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Equalities between the BLUEs and BLUPs under
the partitioned linear fixed model and the

corresponding mixed model

Stephen J. Haslett, Jarkko Isotalo, and Simo Puntanen

Abstract. In this article we consider the partitioned fixed linear model
F : y = X1β1 +X2β2 + ε and the corresponding mixed model M : y =
X1β1+X2u+ε, where ε is a random error vector and u is a random effect
vector. In 2006, Isotalo, Möls, and Puntanen found conditions under
which an arbitrary representation of the best linear unbiased estimator
(BLUE) of an estimable parametric function of β1 in the fixed model
F remains BLUE in the mixed model M . In this paper we extend the
results concerning further equalities arising from models F and M .

1. Introduction

Let the partitioned linear fixed effects model be

F = {y, X1β1 + X2β2, V} = {y, Xβ, V} ,

i.e., the n-dimensional observable random vector y is of the form

y = X1β1 + X2β2 + ε , cov(ε) = V, E(ε) = 0 ,

where X1 ∈ Rn×p1 and X2 ∈ Rn×p2 are known matrices, p1 + p2 = p,
βi ∈ Rpi , i = 1, 2, are vectors of unknown fixed effects. The covariance
matrix V of the random error vector ε is assumed to be known.

Consider the linear mixed model M which is obtained from F by replac-
ing the fixed vector β2 with the random effect vector u:

M : y = X1β1 + X2u + ε, cov(ε) = V, E(ε) = 0 ,

Received March 29, 2021.
2020 Mathematics Subject Classification. 62J05, 62J10.
Key words and phrases. Best linear unbiased estimator, best linear unbiased predictor,

BLUE, BLUP, equality of the BLUEs, partitioned linear model.
https://doi.org/10.12697/ACUTM.2021.25.16
Corresponding author: Simo Puntanen

239



240 STEPHEN J. HASLETT, JARKKO ISOTALO, AND SIMO PUNTANEN

where X1 and X2 are as in F , β1 is a vector of unknown fixed effects, u
is an unobservable vector of random effects with E(u) = 0, cov(u) = D,
cov(ε,u) = 0; V and D are assumed to be known. In this situation we have

cov

(
ε
u

)
=

(
V 0
0 D

)
, cov

(
y
u

)
=

(
Σ X2D

DX′2 D

)
,

cov(y) = cov(X2u + ε) = Σ = X2DX′2 + V.

Notice that under F we have cov(y) = V but under M , cov(y) = Σ.
As for notation, r(A), A−, A+, C (A), and C (A)⊥, denote, respectively,

the rank, a generalized inverse, the (unique) Moore–Penrose inverse, the
column space, and the orthogonal complement of C (A). By A⊥ we denote
any matrix satisfying C (A⊥) = C (A)⊥. Furthermore, we will write PA =
AA+ = A(A′A)−A′ to denote the orthogonal projector onto C (A). The
orthogonal projector onto C (A)⊥ is denoted as QA = Ia − PA, where Ia
refers to the a×a identity matrix and a is the number of rows of A. We use
the short notations

M = In −PX ∈ {X⊥} , Mi = In −PXi ∈ {X⊥i } , i = 1, 2 .

Let K ∈ Rk×p. Then a linear statistic Ay is said to be a linear unbiased
estimator (LUE) for Kβ in F if its expectation is equal to Kβ, which
happens if and only if K′ = X′A′; then Kβ is said to be estimable. The
LUE Ay is the best linear unbiased estimator, BLUE, of estimable Kβ if
Ay has the smallest covariance matrix in the Löwner sense among all LUEs
of Kβ:

cov(Ay) ≤L cov(A#y) for all A# ∈ Rk×n : A#X = K .

Correspondingly, the linear predictor By is said to be unbiased (LUP) for
a q-dimensional random vector g = K1β1 + Ju under M if the expected
prediction error is zero, i.e., E(g − By) = 0 for all β1; here K1 ∈ Rq×p1

and J ∈ Rq×p2 . Now a LUP By is the best linear unbiased predictor, BLUP
for g if it minimizes the covariance matrix of the prediction error among all
LUPs, i.e., we have the Löwner ordering

cov(g −By) ≤L cov(g −B#y) for all B# ∈ Rq×n : B#X1 = K1 .

Suppose we are interested in comparing the BLUE of K1β1 under F and
M . To do this we have to assume that K1β1 is estimable in both models.
By Groß and Puntanen [2, Lemma 1], K1β1 is estimable under F if and
only if C (K′1) ⊆ C (X′1M2), i.e., K1 = LM2X1 for some matrix L. Thus if
we wish to consider the estimation of all estimable parametric functions of
β1 under F , then it is equivalent to consider M2X1β1. In other words, the
reason to concentrate on estimating θ1 = M2X1β1 is that the properties
obtained are valid for all parametric functions of the type K1β1 that are
estimable under the partitioned model F .
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Clearly if K1β1 is estimable under F then it is estimable under M .
It is well known that µ1 = X1β1 is estimable in F if and only if

C (X1) ∩ C (X2) = {0} . (1)

This follows from the requirement C (X′1) ⊆ C (X′1M2), i.e., C (X′1) =
C (X′1M2), which holds if and only if (1) holds.

For Lemma 1.1, characterizing the BLUE, see, e.g., Rao [20, p. 282], and
the BLUP, see, e.g., Christensen [1, p. 294], and [12, p. 1015]. For further
references, see Haslett et al. [3, 4]. For the general reviews of the BLUP-
properties, see, e.g., Tian [23, 24].

Lemma 1.1. Consider the models F and M , and denote Σ = X2DX′2+
V. Then the following statements hold.

(a) A1y is the BLUE for estimable Kβ under F if and only if

A1(X : VM) = (K : 0) , i.e., A1 ∈ {PKβ |F} .

(b) A2y is the BLUE for estimable K1β1 under M if and only if

A2(X1 : ΣM1) = (K1 : 0) , i.e., A2 ∈ {PK1β1 |M } .

(c) A3y is the BLUP for Ju under M if and only if

A3(X1 : ΣM1) = (0 : JDJ′M1) , i.e., A3 ∈ {PJu |M } .

(d) A4y is the BLUP for g = K1β1 + Ju under M if and only if

A4(X1 : ΣM1) = (K1 : JDJ′M1) , i.e., A4 ∈ {Pg |M } .

Remark 1.1. Notice the difference between the notations like

PA = AA+, {PK1β1 |M } .

Above PA is the (unique) orthogonal projector onto C (A), while {PK1β1 |M }
is a set of matrices A2 satisfying A2(X1 : ΣM1) = (K1 : 0). �

If A2 ∈ {PK1β1 |M } and A3 ∈ {PJu |M }, i.e.,(
A2

A3

)
(X1 : ΣM1) =

(
K1 0
0 JDJ′M1

)
, (2)

then premultiplying (2) by (Iq : Iq) we immediately see that

A2 + A3 ∈ {PK1β1+Ju |M } ,
i.e., under M we have

BLUP(K1β1 + Ju) = BLUE(K1β1) + BLUP(Ju) . (3)

It is well known, see, e.g., Rao [20], that

G = X(X′W−X)−X′W+, (4)



242 STEPHEN J. HASLETT, JARKKO ISOTALO, AND SIMO PUNTANEN

where
W = X1X

′
1 + X2X

′
2 + V = XX′ + V (5)

is one solution to the equation A(X : VM) = (X : 0); recall that µ = Xβ is
always estimable in F . The matrix G is unique for the choice of generalized
inverses marked as “−” but to obtain uniqueness for G (which somewhat
simplifies our considerations) we have to choose the Moore–Penrose inverse
W+ in the end of the expression (4).

Below are some solutions to equations appearing in Lemma 1.1 (for refer-
ences, see, e.g. [19, Ch. 10]):

Gµ1 |F = X1(X
′
1Ṁ2X1)

−X′1Ṁ2 ∈ {Pµ1 |F} ,
Gθ1 |F = M2Gµ1 |F ∈ {Pθ1 |F} ,

Gθ2 |F = M1X2(X
′
2Ṁ1X2)

−X′2Ṁ1 ∈ {Pθ2 |F} ,
Gµ1 |M = X1(X

′
1W

−
mX1)

−X′1W
+
m ∈ {Pµ1 |M } ,

Gθ1 |M = M2Gµ1 |M ∈ {Pθ1 |M } ,
GX2u |M = X2DX′2M1(M1ΣM1)

+M1 ∈ {PX2u |M } ,
GM1X2u |M = M1GX2u |M ∈ {PM1X2u |M } ,

where θ2 = M1X2β2 and

Wm = X1X
′
1 + Σ = X1X

′
1 + X2DX′2 + V. (6)

The matrices Ṁ1 and Ṁ2 are defined as

Ṁ1 = M1(M1WM1)
+M1 , Ṁ2 = M2(M2WM2)

+M2 .

Moreover, see, e.g., [19, Ch. 15],

Ṁ2 = M2(M2WM2)
+M2 = M2(M2WM2)

+ = (M2WM2)
+.

Obviously, denoting W1 = X1X
′
1 + V, we have

M2W = M2W1 = M2Wm , M1Wm = M1Σ .

It is not necessary to choose W and Wm as in (5) and in (6). For example, W
could be replaced with W∗ = XUU′X′ + V such that C (W∗) = C (X : V);
see, e.g., [19, Sec. 12.3].

The solutions to equations in Lemma 1.1 dealing with F are unique if
and only if C (W) = Rn while those dealing with M are unique if and only
if C (Wm) = Rn. The general solution for A in

A(X1 : X2 : VM) = (M2X1 : 0 : 0)

can be expressed, e.g., as

A0 = Gθ1 |F + EQW = M2X1(X
′
1Ṁ2X1)

−X′1Ṁ2 + EQW ,

where E ∈ Rn×n is free to vary. By the consistency of the model F it is
meant that y lies in C (W) with probability 1. Thus under the consistent
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model F the vector A0y itself is unique once y has been observed. The
consistency in M means that y belongs to C (Wm). Notice that

C (Wm) = C (X1 : X2D : V) ⊆ C (X1 : X2 : V) = C (W) ,

with equality holding if and only if C (X2) ⊆ C (Wm) = C (X1 : ΣM1).
In the consistent linear model F , the estimators Ay and By are said to

be equal (with probability 1) if

Ay = By for all y ∈ C (X : V) = C (X : VM) = C (X)⊕ C (VM) , (7)

where ⊕ refers to the direct sum. In (7) we are dealing with the “statistical”
equality of the estimators Ay and By. In (7) y refers to a vector in Rn,
while in the notation cov(Ay) we understand y as a random vector. We
may consider, for example, the equation

Gθ1 |F y = Gθ1 |M y (8)

but now we immediately observe some problems in defining the space where
y is varying in (8). We can write, for example,

Gθ1 |F y = BLUE(θ1 | F ) , Gθ1 |M y = BLUE(θ1 |M ) ,

which are short notations for phrases like “Gθ1 |M y is the BLUE for θ1 under
F” etc. However, writing the equalities like

BLUE(µ1 | F ) = BLUE(µ1 |M ) ,

may cause problems when the representations are not unique.
Isotalo et al. [11] found conditions under which an arbitrary represen-

tation of the BLUE of θ1 = M2X1β1 under the fixed model F remains
the BLUE for θ1 under the mixed model M . This kind of property can be
denoted shortly as

{BLUE(θ1 | F )} ⊆ {BLUE(θ1 |M )} ,
or, equivalently as {Pθ1 |F} ⊆ {Pθ1 |M }, where the sets {Pθ1 |F} and {Pθ1 |M }
are defined as in Lemma 1.1:

A ∈ {Pθ1 |F} ⇐⇒ A(X1 : X2 : VM) = (M2X1 : 0 : 0) ,

B ∈ {Pθ1 |M } ⇐⇒ B(X1 : ΣM1) = (M2X1 : 0) .

In this paper we generalize the results of Isotalo et al. [11] by considering
the following relations:

BLUE(M2X1β1 | F ) vs BLUP(M2X1β1 + X2u |M ) ,

BLUE(M2X2β2 | F ) vs BLUP(M2X2u |M ) ,

BLUE(Xβ | F ) vs BLUP(X1β1 + X2u |M ) .

The case of two linear fixed models Bi = {y,Xβ,Vi}, i = 1, 2, with
different covariance matrices is extensively studied by Mitra and Moore [18].
Haslett et al. [7] provide a review of conditions under which BLUEs/BLUPs
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in one linear mixed model are also BLUE/BLUPs in another (with possibly
different design matrices and covariance structures).

We end this section with a useful lemma.

Lemma 1.2. Using the earlier notation, the following statements hold:

(a) M = In−P(X1:X2) = In−(PX2+PM2X1) = M2QM2X1 = QM2X1M2 ,
(b) r(M2X1) = r(X1)− dim C (X1) ∩ C (X2) ,
(c) r(AB) = r(A)− dim C (A′) ∩ C (B)⊥,
(d) C (W+X)⊥ = C (WM : QW) = C (VM : QW) ,
(e) C (X2 : ΣM) = C [M2(M2WM2)

+M2X1 : QW]⊥ ,
(f) C [A(A′B⊥)⊥] = C (A) ∩ C (B) .

For part (b) and (c), see, e.g., [17, Cor. 6.2]. For (d), see, e.g., [16,
Lemma 4] and [20, Sec. 2]. For (e), see [11, Lemma, p. 72], and for (f), see
[21, Compl. 7, p. 118].

2. Equality between the BLUEs

Isotalo et al. [11, Sec. 2] proved the following result:

Theorem 2.1. The following statements hold.

(a) An arbitrary BLUE for θ1 = M2X1β1 under F provides also the
BLUE for θ1 under the mixed model M , i.e.,

{BLUE(θ1 | F )} ⊆ {BLUE(θ1 |M )} , (9)

i.e., {Pθ1 |F} ⊆ {Pθ1 |M }, holds if and only if

C (ΣM1) ⊆ C (X2 : VM) . (10)

(b) The reverse relation {BLUE(θ1 | M )} ⊆ {BLUE(θ1 | F )} , i.e.,
{Pθ1 |M } ⊆ {Pθ1 |F}, holds if and only if

C (X2 : VM) ⊆ C (R : ΣM1) , i.e., C (X2) ⊆ C (R : ΣM1) , (11)

where the matrix R has property C (R) = C (X1) ∩ C (X2).

Actually, the matrix R in (11) was erroneously missing in [11]. Notice
that the equivalence of the two inclusions in (11) follows from C (VM) =
C (ΣM) ⊆ C (ΣM1), which is based on

C (M) = C (M1QM1X2) ⊆ C (M1) .

The inclusion (10) is obviously equivalent to C (R : ΣM1) ⊆ C (X2 : VM)
and thereby {Pθ1 |M } = {Pθ1 |F} holds if and only if

C (R : ΣM1) = C (X2 : VM) .

Moreover, it is interesting to observe that (10) is equivalent to

C (VM1) ⊆ C (X2 : VM) .
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Namely, writing P(X2:VM) = PX2 + PM2VM , it is easy to confirm that

P(X2:VM)VM1 = VM1 ⇐⇒ P(X2:VM)ΣM1 = ΣM1 .

If µ1 = X1β1 is estimable under F , i.e., C (X1) ∩ C (X2) = {0}, we
immdiately observe that (11) simplifies into C (X2) ⊆ C (ΣM1). Moreover,
we can obtain the following corollary.

Corollary 2.1. Let µ1 = X1β1 is estimable under F . Then the following
statements are equivalent:

(a) {BLUE(µ1 |M )} ⊆ {BLUE(µ1 | F )} ,
(b) {BLUE(µ1 |M )} = {BLUE(µ1 | F )} ,
(c) C (X2 : VM) ⊆ C (ΣM1) ,
(d) C (X2 : VM) = C (ΣM1) ,
(e) C (X2) ⊆ C (ΣM1) .

Proof. The equivalence of (a), (c) and (e) follows from Theorem 2.1. As-
suming the disjointness C (X1) ∩ C (X2) = {0}, we observe, using (c) of
Lemma 1.2, that

r(X2 : ΣM) = r(X2) + r(ΣM) = r(X2) + r(ΣM1QM1X2)

= r(X2) + r(ΣM1)− dim C (M1Σ) ∩ C (M1X2)

≥ r(X2) + r(ΣM1)− r(M1X2) = r(ΣM1) . (12)

Thereby, if (c) holds, then (12) implies that necessarily (d) holds, which
further is equivalent to (b). �

Remark 2.1. Isotalo et al. [11, p. 72] considered also the condition under
which there exists at least one representation of the BLUE of θ1 under F
which is also BLUE of θ1 under M . This means that there exists a matrix
A such that A ∈ {Pθ1 |F} ∩ {Pθ1 |M }, i.e., A satisfies the equation

A(X1 : X2 : ΣM1 : ΣM) = (M2X1 : 0 : 0 : 0) . (13)

It is clear that AΣM1 = 0 implies AΣM = 0 and so (13) is equivalent to

A(X1 : X2 : ΣM1) = (M2X1 : 0 : 0) . (14)

Now (14) has a solution for A if and only if

N (X1 : X2 : ΣM1) ⊆ N (M2X1 : 0 : 0) ,

where N (·) refers to the nullspace. The corresponding conditions for further
relations appearing in this article can be introduced (we will omit them). �

It is interesting to consider the “statistical” equality

Gθ1 |F y = Gθ1 |M y

in deeper details. In particular we can consider two cases:

y ∈ C (W) = C (X1 : X2 : V) , y ∈ C (Wm) = C (X1 : X2D : V) .
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Recall that in the fixed model F the “permissible observation space” for
the response variable y is C (W) while in the mixed model M it is C (Wm).
Now the following corollary is straightforward to confirm.

Corollary 2.2. Consider the models F and M .

(a) The following statements are equivalent:
(i) Gθ1 |M y = Gθ1 |F y for all y ∈ C (W) = C (X1 : X2 : V) ,
(ii) Gθ1 |M (X1 : X2 : VM) = (M2X1 : 0 : 0) ,

(iii) Gθ1 |M ∈ {Pθ1 |F} , i.e., Gθ1 |M y = BLUE(θ1 | F ) .
(b) The following statements are equivalent:

(i) (Gθ1 |M + EQWm)y = Gθ1 |F y for all y ∈ C (W) and for all E ,
(ii) (Gθ1 |M + EQWm)(X1 : X2 : VM) = (M2X1 : 0 : 0) for all E ,

(iii) {BLUE(θ1 |M )} ⊆ {BLUE(θ1 | F )} .
(c) The following statements are equivalent:

(i) Gθ1 |F y = Gθ1 |M y for all y ∈ C (Wm) = C (X1 : Σ) ,
(ii) (Gθ1 |F + EQW)y = Gθ1 |M y for all y ∈ C (Wm) and for all E ,

(iii) Gθ1 |F (X1 : ΣM1) = (M2X1 : 0) ,
(iv) {BLUE(θ1 | F )} ⊆ {BLUE(θ1 |M )} .

3. Equality of a particular BLUE and BLUP

In this section we consider the relation

BLUE(M2X1β1 | F ) versus BLUP(M2X1β1 + X2u |M ) .

Recall, by (3), that under M we have

BLUP(M2X1β + X2u) = BLUE(M2X1β1) + BLUP(X2u)

= BLUE(M2X1β1) + X2 BLUP(u) .

By Lemma 1.1, Ly is the BLUP for η1 = M2X1β1 + X2u if and only if

L(X1 : ΣM1) = (M2X1 : X2DX′2M1) , (15)

where Σ = X2DX′2 + V. The general solution to L in (15) can be expressed
as

L0 = M2X1(X
′
1W

−
mX1)

−X′1W
+
m + X2DX′2M1(M1ΣM1)

+M1 + EQWm

= Gθ1 |M + GX2u |M + EQWm ,

where E ∈ Rn×n is free to vary and Wm = X1X
′
1 + Σ. Suppose that L0

provides also the BLUE for θ1 = M2X1β1 under the fixed model F . Then
L0 has to satisfy, for every E, the fundamental BLUE equation

L0(X1 : X2 : VM) = L0(X1 : X2 : ΣM) = (M2X1 : 0 : 0) . (16)

Trivially the X1-part of (16) holds. Moreover, we must have

(Gθ1 |M + GX2u |M + EQWm)(X2 : ΣM) = (0 : 0) for all E ,
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which implies that C (X2) ⊆ C (Wm) = C (X1 : ΣM1), and thereby

C (W) = C (Wm) , X2 = X1A + ΣM1B = X1A + WmM1B (17)

for some A and B. We further must have

(Gθ1 |M + GX2u |M )(X2 : ΣM) = (0 : 0) . (18)

Consider first the ΣM-part of (18). In view of (15) we have

(Gθ1 |M + GX2u |M )ΣM1 = X2DX′2M1 ,

which further implies

(Gθ1 |M + GX2u |M )ΣM1QM1X2 = X2DX′2M1QM1X2 = 0 , (19)

i.e., (Gθ1 |M + GX2u |M )ΣM = 0 , and thereby ΣM-part of (18) holds.
For the X2-part in (18) we must have

(Gθ1 |M + GX2u |M )X2 = M2X1(X
′
1W

−
mX1)

−X′1W
+
mX2

+ X2DX′2M1(M1ΣM1)
+M1X2 = 0 ,

which clearly holds if and only if

Gθ1 |M X2 = M2X1(X
′
1W

−
mX1)

−X′1W
+
mX2 = 0 , (20a)

GX2u |M X2 = X2DX′2M1(M1ΣM1)
+M1X2 = 0 . (20b)

Substituting X2 = X1A + WmM1B into (20a) yields M2X1A = 0, so that
A = QX′

1M2
Z for some Z, and thereby, taking (17) into account,

X2 = X1QX′
1M2

Z + ΣM1B . (21)

Moreover, by part (f) of Lemma 1.2, we have

C (X1QX′
1M2

) = C [X1(X
′
1X
⊥
2 )⊥] = C (X1) ∩ C (X2) .

Consider then (20b). Substituting (21) into (20b) yields

X2DX′2M1(M1ΣM1)
+M1ΣM1B = 0 ,

i.e., X2DX′2M1B = 0, so that C (B) ⊆ C (M1X2DX′2)
⊥, and by (21),

C (X2) ⊆ C (X1QX′
1M2

: ΣM1QM1X2DX′
2
) .

In light of part (f) of Lemma 1.2 we can further write

C (M1QM1X2DX′
2
) = C (X1 : X2DX′2)

⊥ = C (X1 : M1X2DX′2)
⊥.

Thus, noting that M1X2DX′2 = M1(Σ−V), we have obtained the following
theorem.
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Theorem 3.1. An arbitrary BLUP for η1 = M2X1β + X2u under M
provides also the BLUE for θ1 = M2X1β1 under the fixed model F , i.e.,

{BLUP(M2X1β1 + X2u |M )} ⊆ {BLUE(M2X1β1 | F )} , (22)

i.e., {Pη1 |M } ⊆ {Pθ1 |F} , if and only if

C (X2) ⊆ C (R : ΣM1S) , (23)

where the matrices R and S have properties C (R) = C (X1) ∩ C (X2) and

C (S) = C [X1 : M1(Σ−V)]⊥ = C (X1 : M1X2DX′2)
⊥. (24)

The reverse inclusion to (22) is considered in Theorem 3.2.

Theorem 3.2. An arbitrary BLUE for θ1 = M2X1β1 under F provides
also the BLUP for η1 = M2X1β1 + X2u under the mixed model M , i.e.,

{BLUE(M2X1β1 | F )} ⊆ {BLUP(M2X1β1 + X2u |M )} ,
i.e., {Pθ1 |F} ⊆ {Pη1 ,|M }, if and only if the following two conditions hold:

(a) C (ΣM1) ⊆ C (X2 : ΣM), i.e., {BLUE(θ1 |F )} ⊆ {BLUE(θ1 |M )},
(b) ΣM1 = VM1 , i.e., M1X2DX′2 = 0 .

Proof. Take an arbitrary member in the class {Pθ1 |F},

B0 = Gθ1 |F + EQW = M2X1(X
′
1Ṁ2X1)

−X′1Ṁ2 + EQW ,

and E is free to vary and C (W) = C (X1 : X2 : V). Then B0 provides the
BLUP for η1 = M2X1β1 + X2u under the mixed model M if and only if

(Gθ1 |F + EQW)(X1 : ΣM1) = (M2X1 : X2DX′2M1)

holds for every E. The X1-part is clear. The ΣM1-part is

(Gθ1 |F + EQW)ΣM1 = X2DX′2M1 ,

i.e.,

Gθ1 |F ΣM1 = M2X1(X
′
1Ṁ2X1)

−X′1Ṁ2ΣM1 = X2DX′2M1 . (25)

It is clear that (25) holds if and only if

M2X1(X
′
1Ṁ2X1)

−X′1Ṁ2ΣM1 = 0 , (26a)

X2DX′2M1 = 0 , (26b)

where (26a) is equivalent to

X′1Ṁ2ΣM1 = 0 , i.e., C (ΣM1) ⊆ C (Ṁ2X1)
⊥. (27)

In view of C (ΣM1) ⊆ C (W), (27) can be written equivalently as

C (ΣM1) ⊆ C (Ṁ2X1)
⊥ ∩ C (W) . (28)

On the other hand, in light of part (e) of Lemma 1.2 we know that

C (Ṁ2X1 : QW)⊥ = C (Ṁ2X1)
⊥ ∩ C (W) = C (X2 : VM). (29)
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Combining (28) and (29) gives

C (ΣM1) ⊆ C (X2 : VM) = C (X2 : ΣM) .

Moreover, (26b) is equivalent to VM1 = ΣM1 , which completes the
proof. �

What about the equality of the sets {Pθ1 |F} and {Pη1 |M }? Requesting
that (b) of Theorem 3.2 holds, i.e., VM1 = ΣM1, the condition (23) of
Theorem 3.1 becomes C (X2) ⊂ C (R : ΣM1), i.e.,

C (X2 : ΣM) ⊆ C (R : ΣM1) , where C (R) = C (X1) ∩ C (X2) . (30)

On the other hand, condition (a) of Theorem 3.2 is equivalent to

C (R : ΣM1) ⊆ C (X2 : ΣM) . (31)

Now (30) and (31) imply the following result.

Corollary 3.1. The following statements are equivalent:

(a) {BLUP(θ1 + X2u |M )} = {BLUE(θ1 | F )} ,
(b) C (X2 : ΣM) = C (R : ΣM1) and M1X2DX′2 = 0, i.e., ΣM1 =

VM1, where C (R) = C (X1) ∩ C (X2) .

Notice that if µ1 is estimable in F then M1X2DX′2 = 0 is equivalent to
X2DX′2 = 0. Moreover, from Corollary 3.1 we can conclude the following.

Corollary 3.2. Suppose that µ1 = X1β1 is estimable under F . Then
the following three statements are equivalent:

(a) {BLUP(µ1 + X2u |M )} = {BLUE(µ1 | F )} ,
(b) {BLUE(µ1 |M )} = {BLUE(µ1 |F )} and X2DX′2 = 0, i.e., Σ = V,
(c) C (ΣM1) = C (X2 : VM) and X2DX′2 = 0 .

Remark 3.1. The property cov(X2u) = X2DX′2 = 0 together with E(u) =
0 means that X2u = 0 with probability 1. Moreover, if X2DX′2 = 0, then
the mixed model M becomes the small fixed model F1 = {y,X1β1,V} and
then any of the conditions in Corollary 3.2 implies the equality

{BLUE(µ1 | F1)} = {BLUE(µ1 | F )} ,
which further is equivalent to C (VM1) = C (X2 : VM). �

4. A further equality of particular BLUE and BLUP

In this section we consider

BLUE(M1X2β2 | F ) versus BLUP(M1X2u |M ) .

Theorem 4.1. An arbitrary BLUP for M1X2u under M provides also
the BLUE for θ2 = M1X2β2 under the fixed model F , i.e.,

{BLUP(M1X2u |M )} ⊆ {BLUE(M1X2β2 | F )} , (32)
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i.e., {PM1X2u |M } ⊆ {Pθ2 |F} , if and only if

C (X2) ⊆ C (X1 : ΣM1QM1V) = C (X1 : ΣM1Q(X1:V)) .

Proof. We recall that Cy is the BLUP for M1X2u under M if and only
if

C(X1 : ΣM1) = (0 : M1X2DX′2M1) . (33)

The general solution to C in (33) is

C0 = M1X2DX′2M1(M1ΣM1)
+M1 + EQWm

= GM1X2u |M + EQWm ,

where E is free to vary and Wm = X1X
′
1 + Σ. Suppose that C0 provides

also the BLUE for θ2 = M1X2β2 under the fixed model F . Then C0 has
to satisfy, for every E, the fundamental BLUE equation

(GM1X2u |M + EQWm)(X1 : X2 : VM) = (0 : M1X2 : 0) . (34)

By (33) the X1-part of (34) holds. Moreover, we must have

(GM1X2u |M + EQWm)(X2 : VM) = (M1X2 : 0) for all E ,

from which it follows that C (X2) ⊆ C (Wm) = C (X1 : Σ), and hence

C (W) = C (Wm) and X2 = X1A + ΣM1B (35)

for some A and B. We further must have

GM1X2u |M (X2 : VM) = (M1X2 : 0) . (36)

Using VM = ΣM, (36) can be written as

GM1X2u |M X2 = M1X2DX′2M1(M1ΣM1)
+M1X2 = M1X2 , (37a)

GM1X2u |M ΣM = M1X2DX′2M1(M1ΣM1)
+M1ΣM = 0 . (37b)

Now (37b) can be expressed as

M1X2DX′2M1(M1ΣM1)
+M1ΣM1QM1X2 = 0 , (38)

which obviously holds.
Consider then (37a):

M1(Σ−V)M1(M1ΣM1)
+M1X2 = M1X2 ,

from which, in view of C (M1X2) ⊆ C (M1Σ), it follows that

M1X2 −M1VM1(M1ΣM1)
+M1X2 = M1X2 , (39)

i.e.,
VM1(M1ΣM1)

+M1X2 = 0 .

Substituting X2 = X1A + ΣM1B into (35) yields VM1B = 0, so that
C (B) ⊆ C (M1V)⊥ and thereby

C (X2) ⊆ C (X1 : ΣM1QM1V) = C (X1 : ΣM1Q(X1:V)) ,
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where by part (f) of Lemma 1.2, C (M1QM1V) = C (X1 : V)⊥. �

Let us consider the reverse inclusion to (32).

Theorem 4.2. An arbitrary BLUE for θ2 = M1X2β2 under F provides
also the BLUP for M1X2u under the mixed model M , i.e.,

{BLUE(M1X2β2 | F )} ⊆ {BLUP(M1X2u |M )} ,

i.e., {Pθ2 |F} ⊆ {PM1X2u |M } , if and only if

C (VM1) = C (VM) .

Proof. Take an arbitrary member in the class {Pθ2 |F},

N0 = Gθ2 |F + EQW = M1X2(X
′
2Ṁ1X2)

−X′2Ṁ1 + EQW ,

where E is free to vary and C (W) = C (X1 : X2 : V). Then N0 provides
the BLUP for M1X2u under the mixed model M if and only if

(Gθ2 |F + EQW)(X1 : ΣM1) = (0 : M1X2DX′2M1) ,

where the X1-part obviously holds and so we must have

Gθ2 |F ΣM1 = M1X2(X
′
2Ṁ1X2)

−X′2Ṁ1ΣM1 = M1X2DX′2M1 . (40)

Premultiplying (40) by X′2Ṁ1 yields an equivalent equation

X′2Ṁ1ΣM1 = X′2Ṁ1X2DX′2M1 = X′2Ṁ1(Σ−V)M1 ,

i.e., X′2Ṁ1VM1 = 0 , which means that

C (VM1) ⊆ C (Ṁ1X2)
⊥. (41)

We know that C (VM1) ⊆ C (W) and hence we can write (41) as

C (VM1) ⊆ C (Ṁ1X2)
⊥ ∩ C (W) . (42)

In view of part (e) of Lemma 1.2 we have the following:

C (X1 : VM) = C (Ṁ1X2 : QW)⊥ = C (Ṁ1X2)
⊥ ∩ C (W) . (43)

Combining (42) and (43) yields

C (VM1) ⊆ C (X1 : VM) ,

which is obviously equivalent to C (VM1) = C (VM). �

From Theorems 4.1 and 4.2 we get the following result.

Corollary 4.1. The following statements are equivalent:

(a) {BLUP(M1X2u |M )} = {BLUE(M1X2β2 | F )} ,
(b) C (X2) ⊆ C (X1 : ΣM1QM1V) and C (VM1) = C (VM) .
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5. One further equality between BLUE and BLUP

In this section we consider

BLUE(X1β1 + X2β2 | F ) versus BLUP(X1β1 + X2u |M ) .

Theorem 5.1. An arbitrary BLUP for η = X1β1 + X2u under M pro-
vides also the BLUE for µ = X1β1 + X2β2 under the fixed model F , i.e.,

{BLUP(X1β1 + X2u |M )} ⊆ {BLUE(X1β1 + X2β2 | F )} , (44)

i.e., {Pη |M } ⊆ {Pµ |F} , if and only if

{BLUP(M1X2u |M )} ⊆ {BLUE(M1X2β2 | F )} . (45)

Proof. The general solution to

T(X1 : ΣM1) = (X1 : X2DX′2M1)

can be expressed as

T0 = X1(X
′
1W

−
mX1)

−X′1W
+
m + X2DX′2M1(M1ΣM1)

+M1 + EQWm

= Gµ1 |M + GX2u |M + EQWm ,

where E is free to vary and Wm = Σ + X1X
′
1 . Suppose that T0 provides

also the BLUE for µ = Xβ under the fixed model F . Then T0 has to
satisfy, for every E, the fundamental BLUE equation

T0(X1 : X2 : VM) = (X1 : X2 : 0) . (46)

It is obvious that the X1-part of (46) holds. Moreover, we must have

(Gµ1 |M + GX2u |M + EQWm)(X2 : VM) = (X2 : 0) for all E ,

from which it follows that C (X2) ⊆ C (Wm) and that for some A and B,

X2 = X1A + ΣM1B . (47)

We further must have

(Gµ1 |M + GX2u |M )(X2 : VM) = (X2 : 0) .

It is straightforward to show that (Gµ1 |M + GX2u |M )VM = 0, so that we
are left with condition

(Gµ1 |M + GX2u |M )X2 = X1(X
′
1W

−
mX1)

−X′1W
+
mX2

+ X2DX′2M1(M1ΣM1)
−M1X2 = X2 . (48)

Substituting X2 = X1A + ΣM1B = X1A + WmM1B into (48) gives

X1A + X2DX′2M1B = X1A + ΣM1B ,

so that we have X2DX′2M1B = ΣM1B, i.e., VM1B = 0 and thereby

C (B) ⊆ C (M1V)⊥. (49)

Combining (47) and (49) gives C (X2) ⊆ C (X1 : ΣM1QM1V), and thus by
Theorem 4.1 the proof is completed. �
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Consider now the reverse inclusion of (44).

Theorem 5.2. An arbitrary BLUE for µ = X1β1 + X2β2 under F
provides also the BLUP for η = X1β1 + X2u under the mixed model M ,
i.e.,

{BLUE(X1β1 + X2β2 | F )} ⊆ {BLUP(X1β1 + X2u |M )} ,
i.e., {Pµ |F} ⊆ {Pη |M }, if and only if

{BLUE(M1X2β2 | F )} ⊆ {BLUP(M1X2u |M )} .

Proof. Take an arbitrary member in the class {Pµ |F},

G0 = G + EQW = X(X′W−X)−X′W+ + EQW ,

where E is free to vary and C (W) = C (X1 : X2 : V). Then G0 provides
the BLUP for η = X1β1 + X2u under the mixed model M if and only if

(G + EQW)(X1 : ΣM1) = (X1 : X2DX′2M1) . (50)

The X1-part in (50) is clear. The ΣM1-part gives

GΣM1 = X(X′W−X)−X′W+ΣM1 = X2DX′2M1 . (51)

Premultiplying (51) by X′W+ gives an equivalent form

X′W+ΣM1 = X′W+X2DX′2M1 . (52)

Substituting X2DX′2 = Σ−V into (52) leads to

X′W+ΣM1 = X′W+(Σ−V)M1 ,

i.e., X′W+VM1 = 0 , i.e.,

C (VM1) ⊆ C (W+X)⊥. (53)

Now by part (d) of Lemma 1.2 we know that

C (W+X)⊥ = C (WM : QW) = C (VM : QW) ,

and hence (53) becomes

C (VM1) ⊆ C (VM : QW) . (54)

Premultiplying (54) by PW we obtain C (VM1) ⊆ C (VM), so that we must
have C (VM1) = C (VM), and thus by Theorem 4.2 the proof is completed.

�

Combining the theorems of Sections 4 and 5 we get the following interest-
ing result.

Corollary 5.1. The following statements are equivalent:

(a) {BLUP(X1β1 + X2u |M )} = {BLUE(X1β1 + X2β2 | F )} ,
(b) {BLUP(M1X2u |M )} = {BLUE(M1X2β2 | F )} ,
(c) C (X2) ⊆ C (X1 : ΣM1QM1V) and C (VM1) = C (VM) .
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6. Equality of the covariance matrices

In this section we assume that µ1 = X1β1 is estimable under F and
we consider the equality of the covariance matrices of the BLUEs of µ1

under F and under M , i.e., we are comparing cov(Gµ1 |M y | M ) and
cov(Gµ1 |F y | F ), where

Gµ1 |F = X1(X
′
1Ṁ2X1)

−X′1Ṁ2 ∈ {Pµ1 |F} ,
Gµ1 |M = X1(X

′
1W

+
mX1)

−X′1W
+
m ∈ {Pµ1 |M } .

It is noteworthy that the covariance matrices of the BLUEs are unique even
though the representations of the BLUEs may not be unique.

It can be shown, see, e.g., [13], that

cov(Gµ1 |M y |M ) = Gµ1 |M ΣG′µ1 |M

= X1[(X
′
1W

+
mX1)

+ − Ip1 ]X′1

= X1[(X
′
1W

+1/2
m W+1/2

m X1)
+ − Ip1 ]X′1 ,

where W
+1/2
m refers to the Moore–Penrose inverse of the nonnegative definite

square root of Wm , and

cov(Gµ1 |F y | F ) = Gµ1 |F VG′µ1 |F

= X1[(X
′
1Ṁ2X1)

+ − Ip1 ]X′1

= X1

{
[X′1M2(M2WmM2)

+M2X1]
+ − Ip1

}
X′1

= X1[(X
′
1W

+1/2
m P

W
1/2
m M2

W+1/2
m X1)

+ − Ip1 ]X′1 .

The equality cov(Gµ1 |M y |M ) = cov(Gµ1 |F y | F ) holds if and only if

X1(X
′
1W

+1/2
m W+1/2

m X1)
+X′1

= X1(X
′
1W

+1/2
m P

W
1/2
m M2

W+1/2
m X1)

+X′1 . (55)

Pre- and postmultiplying (55) by X+
1 and (X′1)

+, respectively, and using the
fact that PX′

1
= X+

1 X1, gives an equivalent form to (55):

(X′1W
+1/2
m W+1/2

m X1)
+ = (X′1W

+1/2
m P

W
1/2
m M2

W+1/2
m X1)

+,

i.e.,

X′1W
+1/2
m W+1/2

m X1 = X′1W
+1/2
m P

W
1/2
m M2

W+1/2
m X1 .

Now we have the Löwner ordering

X′1W
+1/2
m (In −P

W
1/2
m M2

)W+1/2
m X1 ≥L 0 ,

where the equality holds if and only if

C (W+1/2
m X1) ⊆ C (W1/2

m M2) . (56)
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Premultiplying (56) by W
1/2
m gives an equivalent inclusion

C (X1) ⊆ C (WmM2) = C (W1M2) , where W1 = X1X
′
1 + V. (57)

As Isotalo et al. [11, p. 73] point out, the assumption C (Wm) = Rn

implies that the BLUE of µ1 has a unique representation under F and M .
Moreover, following their proof (assuming the estimability of µ1 under F
it can be shown that the presentations are equal if and only if (57) holds.
Thus we can conclude the following result.

Theorem 6.1. The following statements are equivalent.

(a) cov(Gµ1 |M y |M ) = cov(Gµ1 |F y | F ) .
(b) C (X1) ⊆ C (WmM2) .
(c) If C (Wm) = Rn, then the representations of the BLUEs of µ1 under

the models F and M are equal.

7. Conclusions

In this article we consider the partitioned fixed linear model F : y =
X1β1 + X2β2 + ε and the corresponding mixed model M : y = X1β1 +
X2u + ε, where ε is a random error vector and u is a random effect vector.
Isotalo et al. [11] found conditions under which an arbitrary representation
of the best linear unbiased estimator, BLUE, of θ1 = M2X1β1 in the fixed
model F remains BLUE in the mixed model M ; here M2 refers to the
orthogonal projector In − PX2 . The reason to concentrate on estimating
θ1 = M2X1β1 is that this approach means that the properties obtained are
valid for all parametric functions of the type K1β1 that are estimable under
the partitioned model F (and thereby under M ). In this paper we extend
the results concerning further equalities arising from the models F and M .

The property that BLUE of θ1 under F remains BLUE under M can be
denoted shortly as

{BLUE(θ1 | F )} ⊆ {BLUE(θ1 |M )} , (58)

or, equivalently as {Pθ1 |F} ⊆ {Pθ1 |M } , where, in notation introduced in
Section 1,

A ∈ {Pθ1 |F} ⇐⇒ A(X1 : X2 : VM) = (M2X1 : 0 : 0) ,

B ∈ {Pθ1 |M } ⇐⇒ B(X1 : ΣM1) = (M2X1 : 0) .

In this paper we generalize the results of [11] by considering the following
relations:

BLUE(M2X1β1 | F ) vs BLUP(M2X1β1 + X2u |M ) ,

BLUE(M2X2β2 | F ) vs BLUP(M2X2u |M ) ,

BLUE(Xβ | F ) vs BLUP(X1β1 + X2u |M ) .
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As Kala et al. [14, Remark 2] point out, the notation of the type as in
(58) is merely symbolic and it is not meant to refer to a set containing only
one element which is a single fixed vector resulting from a transformation of
an observed vector y, or is a single random vector variable being a specific
linear transformation of the random vector y. We are, of course, actually
interested in the matrices belonging to classes like {Pθ1 |F} etc.

There are several related papers concerning the invariance of the BLUEs
and/or BLUPs under two models. Mitra and Moore [18] gave an extensive
study on the circumstances in which the BLUEs of estimable parametric
functions of the fixed parameters in linear model {y,Xβ,V1} remain BLUEs
under {y,Xβ,V2}; models differing in covariance matrices. Corresponding
considerations related to two mixed models have been made, e.g., by Haslett
and Puntanen [5, 6]. In [7], they provide a review of conditions under which
BLUEs/BLUPs in one linear mixed model are also BLUE/BLUPs in an-
other. The article [8] explores interesting links between the mixed and fixed
linear models. It appears that the concept of the linear model with new
future observations is a powerful tool for these considerations. For further
references we may mention [15], [22], [25], and [4].

We believe that our results, which are mainly linear-algebraic by nature,
can provide some insight into the relations between the fixed and mixed
model like F and M . Some interesting related discussion appears, e.g., in
[9, 10].
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