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Extrapolation to mixed norm spaces and
applications

Kwok-Pun Ho

Abstract. This paper establishes extrapolation theory to mixed norm
spaces. By applying this extrapolation theory, we obtain the mapping
properties of the Rubio de Francia Littlewood–Paley functions and the
geometrical maximal functions on mixed norm spaces. As special cases
of these results, we have the mapping properties on the mixed norm
Lebesgue spaces with variable exponents and the mixed norm Lorentz
spaces.

1. Introduction

The main theme of this paper is the extension of the Rubio de Francia
extrapolation theory to mixed norm spaces.

The study of mixed norm spaces was initialized in [1]. The mixed norm
Lebesgue spaces have been extended to mixed norm Lorentz spaces in [8]
and to mixed norm rearrangement-invariant spaces in [3]. The mixed norm
spaces have applications on Sobolev’s inequality, Littlewood’s inequality [9]
and martingale Hardy spaces [4, 27]. The Rubio de Francia extrapolation
theory was introduced in [23, 24, 25]. It is a powerful tool in analysis,
especially in the study of nonlinear operators. It has been extended to
rearrangement-invariant Banach functions spaces in [6], the Herz spaces with
variable exponents in [14] and the Morrey–Banach spaces in [15].

In this paper, we further extend the extrapolation theory to mixed norm
spaces. In [11, Theorem 3.2], we present an approach to the extension of
extrapolation theory to mixed norm spaces, but this approach has a technical
mistake. The main result of this paper corrects this mistake and establishes
the extrapolation theory to mixed norm spaces with an assumption on the
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boundedness of the strong maximal operator. The main result in this paper
does not only correct the mistake in [11, Theorem 3.2], our main result
also gives a refinement on the extrapolation theory to mixed norm spaces.
To apply the extrapolation theory to mixed norm spaces, we do not need
to use the density argument or the approximation argument to obtain the
boundedness of operators on the entire mixed norm space. We use the ideas
from [15] to obtain this refinement.

We apply our extrapolation theory to mixed norm spaces to the Rubio de
Francia Littlewood–Paley functions and the geometrical maximal functions.
In particular, we study two special cases of the mixed norm spaces, namely,
the mixed norm Lebesgue spaces with variable exponents and the mixed
norm Lorentz spaces.

This paper is organized as follows. The definition of a mixed norm spaces
and some of the basic properties of mixed norm spaces are presented in
Section 2. The extrapolation theory to mixed norm spaces and its applica-
tions on Rubio de Francia Littlewood–Paley functions and the geometrical
maximal functions are established in Section 3.

2. Definitions

Let B(x0, r) = {x ∈ R : |x − x0| < r} denote the open ball with center
x0 ∈ R and radius r > 0. Let B = {B(x0, r) : z ∈ R, r > 0}.

For any r, s > 0 and z = (x, y) ∈ R × R, define R(z, r, s) = B(x, r) ×
B(y, s). Write R = {R(z, r, s) : z ∈ R× R, r, s > 0}.

Let M and L1
loc denote the space of Lebesgue measurable functions and

the space of locally integrable functions on R× R, respectively.
For any f ∈ L1

loc, the strong maximal operator MSf is given by

MSf(z) = sup
R3z

1

|R|

∫
R
|f(u)|du

where the supremum is taken over all R ∈ R containing z.
We recall the Muckenhoupt weight function for the Hardy–Littlewood

maximal operator.

Definition 1. For 1 < p <∞, a locally integrable function ω : R→ [0,∞)
is said to be an Ap weight if

[ω]Ap = sup
B∈B

(
1

|B|

∫
B
ω(x)dx

)(
1

|B|

∫
B
ω(x)

− p′
p dx

) p
p′

<∞

where p′ = p
p−1 . A locally integrable function ω : R → [0,∞) is said to be

an A1 weight if for any B ∈ B
1

|B|

∫
B
ω(y)dy ≤ Cω(x), a.e. x ∈ B
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for some constants C > 0. The infimum of all such C is denoted by [ω]A1 .
Write A∞ = ∪p≥1Ap.

We recall the Muckenhoupt weight function for a strong maximal operator
from [10, Chapter IV, Section 6].

Definition 2. For 1 < p <∞, a locally integrable function ω : R× R→
[0,∞) is said to be an A∗p weight if

[ω]A∗p = sup
R∈R

(
1

|R|

∫
R
ω(x)dx

)(
1

|R|

∫
R
ω(x)

− p′
p dx

) p
p′

<∞

where p′ = p
p−1 . A locally integrable function ω : R× R→ [0,∞) is said to

be an A∗1 weight if for any R ∈ R
1

|R|

∫
R
ω(y)dy ≤ Cω(x), a.e. x ∈ R

for some constants C > 0. The infimum of all such C is denoted by [ω]A∗1 .

We recall the definition of a Banach function space from [2, Chapter 1,
Definitions 1.1 and 1.3].

Definition 3. A Banach space X ⊂ M is said to be a Banach function
space if it satisfies

(1) ‖f‖X = 0 ⇔ f = 0 a.e.,
(2) |g| ≤ |f | a.e. ⇒ ‖g‖X ≤ ‖f‖X ,
(3) 0 ≤ fn ↑ f a.e.⇒ ‖fn‖X ↑ ‖f‖X ,
(4) χE ∈M and |E| <∞ ⇒ χE ∈ X,
(5) χE ∈M and |E| <∞ ⇒

∫
E |f(x)|dx < CE‖f‖X , ∀f ∈ X for some

CE > 0.

We recall the definition of an associate space from [2, Chapter 1, Defini-
tions 2.1 and 2.3].

Definition 4. Let X be a Banach function space. The associate space of
X, X ′, is the collection of all Lebesgue measurable functions f such that

‖f‖X′ = sup

{∫
R
|f(t)g(t)|dt : g ∈ X, ‖g‖X ≤ 1

}
<∞.

According to [2, Chapter 1, Theorems 1.7 and 2.2], when X is a Banach
function space, X ′ is also a Banach function space. The above definition
yields the Hölder inequality∫

R
|f(x)g(x)|dx ≤ ‖f‖X‖g‖X′ . (1)

In addition, the Lorentz–Luxemburg theorem [2, Chapter 1, Theorem 2.7]
guarantees that

X = (X ′)′. (2)
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Definition 5. Let X1, X2 be Banach function spaces. The mixed norm
space (X1, X2) consists of all f ∈M satisfying

‖f‖(X1,X2) = ‖‖f‖X1‖X2 <∞.

As X1 and X2 satisfy item (3) of Definition 3, for any fn(x, y) ↑ f(x, y),
we have ‖fn(·, y)‖X1 ↑ ‖f(·, y)‖X1 and, hence, ‖fn‖(X1,X2) ↑ ‖f‖(X1,X2).

In view of the Luxemburg–Gribanov theorem [19, 29] and the Luxemburg
representation theorem (2), ‖f(·, y)‖X1 is Lebesgue measurable, therefore,
‖‖f‖X1‖X2 is well defined.

According to (1), we have∫
R×R
|f(x, y)g(x, y)|dxdy ≤

∫
R
‖f(·, y)‖X1‖g(·, y)‖X′1dy

≤ ‖‖f‖X1‖X2‖‖g‖X′1‖X′2 .
Thus, we obtain the Hölder inequality for mixed norm space:∫

R×R
|f(x, y)g(x, y)|dxdy ≤ ‖f‖(X1,X2)‖g‖(X′1,X′2). (3)

Let X1, X2 be Banach function spaces. The space (X1, X2)
′ consists of all

f ∈M satisfying

‖f‖(X1,X2)′ = sup
g∈(X1,X2)
‖g‖(X1,X2)

≤1

∫
R×R
|f(x, y)g(x, y)|dxdy <∞.

Even though (X1, X2) is not necessarily a Banach function space on R×R,
we also call (X1, X2)

′ the associate space of (X1, X2).
We have the following identification of the associate space of (X1, X2).

Proposition 1. Let X1, X2 be Banach function spaces. We have

(X1, X2)
′ = (X ′1, X

′
2).

Proof. The Hölder inequality (3) gives (X ′1, X
′
2) ↪→ (X1, X2)

′.
We prove the reverse embedding. Let f ∈ (X1, X2)

′. Let

χN = χB(0,N)×B(0,N)χ{(x,y)∈R×R:|f(x,y)|≤N}

and fN = |f |χN . Obviously, fN ∈ (X ′1, X
′
2) ∩ (X1, X2)

′.
In view of Definition 4, we have

‖fN‖(X′1,X′2) = sup
h∈X2
‖h‖X2

≤1

∫
R

sup
k(·,y)∈X1
‖k(·,y)‖X1

≤1

∫
R
fN (x, y)k(x, y)dxh(y)dy.

Therefore, for any ε > 0, there exist H ∈ X2 with ‖H‖X2 ≤ 1 and K(·, y) ∈
X1 with ‖K(·, y)‖X1 ≤ 1 such that

‖fN‖(X′1,X′2) ≤ (1 + ε)

∫
R×R
|fN (x, y)K(x, y)|dx|H(y)|dy.
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We find that

‖KH‖(X1,X2) = ‖‖KH‖X1‖X2 = ‖‖K‖X1H‖X2 ≤ ‖H‖X2 ≤ 1.

Consequently, the Hölder inequality for (X1, X2) gives

‖fN‖(X′1,X′2) ≤ (1 + ε)‖fN‖(X1,X2)′‖KH‖(X1,X2) ≤ (1 + ε)‖fN‖(X1,X2)′ .

As ε > 0 is arbitrary, we have ‖fN‖(X′1,X′2) ≤ ‖fN‖(X1,X2)′ . Since fN ↑ |f |,
we have ‖f‖(X′1,X′2) ≤ ‖f‖(X1,X2)′ which gives (X1, X2)

′ ↪→ (X ′1, X
′
2). �

The above result generalizes [3, Theorem 3.12] to Banach function spaces.
Furthermore, the Lorentz–Luxemburg theorem (2) and Proposition 1 as-

sures that

(X1, X2)
′′ = (X ′′1 , X

′′
2 ) = (X1, X2). (4)

Definition 6. LetX1, X2 be Banach function spaces. We write (X1, X2) ∈
MS if the strong maximal operator MS is bounded on (X1, X2). We write
(X1, X2) ∈ M if the Hardy–Littlewood maximal operator M is bounded on
(X1, X2).

We recall the definition of the r-convexification for Banach lattices. The
reader is referred to [18, Definition 1.a.1] for the definition of a Banach
lattice. For any 0 < r <∞ and a Banach lattice X, the r-convexification of
X, Xr, is defined as

Xr = {f : |f |r ∈ X}.

The vector space Xr is equipped with the quasi-norm ‖f‖Xr = ‖|f |r‖1/rX .
The reader is referred to [18, Volume II, pp. 53–54] for the case 1 ≤ r <
∞ and [20, Section 2.2] for the general case for further details of the p-
convexification. The reader is alerted that in [20], the r-convexification of
X is called as the 1

r -th power of X.
It is easy to see that, for any r > 0, we have

(X1, X2)
r = (Xr

1 , X
r
2).

3. Main results

Let p0 > 0 and let F denote a family of ordered pairs of non-negative,
Lebesgue measurable functions (f, g). We say that the inequality∫

R×R
f(x, y)p0ω(x, y)dxdy ≤ C

∫
R×R

f(x, y)p0ω(x, y)dxdy

holds for any (f, g) ∈ F and ω0 ∈ A∗1 if it is valid for any pair in F such
that the left-hand side is finite and the constant C depends only on p0 and
[ω0]A∗1 .
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Theorem 1. Let X1, X2 be Banach function spaces. Given a family F ,
suppose that, for some 0 < p0 <∞ and for every ω0 ∈ A∗1, we have∫

R×R
f(x, y)p0ω0(x, y)dxdy ≤ C

∫
R×R

f(x, y)p0ω0(x, y)dxdy

for any (f, g) ∈ F where C depends only on p0 and [ω0]A∗1 .

Suppose that there exists p0 ≤ q0 < ∞ such that X
1/q0
1 and X

1/q0
2 are

Banach function spaces. If

((X
1/q0
1 )′, (X

1/q0
2 )′) ∈MS , (5)

then

‖f‖(X1,X2) ≤ C‖g‖(X1,X2). (6)

Proof. When g 6∈ (X1, X2), we have ‖g‖(X1,X2) =∞ and (6) holds. There-
fore, we assume that (f, g) ∈ F with g ∈ (X1, X2). In view of [11, Theorem
3.1], for any ω ∈ A∗1, we have∫

R×R
f(x, y)q0ω(x, y)dxdy ≤ C

∫
R×R

f(x, y)q0ω(x, y)dxdy. (7)

Write Yi = X
1/q0
i , i = 1, 2. For any h ∈ L1

loc, define

RSh =
∞∑
k=0

Mk
Sh

2k‖MS‖k(Y ′1 ,Y ′2)

where Mk
S is the k-iteration of MS , M0

Sh = |h| and ‖MS‖(Y ′1 ,Y ′2) denotes the

operator norm of MS on (Y ′1 , Y
′
2).

Since (Y ′1 , Y
′
2) ∈MS , the definitions of A∗1 and RS yield

h ≤ RSh (8)

‖RSh‖(Y ′1 ,Y ′2) ≤ 2‖h‖(Y ′1 ,Y ′2) (9)

[RSh]A∗1 ≤ 2‖MS‖(Y ′1 ,Y ′2). (10)

As fN ∈ (X1, X2), according to Proposition 1, we have a nonnegative
G ∈ (Y1, Y2)

′ with ‖G‖(Y1,Y2)′ ≤ 1 such that

‖fN‖q0(X1,X2)
= ‖|fN |q0‖(Y1,Y2 ≤ 2

∫
R×R

(fN (·, y))q0G(x, y)dxdy

≤ 4

∫
R×R

(f(x, y))q0RSG(x, y)dxdy

≤ 4

∫
R×R

(g(x, y))q0RSG(x, y)dxdy

where we use (7) and (10) in the last inequality.
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The Hölder inequality and (9) give

‖fN‖q0(X1,X2)
≤ 4‖gq0‖(Y1,Y2)‖RSG‖(Y1,Y2)′

≤ C‖g‖q0(X1,X2)
‖G‖(Y1,Y2)′ ≤ C‖g‖

q0
(X1,X2)

.

As fN ↑ f , we have established (6). �

The above result corrects a technical mistake in [11, Theorem 3.2]. In [11,
Theorem 3.2], it is stated that there exist h1, h2 such that

‖f‖(X1,X2) ≤ 4

∫
R×R

f(x, y)q0h1(x)h2(y)dxdy.

The above inequality is not valid in general. Consequently, the assumption in
[11, Theorem 3.2] is insufficient to guarantee the validity of the results in [11,
Theorem 3.2]. Theorem 1 corrects this mistake and gives the extrapolation
theory for the mixed norm spaces for (X1, X2) satisfying (5).

There are a number of mixed norm spaces satisfying (5). For instance,

the mixed norm Lebesgue spaces with variable exponents (Lp(·), Lq) and the
mixed norm Lorentz spaces (Lp1,q1 , Lp2,q2). We will obtain these results at
the end of this section.

In order to apply the above result to (X1, X2), we need to show that
a subset of this space, for example, the space of bounded functions with
compact support, is dense in (X1, X2). We can further refine the above
result so that this density argument is not required. We use the idea from
[15] to establish the following result.

Theorem 2. Let p0 ∈ (0,∞), X1, X2 be Banach function spaces. If

X
1/p0
1 and X

1/p0
2 are Banach function spaces, ((X

1/p0
1 )′, (X

1/p0
2 )′) ∈MS and

for every

ω ∈ {RSh : h ∈ (X
1/p0
1 , X

1/p0
2 )′},

the operator T : Lp0(ω)→ Lp0(ω) is bounded, then T : (X1, X2)→ (X1, X2)
is bounded.

Proof. Let f ∈ (X1, X2). for any h ∈ (X
1/p0
1 , X

1/p0
2 )′, (9) yields∫

R×R
|f(x, y)|p0RSh(x, y)dxdy

≤ ‖|f |p0‖
(X

1/p0
1 ,X

1/p0
2 )
‖RSh‖(X1/p0

1 ,X
1/p0
2 )′

≤ ‖f‖(X1,X2)‖h‖(X1/p0
1 ,X

1/p0
2 )′

.

That is,

(X1, X2) ↪→
⋂

h∈(X1/p0
1 ,X

1/p0
2 )′

Lp0(RSh). (11)
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For any h ∈ (X
1/p0
1 , X

1/p0
2 )′, (8) gives∫

R×R
|Tf(x, y)|p0 |h(x, y)|dxdy ≤

∫
R×R
|Tf(x, y)|p0RSh(x, y)dxdy.

The boundedness of T : Lp0(RSh) → Lp0(RSh) and the embedding (11)
yield∫

R×R
|Tf(x, y)|p0 |h(x, y)|dxdy ≤ C

∫
R×R
|f(x, y)|p0RSh(x, y)dxdy.

Consequently, the Hölder inequality and (9) assert that∫
R×R
|Tf(x, y)|p0 |h(x, y)|dxdy

≤ C‖|f |p0‖
(X

1/p0
1 ,X

1/p0
2 )
‖RSh‖(X1/p0

1 ,X
1/p0
2 )′

≤ C‖f‖p0(X1,X2)
‖h‖

(X
1/p0
1 ,X

1/p0
2 )′

.

By taking the supremum over h ∈ (X
1/p0
1 , X

1/p0
2 )′ with ‖h‖

(X
1/p0
1 ,X

1/p0
2 )′

≤ 1,

(4) yields

‖Tf‖p0(X1,X2)
= ‖|Tf |p0‖

(X
1/p0
1 ,X

1/p0
2 )

= ‖|Tf |p0‖
(X

1/p0
1 ,X

1/p0
2 )′′

= sup
‖h‖

(X
1/p0
1 ,X

1/p0
2 )′

≤1

∫
R×R
|Tf(x, y)|p0 |h(x, y)|dxdy

≤ C‖f‖p0(X1,X2)
,

which establishes the boundedness of T : (X1, X2)→ (X1, X2). �

The embedding (11) is crucial for the above theorem. With this embed-
ding, we can get rid of the density argument. We can directly use the bound-
edness of T : Lp0(ω) → Lp0(ω) to obtain our desired result. Notice that in
the above theorem, we do not require T to satisfy any linearity assumption.
Therefore, the above theorem applies to nonlinear operators.

The above extrapolation theory requires an assumption for the bounded-
ness of the strong maximal operator. We have another extrapolation the-
ory for mixed norm spaces which requires the boundedness of the Hardy–
Littlewood maximal operator.

Theorem 3. Let p0 ∈ (0,∞), X1, X2 be Banach function spaces. If

X
1/p0
1 and X

1/p0
2 are Banach function spaces, ((X

1/p0
1 )′, (X

1/p0
2 )′) ∈ M and

for every

ω ∈ {Rh : h ∈ (X
1/p0
1 , X

1/p0
2 )′},

where

Rh =

∞∑
k=0

Mkh

2k‖M‖k
(Y ′1 ,Y

′
2)
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and Yi = X
1/p0
i , i = 1, 2, the operator T : Lp0(ω)→ Lp0(ω) is bounded, then

T : (X1, X2)→ (X1, X2) is bounded.

As the proof of the preceding theorem is similar to the proof of Theorem 2,
for brevity, we omit the details. The reader may consult [15, Theorem 3.3]
for the proof of the analogue of the preceding results on Morrey–Banach
spaces.

Similarly to (10), we see that {Rh : h ∈ (X
1/p0
1 , X

1/p0
2 )′} ⊂ A1. Since

A∗1 ⊂ A1, the above theorem requires a relaxed condition on the function

spaces, namely ((X
1/p0
1 )′, (X

1/p0
2 )′) ∈ M, while it imposes a stronger condi-

tion on the weight functions.
We use Theorem 2 to study the mapping properties of the Rubio de Fran-

cia Littlewood–Paley function and the geometric maximal function on mixed
norm spaces.

We first consider the Rubio de Francia Littlewood–Paley function. Let S ′
be the space of Schwartz distributions on R×R. For any f ∈ S ′, the Fourier
transform of f is denoted by f̂ .

Let W = {Rj}j∈N be a set of disjoint rectangles in R×R with sides parallel
to the coordinate axes. The Littlewood–Paley function associated with W
is given by

4W f(x) =
( ∑
Rj∈W

|SRjf(x)|2
)1/2

where (SRjf )̂ = χRj f̂ . The operator4W is the extension of the Littlewood–
Paley function for arbitrary intervals, introduced by Rubio de Francia in [22],
to the product domain R × R. The following result for 4W is given in [19,
Section 4].

Theorem 4. Let p ∈ (2,∞). If ω ∈ A∗p/2, then∫
R×R
|4W f(x, y)|pω(x, y)dxdy ≤ C

∫
R×R
|f(x, y)pω(x, y)dxdy.

We have the following mapping properties of 4W on mixed norm spaces.

Theorem 5. Let p0 ∈ (2,∞), X1, X2 be Banach function spaces. If X
1/p0
1

and X
1/p0
2 are Banach function spaces and (X

1/p0
1 , X

1/p0
2 )′ ∈MS, then there

exists a constant C > 0 such that for any f ∈ (X1, X2),

‖4W f‖(X1,X2) ≤ C‖f‖(X1,X2).

Proof. In view of (10), we have

{RSh : h ∈ (X
1/p0
1 , X

1/p0
2 )′} ⊂ A∗1 ⊂ A∗p0/2.

Theorem 4 assures that for every ω ∈ {RSh : h ∈ (X
1/p0
1 , X

1/p0
2 )′}, the

operator 4W : Lp0(ω) → Lp0(ω) is bounded. Therefore, we are allowed to
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apply Theorem 2 to obtain the boundedness of 4W : (X1, X2)→ (X1, X2).
�

Our extrapolation theory, Theorem 2, applies to those operators having
the weighted norm inequality for weights belonging to A∗1. The Rubio de
Francia Littlewood–Paley function 4W is an example of this class of opera-
tors. As A∗1 ⊂ A1, Theorem 2 applies to those operators having the weighted
norm inequality for A1. The next examples, the geometric maximal func-
tions, are nonlinear operators which possess the weighted norm inequalities
with weights belonging to A1.

For any Lebesgue measurable function f on R×R, the geometric maximal
function M0f is defined as

M0f(x) = sup
I

exp

(
1

|I|

∫
I

log |f(y)|dy
)

where the supremum is taken over all cubes I containing x with its sides
parallel to the coordinates axes. For any locally integrable function f , M∗0
is defined by

M∗0 f(x) = lim
r→0

(M(|f |r))1/r(x)

where M is the Hardy–Littlewood maximal function.
The most remarkable feature for the geometrical maximal operators is

that they are not linear, not sublinear nor quasi-linear while Theorem 2
does not only apply to linear operators or sublinear operators. Theorem 2
also applies to the geometrical maximal operators.

We have the following weighted norm inequalities for M0 and M∗0 from
[26], [5, Theorem 1.7], respectively.

Theorem 6. Let p ∈ [1,∞) and ω ∈ A∞. We have a constant C > 0
such that for any f ∈ Lp(ω)∫

R2

(M0f(x))pω(x)dx ≤ C
∫
R2

|f(x)|pω(x)dx.

Theorem 7. Let p ∈ [1,∞) and ω ∈ A∞. We have a constant C > 0
such that for any f ∈ Lp(ω)∫

R2

(M∗0 f(x))pω(x)dx ≤ C
∫
R2

|f(x)|pω(x)dx, ∀f ∈ Lp(ω).

Theorem 8. Let X1, X2 be Banach function spaces. If (X1, X2)
′ ∈ MS,

then

‖M0f‖(X1,X2) ≤ C‖f‖(X1,X2),

‖M∗0 f‖(X1,X2) ≤ C‖f‖(X1,X2).

Since A∗1 ⊂ A1 ⊂ A∞, the above results follow from Theorems 2, 6 and 7.
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3.1. Lebesgue spaces with variable exponents. This section estab-
lish the boundedness of the strong maximal operator on the mixed norm
Lebesgue spaces with variable exponent (Lp(·), Lq). It is a consequence of
the UMD property satisfied by the variable exponents obtained recently in
[17].

For brevity, the reader is referred to [16, Definition 4.2.1] for the definition
of the UMD property. For more information on the UMD property, see [16,
Chapter 4].

We now give the definition of Lebesgue spaces with variable exponents.
Let p(·) : Rn → [1,∞] be a Lebesgue measurable function. Define

p− = ess inf{p(x) : x ∈ Rn} and p+ = ess sup{p(x) : x ∈ Rn}.

Definition 7. Let p(·) : Rn → [1,∞] be a Lebesgue measurable function.

The Lebesgue space with variable exponent Lp(·) consists of all Lebesgue
measurable functions f : Rn → C such that

‖f‖Lp(·) = inf {λ > 0 : ρ(|f(x)|/λ) ≤ 1} <∞

where

ρ(f) =

∫
{x∈Rn:p(x)6=∞}

|f(x)|p(x)dx+ ‖fχ{x∈Rn:p(x)=∞}‖L∞ .

We call p(x) the exponent function of Lp(·).

According to [7, Theorem 3.2.13], Lp(·) is a Banach function space. In

addition, we have (Lp(·))′ = Lp
′(·) where 1

p(x) + 1
p′(x) = 1 [7, Theorem 3.2.13].

The reader is referred to [7, Section 3] for more information on Lebesgue
spaces with variable exponents.

We recall a well-,known example on the exponent function p(·) for which
p(·) ∈ M. We recall the class of log-Hölder continuity functions C log, [7,
Definition 2.1]. We write p(·) ∈ C log if it satisfies

|p(x)− p(y)| ≤ C 1

log(1/|x− y|)
, |x− y| ≤ 1

2
, (12)

|p(x)− p(y)| ≤ C 1

log(e+ |x|)
, |y| ≥ |x|. (13)

It is easy to see that

p(·) ∈ C log ⇔ p′(·) ∈ C log. (14)

In view of [7, Theorem 4.3.8], whenever p(·) ∈ C log and p− > 1, then Lp(·) ∈
M.

We now establish the boundedness of the strong maximal operator on the
mixed norm Lebesgue spaces with variable exponents (Lp(·), Lq).
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Let M1,M2 be the Hardy–Littlewood maximal operators on R with re-
spect to x and on R with respect to y, respectively, z = (x, y) ∈ R×R. It is
well known that

MSf(x, y) ≤M1(M2f)(x, y), (15)

see [10, p.452].

Theorem 9. Let q ∈ (1,∞) and p : R→ (1,∞] be a Lebesgue measurable

function. If Lp(·) ∈M with 1 < p− ≤ p+ <∞, then (Lp(·), Lq) ∈MS.

Proof. According to (15), we have

‖‖MSf‖Lp(·)‖Lq ≤ ‖‖M1(M2f)‖Lp(·)‖Lq .

As p1(·) ∈M, we obtain

‖‖M1(M2f)‖Lp(·)‖Lq ≤ C‖‖M2f‖Lp(·)‖Lq

= C

(∫
R
‖M2f(·, y)‖q

Lp(·)dy

)1/q

for some C > 0.
Since 1 < p− ≤ p+ < ∞, [17, Corollary 3.6] guarantees that Lp1(·) has

UMD property. In view of [10, Chapter V, Section 7.6] and [21, Theorem 3],
we have

‖‖M1(M2f)‖Lp(·)‖Lq ≤ C
(∫

R
‖M2f(·, y)‖q

Lp(·)dy

)1/q

≤ C
(∫

R
‖f(·, y)‖q

Lp(·)dy

)1/q

.

That is, (Lp(·), Lq) ∈MS . �

We can use the idea of the proof of the preceding theorem to establish
the boundedness of M on (Lp(·)(Rn1), Lq(Rn2)), ni ∈ N, i = 1, 2 because
Mf ≤ M1(M2f) where M is the Hardy–Littlewood maximal operator on
Rn1+n2 and Mi are the Hardy–Littlewood maximal operators on Rni , i =
1, 2, respectively. Thus, we can apply Theorem 3 to (Lp(·)(Rn1), Lq(Rn2))

provided that Lp(·)(Rn1) ∈M and q ∈ (1,∞).
As [11, Theorem 4.3] relies on [11, Theorem 3.2], the boundedness of the

strong maximal operator on (Lp1(·), Lp2(·)) are still open while the preceding
theorem assures that the strong maximal operator are bounded on the mixed
norm Lebesgue spaces with variable exponent (Lp(·), Lq). In addition, for
those results in [12, 13] that rely on [11, Theorem 3.2], in view of Theorem
1, they are valid for the mixed norm Lebesgue spaces with variable exponent
(Lp(·), Lq). The results for (Lp1(·), Lp2(·)) are still open.
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The above discussion inspires an open question. Whenever p1(·), p2(·) ∈
C log, whether we have a constant C > 0 such that for any f ∈ (Lp1(·), Lp2(·))

‖‖M2f(·, y)‖Lp1(·)‖Lp2(·) ≤ C‖‖f‖‖(Lp1(·),Lp2(·)). (16)

In view of the extrapolation theory for Lebesgue spaces with variable
exponent [7, Theorem 7.2.1], we find that if for any ω ∈ A1, there exists a
constant C > 0 such that∫

R
‖M2f(·, y)‖Lp1(·)ω(y)dy ≤ C

∫
R
‖f(·, y)‖Lp1(·)ω(y)dy,

then (16) holds.
In addition, a further generalization of the above question is that if X is

a Banach function space having UMD property, for any ω ∈ A1, whether we
have ∫

R
‖M2f(·, y)‖Xω(y)dy ≤ C

∫
R
‖f(·, y)‖Xω(y)dy.

We have the following results for the Rubio de Francia Littlewood–Paley
function and the geometric maximal function on mixed norm Lebesgue
spaces with variable exponents.

Theorem 10. Let p(·) be a Lebesgue measurable function and q ∈ (1,∞).

(1) If q ∈ (2,∞) and p(·) ∈ C log with 2 < p− ≤ p+ < ∞, then there
exists a constant C > 0 such that

‖4W f‖(Lp(·),Lq) ≤ C‖f‖(Lp(·),Lq).

(2) If p(·) ∈ C log with 1 ≤ p− ≤ p+ < ∞, then there exists a constant
C > 0 such that

‖M0f‖(Lp(·),Lq) ≤ C‖f‖(Lp(·),Lq),

‖M∗0 f‖(Lp(·),Lq) ≤ C‖f‖(Lp(·),Lq).

Proof. Take p0 ∈ (2,min(p−, q)). Since p(·) ∈ C log, we find that
(p(·)/p0)′ ∈ C log and (p(·)/p0)′− > 1. Proposition 1 and Theorem 9 assure

that (L(p(·)/p0), Lq/p0)′ = (L(p(·)/p0)′ , (Lq/p0)′) ∈ MS . Therefore, Theorem 5

gives the boundedness of 4 on (Lp(·), Lq).

Similarly, since p′(·) ∈ C log with (p′(·))− > 1, we find that (Lp(·), Lq)′ =

(Lp
′(·), Lq

′
) ∈ MS . Thus, Theorem 8 yields the boundedness of M0 and M∗0

on (Lp(·), Lq). �

3.2. Lorentz spaces. In this section, we apply Theorem 2 to the mixed
norm spaces generated by Lorentz spaces. We obtain our result by showing
that (16) is valid when Lp1(·) and Lp2(·) are replaced by the Lorentz spaces.

We briefly recall the definition of Lorentz spaces from [2, Chapter 4, Def-
inition 4.1]. For any Lebesgue measurable function f , define µf (λ) = |{x ∈
R : |f(x)| > λ}|, λ ≥ 0 and f∗(t) = inf{λ : µf (λ) ≤ t}, t ≥ 0.
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Definition 8. Let p, q ∈ (1,∞). The Lorentz space Lp,q consists of all
Lebesgue measurable functions f satisfying

‖f‖Lp,q =

(∫ ∞
0

(t
1
p
− 1

q f∗(t))qdt

)1/q

<∞.

The Lorentz space is a Banach function space. For the studies of the
mixed norm Lorentz spaces, the reader is referred to [8].

We now show that the strong maximal operator is bounded on the mixed
norm Lorentz space (Lp1,q1 , Lp2,q2).

Theorem 11. Let pi, qi ∈ (1,∞), i = 1, 2. We have (Lp1,q1 , Lp2,q2) ∈MS.

Proof. Let r ∈ (1,∞). As p1, q1 ∈ (1,∞), the Hardy–Littlewood maximal
operator M1 is bounded on Lp1,q1 . Therefore, we have

‖‖M1(M2f)‖Lp1,q1
‖Lr ≤ C‖‖M2f‖Lp[1

,q1‖Lr

= C

(∫
R
‖M2f(·, y)‖rLp1,q1

dy

)1/r

for some C > 0.
Since Lp1,q1 has UMD property, we have(∫

R
‖M2f(·, y)‖rLp1,q1

dy

)1/r

≤ C
(∫

R
‖f(·, y)‖rLp1,q1

dy

)1/r

. (17)

Let q ∈ (0,∞), θ ∈ (0, 1) and (·, ·)θ,q be the real interpolation functor [28,
Section 1.3.2]. In view of the interpolation of vector-valued Lorentz spaces
[28, Section 1.18.6, Theorem 2], we have

((Lp1,q1 , L
r1), (Lp1,q1 , L

r2))θ,q2 = (Lp1,q1 , Lp2,q2) (18)

where 1
p2

= 1−θ
r1

+ θ
r2

. Notice that in [28], the mixed norm space (Lp1,q1 , L
r1)

is denoted by Lr1(Lp1,p2).
According to (17), M2 : (Lp1,q1 , L

r)→ (Lp1,q1 , L
r) is a bounded sublinear

operator, (18) assures that M2 : (Lp1,q1 , Lp2,q2)→ (Lp1,q1 , Lp2,q2) is bounded.
Consequently, as M1 is bounded on Lp1,q1 , we find that

‖‖MSf‖Lp1,q1
‖Lp2,q2

≤ ‖‖M1(M2f)‖Lp1,q1
‖Lp2,q2

≤ C‖‖M2f‖Lp1,q1
‖Lp2,q2

≤ C‖‖f‖Lp1,q1
‖Lp2,q2

for some C > 0. �

The above result shows that the mixed norm Lorentz spaces belong to
MS . Therefore, we are allowed to apply Theorem 2 to obtain the following
mapping properties on mixed norm Lorentz spaces.
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Theorem 12. Let pi, qi ∈ (1,∞), i = 1, 2.

(1) If pi, qi ∈ (2,∞), i = 1, 2, then there exists a constant C > 0 such
that

‖4W f‖(Lp1,q1 ,Lp2,q2 )
≤ C‖f‖(Lp1,q1 ,Lp2,q2 )

.

(2) There exists a constant C > 0 such that

‖M0f‖(Lp1,q1 ,Lp2,q2 )
≤ C‖f‖(Lp1,q1 ,Lp2,q2 )

,

‖M∗0 f‖(Lp1,q1 ,Lp2,q2 )
≤ C‖f‖(Lp1,q1 ,Lp2,q2 )

.

The above results follow from the duality Lp,q = Lp′,q′ [2, Chapter 4,
Corollary 4.8], Theorems 5, 8 and 11. For brevity, we leave the details to
the readers.
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