2 = M_2X_1(X'_1W_m^{-1}X_1)\Sigma M_1X_2 = 0, \tag{20a}
\]
\[
G_{X_2u|_{\mathcal{M}}}X_2 = X_2DX_2'M_1(M_1\Sigma M_1)^{\perp}M_1X_2 = 0. \tag{20b}
\]
Substituting \(X_2 = X_1A + W_mB_1B \) into (20a) yields \(M_2X_1A = 0 \), so that \(A = Q_{X'_1M_2}Z \) for some \(Z \), and thereby, taking (17) into account,
\[
X_2 = X_1Q_{X'_1M_2}Z + \Sigma M_1B. \tag{21}
\]
Moreover, by part (f) of Lemma 1.2 we have
\[
\mathcal{C}(X_1Q_{X'_1M_2}) = \mathcal{C}(X_1X'_1X_2^{-1}) = \mathcal{C}(X_1) \cap \mathcal{C}(X_2).
\]
Consider then (20b). Substituting (21) into (20b) yields
\[
X_2DX_2'M_1(M_1\Sigma M_1)^{\perp}M_1B = 0, \quad \text{i.e., } X_2DX_2'M_1B = 0, \quad \text{so that } \mathcal{C}(B) \subseteq \mathcal{C}(M_1X_2DX_2'), \quad \text{and by (21),}
\]
\[
\mathcal{C}(X_2) \subseteq \mathcal{C}(X_1Q_{X'_1M_2} : \Sigma M_1Q_{M_1X_2DX_2'}).
\]
In light of part (f) of Lemma 1.2 we can further write
\[
\mathcal{C}(M_1Q_{M_1X_2DX_2'}) = \mathcal{C}(X_1 : X_2DX_2')^{\perp} = \mathcal{C}(X_1 : M_1X_2DX_2')^{\perp}.
\]
Thus, noting that \(M_1X_2DX_2' = M_1(\Sigma - V) \), we have obtained the following theorem.
Theorem 3.1. An arbitrary BLUP for \(\eta_1 = M_2 X_1 \beta + X_2 u \) under \(\mathcal{M} \) provides also the BLUE for \(\theta_1 = M_2 X_1 \beta_1 \) under the fixed model \(\mathcal{F} \), i.e.,

\[
\{ \text{BLUE}(M_2 X_1 \beta_1 | \mathcal{F}) \} \subseteq \{ \text{BLUE}(M_2 X_1 \beta | \mathcal{M}) \},
\]

i.e., \(\{ P_{\eta_1 | \mathcal{M}} \} \subseteq \{ P_{\theta_1 | \mathcal{F}} \} \), if and only if

\[
\mathcal{C}(X_2) \subseteq \mathcal{C}(R : \Sigma M_1 S),
\]

where the matrices \(R \) and \(S \) have properties \(\mathcal{C}(R) = \mathcal{C}(X_1) \cap \mathcal{C}(X_2) \) and

\[
\mathcal{C}(S) = \mathcal{C}[X_1 : M_1(\Sigma - V)]^\perp = \mathcal{C}(X_1 : M_1 X_2 D X_2')^\perp.
\]

The reverse inclusion to (22) is considered in Theorem 3.2.

Theorem 3.2. An arbitrary BLUE for \(\theta_1 = M_2 X_1 \beta_1 \) under \(\mathcal{F} \) provides also the BLUP for \(\eta_1 = M_2 X_1 \beta_1 + X_2 u \) under the mixed model \(\mathcal{M} \), i.e.,

\[
\{ \text{BLUE}(M_2 X_1 \beta_1 | \mathcal{M}) \} \subseteq \{ \text{BLUE}(M_2 X_1 \beta_1 + X_2 u | \mathcal{M}) \},
\]

i.e., \(\{ P_{\theta_1 | \mathcal{F}} \} \subseteq \{ P_{\eta_1 | \mathcal{M}} \} \), if and only if the following two conditions hold:

(a) \(\mathcal{C}(\Sigma M_1) \subseteq \mathcal{C}(X_2 : \Sigma M) \), i.e., \(\{ \text{BLUE}(\theta_1 | \mathcal{F}) \} \subseteq \{ \text{BLUE}(\theta_1 | \mathcal{M}) \} \),

(b) \(\Sigma M_1 = VM_1 \), i.e., \(M_1 X_2 D X_2' = 0 \).

Proof. Take an arbitrary member in the class \(\{ P_{\theta_1 | \mathcal{F}} \} \),

\[
B_0 = G_{\theta_1 | \mathcal{F}} + EQ_W = M_2 X_1 (X_1' M_2 X_1)^{-1} X_1' M_2 + EQ_W,
\]

and \(E \) is free to vary and \(\mathcal{C}(W) = \mathcal{C}(X_1 : X_2 : V) \). Then \(B_0 \) provides the BLUP for \(\eta_1 = M_2 X_1 \beta_1 + X_2 u \) under the mixed model \(\mathcal{M} \) if and only if

\[
(G_{\theta_1 | \mathcal{F}} + EQ_W)(X_1 : \Sigma M_1) = (M_2 X_1 : X_2 D X_2' M_1)
\]

holds for every \(E \). The \(X_1 \)-part is clear. The \(\Sigma M_1 \)-part is

\[
(G_{\theta_1 | \mathcal{F}} + EQ_W)\Sigma M_1 = X_2 D X_2' M_1,
\]

i.e.,

\[
G_{\theta_1 | \mathcal{F}} \Sigma M_1 = M_2 X_1 (X_1' M_2 X_1)^{-1} X_1' M_2 \Sigma M_1 = X_2 D X_2' M_1.
\]

It is clear that (25) holds if and only if

\[
M_2 X_1 (X_1' M_2 X_1)^{-1} X_1' M_2 \Sigma M_1 = 0,
\]

\[
X_2 D X_2' M_1 = 0,
\]

where (26a) is equivalent to

\[
X_1' M_2 \Sigma M_1 = 0,
\]

i.e., \(\mathcal{C}(\Sigma M_1) \subseteq \mathcal{C}(M_2 X_1)^\perp \).

In view of \(\mathcal{C}(\Sigma M_1) \subseteq \mathcal{C}(W), \) (27) can be written equivalently as

\[
\mathcal{C}(\Sigma M_1) \subseteq \mathcal{C}(M_2 X_1)^\perp \cap \mathcal{C}(W).
\]

On the other hand, in light of part (e) of Lemma 1.2 we know that

\[
\mathcal{C}(M_2 X_1 : Q_W)^\perp = \mathcal{C}(M_2 X_1)^\perp \cap \mathcal{C}(W) = \mathcal{C}(X_2 : VM).
\]
Theorem 3.1 becomes
\[C(\Sigma M_1) \subseteq C(X_2 : VM) = C(X_2 : \Sigma M). \]

Moreover, (26b) is equivalent to \(VM_1 = \Sigma M_1 \), which completes the proof. □

What about the equality of the sets \(\{P_{\theta_1 | \mathcal{F}}\} \) and \(\{P_{\theta_1 | \mathcal{M}}\} \)? Requesting that (b) of Theorem 3.2 holds, i.e., \(VM_1 = \Sigma M_1 \), the condition (23) of Theorem 3.1 becomes \(C(X_2) \subseteq C(R : \Sigma M_1) \), i.e.,
\[C(X_2 : \Sigma M) \subseteq C(R : \Sigma M_1), \] where \(C(R) = C(X_1) \cap C(X_2). \)

On the other hand, condition (a) of Theorem 3.2 is equivalent to
\[C(R : \Sigma M_1) \subseteq C(X_2 : \Sigma M). \]

Now (30) and (31) imply the following result.

Corollary 3.1. The following statements are equivalent:

(a) \(\{\text{BLUE}(\theta_1 + X_2u | \mathcal{M})\} = \{\text{BLUE}(\theta_1 | \mathcal{F})\} \),

(b) \(C(X_2 : \Sigma M) = C(R : \Sigma M_1) \) and \(M_1X_2DX_2' = 0 \), i.e., \(\Sigma M_1 = VM_1 \), where \(C(R) = C(X_1) \cap C(X_2) \).

Notice that if \(\mu_1 \) is estimable in \(\mathcal{F} \) then \(M_1X_2DX_2' = 0 \) is equivalent to \(X_2DX_2' = 0 \). Moreover, from Corollary 3.1 we can conclude the following.

Corollary 3.2. Suppose that \(\mu_1 = X_1\beta_1 \) is estimable under \(\mathcal{F} \). Then the following three statements are equivalent:

(a) \(\{\text{BLUE}(\mu_1 + X_2u | \mathcal{M})\} = \{\text{BLUE}(\mu_1 | \mathcal{F})\} \),

(b) \(\{\text{BLUE}(\mu_1 | \mathcal{M})\} = \{\text{BLUE}(\mu_1 | \mathcal{F})\} \) and \(X_2DX_2' = 0 \), i.e., \(\Sigma = V \),

(c) \(C(\Sigma M_1) = C(X_2 : VM) \) and \(X_2DX_2' = 0 \).

Remark 3.1. The property \(\text{cov}(X_2u) = X_2DX_2' = 0 \) together with \(E(u) = 0 \) means that \(X_2u = 0 \) with probability 1. Moreover, if \(X_2DX_2' = 0 \), then the mixed model \(\mathcal{M} \) becomes the small fixed model \(\mathcal{F}_1 = \{y, X_1\beta_1, V\} \) and then any of the conditions in Corollary 3.2 implies the equality
\[\{\text{BLUE}(\mu_1 | \mathcal{F}_1)\} = \{\text{BLUE}(\mu_1 | \mathcal{F})\}, \]
which further is equivalent to \(C(VM_1) = C(X_2 : VM) \). □

4. A further equality of particular BLUE and BLUP

In this section we consider
\[\text{BLUE}(M_1X_2\beta_2 | \mathcal{F}) \quad \text{versus} \quad \text{BLUE}(M_1X_2u | \mathcal{M}). \]

Theorem 4.1. An arbitrary BLUP for \(M_1X_2u \) under \(\mathcal{M} \) provides also the BLUP for \(\theta_2 = M_1X_2\beta_2 \) under the fixed model \(\mathcal{F} \), i.e.,
\[\{\text{BLUE}(M_1X_2u | \mathcal{M})\} \subseteq \{\text{BLUE}(M_1X_2\beta_2 | \mathcal{F})\}, \quad (32) \]
for some VM from which it follows that X.

By (33) the $E\theta$ also the BLUE for θ.

The general solution to C is

$$C_0 = M_1X_2DX_2'M_1(M_1\Sigma M_1)^+M_1 + EQW_m,$$

where E is free to vary and $W_m = X_1X_1' + \Sigma$. Suppose that C_0 provides also the BLUE for $\theta_2 = M_1X_2\beta_2$ under the fixed model M. Then C_0 has to satisfy, for every E, the fundamental BLUE equation

$$(G_{M_1X_2u\mid\theta} + EQW_m)(X_1 : X_2 : VM) = (0 : M_1X_2 : 0).$$

By (33) the X_1-part of (34) holds. Moreover, we must have

$$(G_{M_1X_2u\mid\theta} + EQW_m)(X_2 : VM) = (M_1X_2 : 0)$$

for some A and B. We further must have

$$G_{M_1X_2u\mid\theta}(X_2 : VM) = (M_1X_2 : 0).$$

Using $VM = \Sigma M_1$, (36) can be written as

$$G_{M_1X_2u\mid\theta}X_2 = M_1X_2DX_2'M_1(M_1\Sigma M_1)^+M_1X_2 = M_1X_2,$$

$$(37a)$$

$$G_{M_1X_2u\mid\theta}\Sigma M = M_1X_2DX_2'M_1(M_1\Sigma M_1)^+M_1\Sigma M = 0.$$

$$(37b)$$

Now (37b) can be expressed as

$$M_1X_2DX_2'M_1(M_1\Sigma M_1)^+M_1\Sigma M_1Q_{M_1X_2} = 0,$$

which obviously holds.

Consider then (37a):

$$M_1(\Sigma - V)M_1(M_1\Sigma M_1)^+M_1X_2 = M_1X_2,$$

from which, in view of $\mathscr{C}(M_1X_2) \subseteq \mathscr{C}(M_1\Sigma)$, it follows that

$$M_1X_2 - M_1VM_1(M_1\Sigma M_1)^+M_1X_2 = M_1X_2,$$

i.e.,

$$VM_1(M_1\Sigma M_1)^+M_1X_2 = 0.$$

Substituting $X_2 = X_1A + \Sigma M_1B$ into (33) yields $VM_1B = 0$, so that $\mathscr{C}(B) \subseteq \mathscr{C}(M_1V)^+$ and thereby

$$\mathscr{C}(X_2) \subseteq \mathscr{C}(X_1 : \Sigma M_1Q_{M_1X_1}) = \mathscr{C}(X_1 : \Sigma M_1Q_{(X_1; V)}).$$
where by part (f) of Lemma 1.2, $\mathcal{C}(M_1Q_{M_1}V) = \mathcal{C}(X_1 : V)^\perp$. \hfill \Box

Let us consider the reverse inclusion to (32).

Theorem 4.2. An arbitrary BLUP for $\theta_2 = M_1X_2B_2$ under \mathcal{F} provides also the BLUP for M_1X_2u under the mixed model \mathcal{M}, i.e.,

$$\{\text{BLUE}(M_1X_2\beta_2 \mid \mathcal{F})\} \subseteq \{\text{BLUP}(M_1X_2u \mid \mathcal{M})\},$$

i.e., $\{P_{\theta_2 \mid \mathcal{F}}\} \subseteq \{P_{M_1X_2u \mid \mathcal{M}}\}$, if and only if $\mathcal{C}(VM_1) = \mathcal{C}(VM)$.

Proof. Take an arbitrary member in the class $\{P_{\theta_2 \mid \mathcal{F}}\}$,

$$N_0 = G_{\theta_2 \mid \mathcal{F}} + EQW = M_1X_2(X_2'\hat{M}_1X_2)^{-1}X_2'\hat{M} - X_2'\hat{M}_1 + EQW,$$

where E is free to vary and $\mathcal{C}(W) = \mathcal{C}(X_1 : X_2 : V)$. Then N_0 provides the BLUP for M_1X_2u under the mixed model \mathcal{M} if and only if

$$(G_{\theta_2 \mid \mathcal{F}} + EQW)(X_1 : \Sigma M_1) = (0 : M_1X_2DX_2'M_1),$$

where the X_1-part obviously holds and so we must have

$$G_{\theta_2 \mid \mathcal{F}}\Sigma M_1 = M_1X_2(X_2'\hat{M}_1X_2)^{-1}X_2'\hat{M}_1\Sigma M_1 = M_1X_2DX_2'M_1. \quad (40)$$

Premultiplying (40) by $X_2'\hat{M}_1$ yields an equivalent equation

$$X_2'\hat{M}_1\Sigma M_1 = X_2'\hat{M}_1X_2DX_2'M_1 = X_2'\hat{M}_1(\Sigma - V)M_1,$$

i.e., $X_2'\hat{M}_1VM_1 = 0$, which means that

$$\mathcal{C}(VM_1) \subseteq \mathcal{C}(\hat{M}_1X_2)^\perp. \quad (41)$$

We know that $\mathcal{C}(VM_1) \subseteq \mathcal{C}(W)$ and hence we can write (41) as

$$\mathcal{C}(VM_1) \subseteq \mathcal{C}(\hat{M}_1X_2)^\perp \cap \mathcal{C}(W). \quad (42)$$

In view of part (e) of Lemma 1.2 we have the following:

$$\mathcal{C}(X_1 : VM) = \mathcal{C}(\hat{M}_1X_2 : QW)^\perp = \mathcal{C}(\hat{M}_1X_2)^\perp \cap \mathcal{C}(W). \quad (43)$$

Combining (42) and (43) yields

$$\mathcal{C}(VM_1) \subseteq \mathcal{C}(X_1 : VM),$$

which is obviously equivalent to $\mathcal{C}(VM_1) = \mathcal{C}(VM)$. \hfill \Box

From Theorems 4.1 and 4.2 we get the following result.

Corollary 4.1. The following statements are equivalent:

(a) $\{\text{BLUP}(M_1X_2u \mid \mathcal{M})\} = \{\text{BLUE}(M_1X_2\beta_2 \mid \mathcal{F})\},$

(b) $\mathcal{C}(X_2) \subseteq \mathcal{C}(X_1 : \Sigma M_1Q_{M_1}V)$ and $\mathcal{C}(VM_1) = \mathcal{C}(VM).$
5. One further equality between BLUE and BLUP

In this section we consider

\[\text{BLUE}(X_1\beta_1 + X_2\beta_2 \mid \mathcal{F}) \quad \text{versus} \quad \text{BLUP}(X_1\beta_1 + X_2u \mid \mathcal{M}) . \]

Theorem 5.1. An arbitrary BLUP for \(\eta = X_1\beta_1 + X_2u \) under \(\mathcal{M} \) provides also the BLUE for \(\mu = X_1\beta_1 + X_2\beta_2 \) under the fixed model \(\mathcal{F} \), i.e.,

\[\{ \text{BLUP}(X_1\beta_1 + X_2u \mid \mathcal{M}) \} \subseteq \{ \text{BLUE}(X_1\beta_1 + X_2\beta_2 \mid \mathcal{F}) \} , \quad (44) \]

i.e., \(\{ \mathcal{P}_{\eta \mid \mathcal{M}} \} \subseteq \{ \mathcal{P}_{\mu \mid \mathcal{F}} \} \), if and only if

\[\{ \text{BLUP}(M_1X_2u \mid \mathcal{M}) \} \subseteq \{ \text{BLUE}(M_1X_2\beta_2 \mid \mathcal{F}) \} . \quad (45) \]

Proof. The general solution to

\[T(X_1 : \Sigma M_1) = (X_1 : X_2DX_2M_1) \]

can be expressed as

\[T_0 = X_1(X'_1W_mX_1)^{-1}X'_1W_m + X_2DX_2M_1(M_1\Sigma M_1)^{-1}M_1 + EQW_m \]

where \(E \) is free to vary and \(W_m = \Sigma + X_1X'_1 \). Suppose that \(T_0 \) provides also the BLUE for \(\mu = X\beta \) under the fixed model \(\mathcal{F} \). Then \(T_0 \) has to satisfy, for every \(E \), the fundamental BLUE equation

\[T_0(X_1 : X_2 : VM) = (X_1 : X_2 : 0) . \quad (46) \]

It is obvious that the \(X_1 \)-part of (46) holds. Moreover, we must have

\[(G_{\mu_1 \mid \mathcal{M}} + G_{X_2u \mid \mathcal{M}} + EQW_m)(X_2 : VM) = (X_2 : 0) \] for all \(E \),

from which it follows that \(\mathcal{C}(X_2) \subseteq \mathcal{C}(W_m) \) and that for some \(A \) and \(B \),

\[X_2 = X_1A + \Sigma M_1B . \quad (47) \]

We further must have

\[(G_{\mu_1 \mid \mathcal{M}} + G_{X_2u \mid \mathcal{M}})(X_2 : VM) = (X_2 : 0) . \]

It is straightforward to show that \((G_{\mu_1 \mid \mathcal{M}} + G_{X_2u \mid \mathcal{M}})VM = 0 \), so that we are left with condition

\[(G_{\mu_1 \mid \mathcal{M}} + G_{X_2u \mid \mathcal{M}})X_2 = X_1(X'_1W_mX_1)^{-1}X'_1W_mX_2 \]

\[+ X_2DX_2M_1(M_1\Sigma M_1)^{-1}M_1X_2 = X_2 . \quad (48) \]

Substituting \(X_2 = X_1A + \Sigma M_1B = X_1A + W_mM_1B \) into (48) gives

\[X_1A + X_2DX_2M_1B = X_1A + \Sigma M_1B , \]

so that we have \(X_2DX_2M_1B = \Sigma M_1B \), i.e., \(VM_1B = 0 \) and thereby

\[\mathcal{C}(B) \subseteq \mathcal{C}(M_1V)^\perp . \quad (49) \]

Combining (47) and (49) gives \(\mathcal{C}(X_2) \subseteq \mathcal{C}(X_1 : \Sigma M_1Q_{M_1V}) \), and thus by Theorem 4.1 the proof is completed. □
Consider now the reverse inclusion of (44).

Theorem 5.2. An arbitrary BLUE for $\mu = X_1\beta_1 + X_2\beta_2$ under \mathcal{F} provides also the BLUP for $\eta = X_1\beta_1 + X_2u$ under the mixed model \mathcal{M}, i.e.,

$$\{\text{BLUE}(X_1\beta_1 + X_2\beta_2 \mid \mathcal{F})\} \subseteq \{\text{BLUP}(X_1\beta_1 + X_2u \mid \mathcal{M})\},$$

i.e., $\{P_{\mu \mid \mathcal{F}}\} \subseteq \{P_{\eta \mid \mathcal{M}}\}$, if and only if

$$\{\text{BLUE}(M_1X_2\beta_2 \mid \mathcal{F})\} \subseteq \{\text{BLUP}(M_1X_2u \mid \mathcal{M})\}.$$

Proof. Take an arbitrary member in the class $\{P_{\mu \mid \mathcal{F}}\}$,

$$G_0 = G + EQ_W = X(X'W^-X)^{-1}X'W^+ + EQ_W,$$

where E is free to vary and $\mathcal{C}(W) = \mathcal{C}(X_1 : X_2 : V)$. Then G_0 provides the BLUP for $\eta = X_1\beta_1 + X_2u$ under the mixed model \mathcal{M} if and only if

$$(G + EQ_W)(X_1 : \Sigma M_1) = (X_1 : X_2DX_2'M_1). \quad (50)$$

The X_1-part in (50) is clear. The ΣM_1-part gives

$$G\Sigma M_1 = X(X'W^-X)^{-1}X'W^+\Sigma M_1 = X_2DX_2'M_1. \quad (51)$$

Premultiplying (51) by $X'W^+$ gives an equivalent form

$$X'W^+\Sigma M_1 = X'W^+X_2DX_2'M_1. \quad (52)$$

Substituting $X_2DX_2' = \Sigma - V$ into (52) leads to

$$X'W^+\Sigma M_1 = X'W^+(\Sigma - V)M_1,$$

i.e., $X'W^+VM_1 = 0$, i.e.,

$$\mathcal{C}(VM_1) \subseteq \mathcal{C}(W^+X)\perp. \quad (53)$$

Now by part (d) of Lemma 1.2 we know that

$$\mathcal{C}(W^+X)\perp = \mathcal{C}(WM : Q_W) = \mathcal{C}(VM : Q_W),$$

and hence (53) becomes

$$\mathcal{C}(VM_1) \subseteq \mathcal{C}(VM : Q_W). \quad (54)$$

Premultiplying (54) by P_W we obtain $\mathcal{C}(VM_1) \subseteq \mathcal{C}(VM)$, so that we must have $\mathcal{C}(VM_1) = \mathcal{C}(VM)$, and thus by Theorem 1.2 the proof is completed.

Combining the theorems of Sections 4 and 5 we get the following interesting result.

Corollary 5.1. The following statements are equivalent:

(a) $\{\text{BLUP}(X_1\beta_1 + X_2u \mid \mathcal{M})\} = \{\text{BLUE}(X_1\beta_1 + X_2\beta_2 \mid \mathcal{F})\},$

(b) $\{\text{BLUP}(M_1X_2u \mid \mathcal{M})\} = \{\text{BLUE}(M_1X_2\beta_2 \mid \mathcal{F})\},$

(c) $\mathcal{C}(X_2) \subseteq \mathcal{C}(X_1 : \Sigma M_1 Q_{M_1}V)$ and $\mathcal{C}(VM_1) = \mathcal{C}(VM).$
6. Equality of the covariance matrices

In this section we assume that \(\mu_1 = X_1 \beta_1 \) is estimable under \(\mathcal{F} \) and we consider the equality of the covariance matrices of the BLUEs of \(\mu_1 \) under \(\mathcal{F} \) and under \(\mathcal{M} \), i.e., we are comparing \(\text{cov}(G_{\mu_1} \mid \mathcal{F} y \mid \mathcal{F}) \) and \(\text{cov}(G_{\mu_1} \mid \mathcal{M} y \mid \mathcal{F}) \), where

\[
G_{\mu_1} \mid \mathcal{F} = X_1 (X_1' \hat{M}_2 X_1)^{-1} X_1' \hat{M}_2 \in \{P_{\mu_1} \mid \mathcal{F}\},
\]

\[
G_{\mu_1} \mid \mathcal{M} = X_1 (X_1' W_m^+ X_1)^{-1} X_1' W_m^+ \in \{P_{\mu_1} \mid \mathcal{M}\}.
\]

It is noteworthy that the covariance matrices of the BLUEs are unique even though the representations of the BLUEs may not be unique.

It can be shown, see, e.g., [13], that

\[
\text{cov}(\mu_1 \mid \mathcal{F} y \mid \mathcal{M}) = G_{\mu_1} \mid \mathcal{M} \Sigma G_{\mu_1} \mid \mathcal{F}.
\]

where \(W_m^{+1/2} \) refers to the Moore–Penrose inverse of the nonnegative definite square root of \(W_m \), and

\[
\text{cov}(G_{\mu_1} \mid \mathcal{M} y \mid \mathcal{F}) = G_{\mu_1} \mid \mathcal{F} V G_{\mu_1} \mid \mathcal{F} = X_1 (X_1' W_m^{+1/2} X_1)^{+} X_1' = X_1 (X_1' W_m^{+1/2} X_1)^{+} X_1.
\]

The equality \(\text{cov}(G_{\mu_1} \mid \mathcal{M} y \mid \mathcal{F}) = \text{cov}(G_{\mu_1} \mid \mathcal{F} y \mid \mathcal{F}) \) holds if and only if

\[
X_1 (X_1' W_m^{+1/2} X_1)^{+} X_1' = X_1 (X_1' W_m^{+1/2} P_{W_m^{+1/2} M_2} W_m^{+1/2} X_1)^{+} X_1'.
\]

Pre- and postmultiplying (55) by \(X_1^{+} \) and \((X_1')^{+} \), respectively, and using the fact that \(P_{X_1} = X_1^{+} X_1 \), gives an equivalent form to (55):

\[
(X_1' W_m^{+1/2} X_1)^{+} = (X_1' W_m^{+1/2} P_{W_m^{+1/2} M_2} W_m^{+1/2} X_1)^{+},
\]

i.e.,

\[
X_1' W_m^{+1/2} W_m^{+1/2} X_1 = X_1' W_m^{+1/2} P_{W_m^{+1/2} M_2} W_m^{+1/2} X_1.
\]

Now we have the Löwner ordering

\[
X_1' W_m^{+1/2} (I_n - P_{W_m^{+1/2} M_2}) W_m^{+1/2} X_1 \geq_{L} 0,
\]

where the equality holds if and only if

\[
\mathcal{C}(W_m^{+1/2} X_1) \subseteq \mathcal{C}(W_m^{+1/2} M_2).
\]

(56)
Premultiplying (56) by \(W_{1/2} \) gives an equivalent inclusion

\[
\mathcal{C}(X_1) \subseteq \mathcal{C}(W_m M_2) = \mathcal{C}(W_1 M_2), \quad \text{where } W_1 = X_1 X_1' + V. \tag{57}
\]

As Isotalo et al. [11, p. 73] point out, the assumption \(\mathcal{C}(W_m) = \mathbb{R}^n \) implies that the BLUE of \(\mu_1 \) has a unique representation under \(\mathcal{F} \) and \(\mathcal{M} \). Moreover, following their proof (assuming the estimability of \(\mu_1 \) under \(\mathcal{F} \)), it can be shown that the presentations are equal if and only if (57) holds. Thus we can conclude the following result.

Theorem 6.1. The following statements are equivalent.

(a) \(\text{cov}(G_{\mu_1 | \mathcal{M}} y | \mathcal{M}) = \text{cov}(G_{\mu_1 | \mathcal{F}} y | \mathcal{F}) \).

(b) \(\mathcal{C}(X_1) \subseteq \mathcal{C}(W_m M_2) \).

(c) If \(\mathcal{C}(W_m) = \mathbb{R}^n \), then the representations of the BLUEs of \(\mu_1 \) under the models \(\mathcal{F} \) and \(\mathcal{M} \) are equal.

7. Conclusions

In this article we consider the partitioned fixed linear model \(\mathcal{F} : y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon \) and the corresponding mixed model \(\mathcal{M} : y = X_1 \beta_1 + X_2 u + \varepsilon \), where \(\varepsilon \) is a random error vector and \(u \) is a random effect vector. Isotalo et al. [11] found conditions under which an arbitrary representation of the best linear unbiased estimator, BLUE, of \(\theta_1 = M_2 X_1 \beta_1 \) in the fixed model \(\mathcal{F} \) remains BLUE in the mixed model \(\mathcal{M} \); here \(M_2 \) refers to the orthogonal projector \(I_n - P_{X_2} \). The reason to concentrate on estimating \(\theta_1 = M_2 X_1 \beta_1 \) is that this approach means that the properties obtained are valid for all parametric functions of the type \(K \beta_1 \) that are estimable under the partitioned model \(\mathcal{F} \) (and thereby under \(\mathcal{M} \)). In this paper we extend the results concerning further equalities arising from the models \(\mathcal{F} \) and \(\mathcal{M} \).

The property that BLUE of \(\theta_1 \) under \(\mathcal{F} \) remains BLUE under \(\mathcal{M} \) can be denoted shortly as

\[
\{\text{BLUE}(\theta_1 | \mathcal{F})\} \subseteq \{\text{BLUE}(\theta_1 | \mathcal{M})\}, \tag{58}
\]

or, equivalently as \(\{P_{\theta_1 | \mathcal{F}}\} \subseteq \{P_{\theta_1 | \mathcal{M}}\} \), where, in notation introduced in Section [11]

\[
A \in \{P_{\theta_1 | \mathcal{F}}\} \iff A(X_1 : X_2 : VM) = (M_2 X_1 : 0 : 0),
\]

\[
B \in \{P_{\theta_1 | \mathcal{M}}\} \iff B(X_1 : \Sigma M_1) = (M_2 X_1 : 0).
\]

In this paper we generalize the results of [11] by considering the following relations:

\[
\text{BLUE}(M_2 X_1 \beta_1 | \mathcal{F}) \text{ vs } \text{BLUP}(M_2 X_1 \beta_1 + X_2 u | \mathcal{M}),
\]

\[
\text{BLUE}(M_2 X_2 \beta_2 | \mathcal{F}) \text{ vs } \text{BLUP}(M_2 X_2 u | \mathcal{M}),
\]

\[
\text{BLUE}(X \beta | \mathcal{F}) \text{ vs } \text{BLUP}(X_1 \beta_1 + X_2 u | \mathcal{M}).
\]
As Kala et al. [14, Remark 2] point out, the notation of the type as in (58) is merely symbolic and it is not meant to refer to a set containing only one element which is a single fixed vector resulting from a transformation of an observed vector y, or is a single random vector variable being a specific linear transformation of the random vector y. We are, of course, actually interested in the matrices belonging to classes like $\{P_{\theta_1} \mid \mathcal{F}\}$ etc.

There are several related papers concerning the invariance of the BLUEs and/or BLUPs under two models. Mitra and Moore [18] gave an extensive study on the circumstances in which the BLUEs of estimable parametric functions of the fixed parameters in linear model $\{y, X\beta, V_1\}$ remain BLUEs under $\{y, X\beta, V_2\}$: models differing in covariance matrices. Corresponding considerations related to two mixed models have been made, e.g., by Haslett and Puntanen [5, 6]. In [7], they provide a review of conditions under which BLUEs/BLUPs in one linear mixed model are also BLUE/BLUPs in another. The article [8] explores interesting links between the mixed and fixed linear models. It appears that the concept of the linear model with new future observations is a powerful tool for these considerations. For further references we may mention [15], [22], [25], and [4].

We believe that our results, which are mainly linear-algebraic by nature, can provide some insight into the relations between the fixed and mixed model like \mathcal{F} and \mathcal{M}. Some interesting related discussion appears, e.g., in [9] [10].

Acknowledgements

Many thanks go to an anonymous referee for constructive remarks.

References