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On the uniqueness of two different classes of
meromorphic functions under the sharing of two

sets of rational functions

Abhijit Banerjee and Arpita Kundu

Abstract. We study the uniqueness problem of two special classes of
meromorphic functions sharing two sets of rational functions. One of
the considered classes has the property to include the Selberg class L-
functions, while the other class is comprising of arbitrary meromorphic
functions having finitely many poles. We obtain a number of results
which extend and improve a number of earlier results such as Li [Proc.
Amer. Math. Soc. 138 (2010), 2071–2077], Lin and Lin [Filomat 30
(2016), 3795–3806] and others. We have also been able to replace the
strict CM (IM) sharing of the sets in our theorems to almost CM (almost
IM) sharing.

1. Introduction

Firstly, throughout the paper by a meromorphic (resp. entire) function
we always mean a meromorphic (resp. entire) function in the whole complex
plane C and M(C) denotes the field of meromorphic functions over C. Let
f and g be two non-constant meromorphic functions, and let a ∈ C ∪ {∞}.
We say that f and g share a counting multiplicity (CM) if f − a and g − a
have the same zeros with the same multiplicities. Functions f and g are said
to share a ignoring multiplicity (IM), if f − a and g− a have the same zeros
with ignoring multiplicities. There also exist the extensions of CM or IM
sharing namely almost CM (almost IM) sharing, which are defined in the
next section.
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In 1920, Nevanlinna introduced his famous five value theorem. Later he
also proved his four value uniqueness result to start a new era and these are
the bases of uniqueness theory.

Next, by L-function we mean a Selberg class function with the Riema-
nian zeta ζ(s) =

∑∞
n=1

1
ns function as a prototype. The Selberg class S

of L-function is the set of convergent Dirichlet series
∑∞

n=1
a(n)
ns of complex

variable s satisfying four axioms given in [8].
As we know L-functions possess meromorphic continuations. It will be

interesting to determine the number of shared values for which an L-function
becomes identical with an arbitrary meromorphic function. In present days
this has become a new trend. In this direction, we would like to mention
first the following result due to Li [6], where considering two distinct complex
values, Li proved the following uniqueness result.

Theorem 1. Let f be a meromorphic function in C having finitely many
poles, and let a and b be any two distinct finite complex values. If f and a
non-constant L-function L share a CM and b IM, then f = L.

The above theorem really boosts up the researches to investigate the
uniqueness problem of an L-function with a meromorphic function having
finitely many poles, sharing different types of sets. In this direction, already
a number of authors have dealt the case.

In 2016, considering the set sharing problem instead of value sharing Lin
and Lin [7] obtained the following theorem.

Theorem 2 (see [7]). Let f be a meromorphic function in C with finitely
many poles, S1, S2 ⊂ C be two distinct sets such that S1∩S2 = ∅ and #(Si) ≤
2, i = 1, 2, where #(S) denotes the cardinality of the set S. Suppose for a
finite set S = {αi | i = 1, 2, . . . , n}, C(S) is defined by C(S) = 1

n

∑n
i=1 αi. If

f and a non-constant L-function L share S1 CM and S2 IM, then (i) L = f
when C(S1) ̸= C(S2) and (ii) L = f or L+f = 2C(S1) when C(S1) = C(S2).

Now before going to further discussions and stating the next results, we
need some basic conceptions. Here the results of our paper are mainly based
on Nevanlinna theory. For the convenience of the readers, next we will intro-
duce some basics notations and results of Nevanlinna theory which will be
used in the proofs of results. Let f be a meromorphic functions in C, then the
proximity function m(r, f) and the counting functions N(r,∞; f) or N(r, f)
(counting multiplicity) and N(r,∞; f) or N(r, f) (ignoring multiplicity) and
the Nevanlinna characteristic function T (r, f) are defined as (see [11])

m(r, f) =
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ,

N(r,∞; f) =

∫ r

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r,
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N(r,∞; f) =

∫ r

0

n(t,∞; f)− n(0,∞; f)

t
dt+ n(0,∞; f) log r,

N(r, a; f) =

∫ r

0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r,

N(r, a; f) =

∫ r

0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r,

T (r, f) = m(r, f) +N(r,∞; f),

respectively, where log+ x = max{log x, 0} for all x ≥ 0, n(t,∞; f) (n(t, a; f))
denotes the number of poles (zeros) of f ( f −a) in the disc |z| < t, counting
multiplicities and n(t,∞; f) ( n(t, a; f)) denote the number of poles (zeros)
of f ( f − a) in the disc |z| < t, ignoring multiplicities for some a ∈ C.

Also the order of f is defined as

ρ(f) := lim sup
r−→∞

log T (r, f)

log r
,

and one says that f is of maximal type provided

Γ(f) := lim sup
r−→∞

T (r, f)

rρ(f)
= ∞,

when 0 < ρ(f) <∞.
We recall the following results.

(i) The Nevanlinna First Fundamental Theorem: T (r, f) = T (r, 0; f)+O(1).
(ii) The Second Fundamental Theorem: (q − 2)T (r, f) ≤

∑q
i=1N(r, ai; f) +

S(r, f), where a1, a2, . . . , aq ∈ C∪{∞} and S(r, f) = O(log(rT (r, f))) when
f is of infinite order, r −→ ∞, except possibly on a set of finite Lebesgue
measure. When f has finite order, then S(r, f) = O(log r) for all r.

In 2016, in a new direction Han [5] proved much more general version of
Theorem 1 and obtained the following result.

Theorem 3. Let f be a meromorphic function in C of finite, non-zero
order such that either (i) ρ(f) is not an integer or (ii) ρ(f) is an integer
whereas Γ(f) = ∞. Take a, b ∈ C. Assume that f and another non-constant
meromorphic function g in C share the values {a} CM and {b} IM. When,
in addition, both f and g have finitely many poles, then f = g.

L-function can be treated as a meromorphic function and it can have only
one pole at z = 1. Also from p. 150 of [9], we know that for a non-constant
L-function, T (r, L) = O(r log r), i.e., L is of maximal type. Hence Theorem 3
also holds if we choose f as a L-function.

Next, considering a special class of meromorphic functions having finitely
many poles and finite non-integer order Chen ([1], [2]) proved the following
uniqueness results.
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Theorem 4 (see [1]). Let S1 = {α1}, S2 = {β1, β2} where α1 and β1, β2
are distinct finite complex numbers satisfying (β1 − α1)

2 ̸= (β2 − α1)
2. If

two non-constant meromorphic functions f and g having finitely many poles,
share S1 CM, S2 IM, and if the order of f is neither an integer nor infinite,
then f = g.

Theorem 5 (see [2]). In the same situation as in Theorem 4, if f and g
share S1 IM and S2 CM, then f = g.

We observe that in Theorems 1–5 the elements of the sets were chosen from
C, i.e., the uniqueness results were found on the basis of value or set sharing
in C. Naturally the question arises “What will happen if we choose the sets in
Theorems 1–5 as a subset ofM(C) containing some rational functions instead
of values?” So it will be interesting to re-investigate the theorems considering
sets of rational functions. In Theorems 4, 5 the elements α1, β1 and β2 were
chosen in such a way that they satisfy the condition 2α1 ̸= β1 + β2, so
it will also be interesting to find the conclusion of Theorems 4, 5, when
2α1 = β1 + β2 holds.

The purpose of the paper is to address the above two issues and provide
fruitful solutions in this regard. In the present paper we have dealt with two
different classes of meromorphic functions so as to improve Theorems 1–5 in
terms of sharing of sets of rational functions.

Next we see that for some non-constant f ∈M(C) almost CM sharing is
weaker than CM sharing. Perceiving this we have also relaxed the nature of
the sharing of the sets in our results from strictly CM (IM) sharing to almost
CM (IM) sharing, and thus have been able to refine the sharing notion of
sets.

2. Definitions

Throughout this section we will consider f and g to be two arbitrary non-
constant meromorphic functions. Before going to the main results we invoke
the following definitions.

Definition 1. For a non-constant meromorphic function f , the set of all
small functions of f is denoted by S(f), i.e., S(f) = {a ∈ M(C) : T (r, a) =
S(r, f) as r −→ ∞}. Clearly, every element in C belongs to S(f) and
S(f) ⊂M(C).

Definition 2. Let a ∈ S(f)∩S(g) and let E(0, f−a) (E(0, f−a)) denote
the set of zeros of f − a, counted according to its multiplicity (ignoring
multiplicity). If E(0, f − a) = E(0, g − a) (E(0, f − a) = E(0, g − a)), then
we say that f − a, g − a share 0 CM(IM) or f , g share a CM (IM).

Definition 3. Let S = {a1, a2, . . . , aq} ⊂ S(f) ∩ S(g) and set F =∏q
i=1(f − ai) and G =

∏q
i=1(g − ai). If E(0, F ) = E(0, G) (E(0, F ) =
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E(0, G)), then we say f and g share the set S CM (IM). Here if z0 is zero of
f − ai of multiplicity m then in E(0, F ) (E(0, F )), z0 is appearing m (one)
times. Also if z0 is a zero of f − aj for several aj , j = 1, 2, . . . , q, then z0
appears m times where m is the sum of the multiplicities of zeros of the
corresponding functions.

Definition 4. If a ∈ C and f−a has at most finitely many zeros then a is
said to be a generalized Picard exceptional value of f . If a is a non-constant
small function of f and f − a has at most finitely many zeros then 0 is said
to be a generalized Picard exceptional value of f − a.

Definition 5. Let a, b ∈ S(f)∩S(g). ByN(r, 0; f−a | g−b) (N(r, 0; f−a |
g−b)) we mean the counting function (reduced counting function) of common
zeros of f − a and g − b having same multiplicities (irrespective of their
multiplicities).

AndN∗(r, 0; f−a | g−b) denotes the reduced counting function of common
zeros of f − a and g − b having different multiplicities.

Definition 6. Let S = {a1, a2, . . . , aq} ⊂ S(f) ∩ S(g) and set F =∏q
i=1(f − ai) and G =

∏q
i=1(g − ai). From the previous definition we have

N(r, 0;F | G) (N(r, 0;F | G)) be the counting function (reduced count-
ing function) of common zeros of F and G having the same multiplicities
(irrespective of their multiplicities). Now if

N(r, 0;F )+N(r, 0;G)−2N(r, 0;F | G) = S(r, F )+S(r,G) = S(r, f)+S(r, g),

then we say that f and g share S almost CM. On the other hand, if

N(r, 0;F ) +N(r, 0;G)− 2N(r, 0;F | G) = S(r, f) + S(r, g),

then we say that f and g share S almost IM.

3. Main theorems and some relevant examples

Assumption A. Let f and g ∈ M(C) having finitely many poles in C
and ρ(f) is non-zero finite such that either (i) ρ(f) is not an integer or (ii)
ρ(f) is an integer and f is of maximal type. In addition, we take a, b, c, d
to be distinct rational functions.

Theorem 6. Let Assumption A be satisfied. If f and g share {a} CM
and {b} IM then f = g.

Theorem 7. Let Assumption A be satisfied. If f and g share the sets
S1 = {a} CM and S2 = {b, c} IM then
(i) if 2a ̸= b+ c, then f = g,
(ii) if 2a = b+ c, then f = g or f + g = 2a.

Theorem 8. Let Assumption A be satisfied. If f and g share the sets
S1 = {a} IM and S2 = {b, c} CM and
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(i) if b− a, c− a are linearly dependent but 2a ̸= b+ c, then f = g,
(ii) if 2a = b+ c, then f = g or f + g = 2a.

Theorem 9. Let Assumption A be satisfied and a, b, c, d be distinct
rational functions satisfying (c − a)2(c − b)2 ̸= (d − a)2(d − b)2. If f and g
share the sets S1 = {a, b} CM and S2 = {c, d} IM, then f = g.

Corollary 1. In the same situations as in Theorems 6–9, if f and g share
the sets almost CM and almost IM instead of CM, IM then we can also get
the same results.

Note 3.1. Since ρ(f) is finite, S(r, f) = O(log r) for all r, hence S(f) contains
rational functions. The rational functions a, b, c, d also belong to both S(f)
and S(g). Thus the above definitions are also applicable here.

Remark 1. Choosing a, b ∈ C; Theorem 6 becomes Theorem 3. Thus
Theorem 6 is an improvement of Theorem 1 as well.

Remark 2. Theorem 7 improves Theorem 4. Here the values in those
theorems can be replaced by some rational functions as well. In particular,
when a, b, c are distinct finite values in C, then b−a, c−a are always linearly
dependent, i.e., for some k ̸= 0 we can write b − a = k(c − a), and hence
Theorem 8 is an improvement of Theorems 2, 5.

Remark 3. From Corollary 1, we can immediately relax the strict CM (IM)
sharing to almost CM (almost IM) sharing in Theorems 1–5.

Choose f =
∑∞

n=1
zn

nkn for some positive integers k, n. Then from Lemma 4,

it is easy to verify that ρ(f) = 1
k and it has finitely many poles in C. Also

Riemann zeta function ζ satisfies all the properties of Selberg class and hence
it is an L-function of finite order and of maximal type. Clearly these two
functions represent two different classes in M(C). Here S(r, f) = O(log r)
and hence any small function of f is a rational function.

In the following example we show that in the case (ii) of Theorems 7, 8,
it can happen that f + g = 2a.

For the subsequent examples let us consider f ∈ {ζ,
∑∞

n=1
zn

nmn }. Clearly
f satisfies the conditions of Theorems 6–9.

Example 1. Let us consider S1 = {0}, S2 = {r,−r}, where r is some
rational function. Now let us consider g = −f . Clearly f and g share the
sets S1 and S2 CM. Obviously f ̸= g but f + g = 0.

In view of Lemma 5 which will be proved afterwards, the following Ex-
amples 2, 3 show that Theorem 6 does not hold when g has infinitely many
poles. On the other hand, Examples 4 and 5 demonstrate that Theorem 7
and Example 6 show that Theorem 8 will fail if g has infinitely many poles.
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Example 2. Let us consider S1 = {1}, S2 = {−1} and g = 1
f . Clearly

from Lemma 5, g has infinitely many poles, as f has infinitely many zeros.
Here f, g share both Si (i = 1, 2) CM, but f ̸= g.

Example 3. Let us consider S1 = {0}, S2 = { 1
Q} where Q is a rational

function and choose g = f
2−Qf . Clearly, f , g share the set S1, S2 almost CM

or CM according to whether Q has poles or not, but f ̸= g.

Example 4. Let S1 = {1}, S2 = {r, 1r} where r (̸= 1) is some rational

function. Then f and g = 1
f share S1 CM and S2 almost CM or CM

according as f and r have some common poles or not, but f ̸= g.

Example 5. Let us consider S1 = {0}, S2 = {Q, Q
Q−1} (Q ̸= 1) and

g = f
f−1 . Then f , g share the set S1 CM and S2 almost CM or CM according

to whether f and Q have some common poles or not, but f ̸= g.

Example 6. Let us consider S1 = {0}, S2 = {P, cP1−c} and g = cPf
f−cP ,

where P is a rational function and c ̸= 0, 1 a constant. Here f , g share the
set S1, S2 almost CM or CM according to whether P has zero or not, but
f ̸= g.

Next example implies that in Theorem 9 the condition of having finitely
many poles can not be dropped.

Example 7. Let us take S1 = {r, 1r}, S2 = {q, 1q} where r, q are some

rational functions such that r ̸= 1 and (r− q)2(r− 1/q)2 ̸= (1/r− q)2(1/r−
1/q)2. Then clearly f and g = 1/f share both Si (i = 1, 2) almost CM or
CM according to whether f and r, q have some common poles or not, but
f ̸= g.

Our next example will show that our results cease to hold for an arbi-
trary meromorphic function which does not satisfy the given conditions in
Assumption A.

Example 8. The functions f = ez and g = e−z share {1}, {z, 1z} CM but
f ̸= g. On the other hand considering the two sets as {0}, {1,−1} CM, we
see that f and g share the same sets CM but neither f = g nor f + g = 0.

4. Lemmas

Lemma 1. Let f be a meromorphic function and a, b be two rational
functions. Then

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f − b) +N(r,∞; f) + S(r, f).

Proof. Let us consider a function F = f−a
b−a . Using the First Fundamental

Theorem it can be shown that T (r, F ) = T (r, f) + S(r, f).
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Now using the Second Fundamental Theorem we get

T (r, f) = T (r, F ) + S(r, f)

≤ N(r, 0;F ) +N(r, 0;F − 1) +N(r,∞;F ) + S(r, F )

≤ N(r, 0; f − a) +N(r, 0; f − b) +N(r,∞; f) + S(r, f),

hence we get the result. □

Lemma 2 (see [11], Lemma 1.22). Let f be a non-constant meromorphic

function and let k ≥ 1 be an integer. Then m
(
r, f

(k)

f

)
= S(r, f). Further if

ρ(f) <∞, then

m

(
r,
f (k)

f

)
= O(log r).

Lemma 3 (see [11], Theorem 1.14). Let f(z), g(z) ∈ M(C). Let the
orders of f and g be ρ(f) and ρ(g), respectively. Then

ρ(fg) ≤ max{ρ(f), ρ(g)}.

Lemma 4 (see [3], p. 288). Let f(z) =
∞∑
n=0

anz
n ∈ E(C) be non-constant

and of finite order. Then

ρ(f) =
1

lim infn−→∞
− log |an|
n logn

.

Lemma 5. Assume f to be the same as in Theorem 6 and let α ∈ S(f) be
a rational function. Then f − α has no generalized Picard exceptional value
in C.

Proof. Let us assume that f(z) − α(z) has finitely many zeros. Also
let a1, a2, . . . , at be the zeros of f(z) − α(z) with multiplicity k1, k2, . . . , kt,
respectively. Since f has finitely many poles and N(r,∞;α) = O(log r), let
b1, b2, . . . , bs be the poles of f −α with multiplicity l1, l2, . . . , ls, respectively.
Then by Hadamard Factorization Theorem (see [10], p. 250) we have,

(z − b1)
l1(z − b2)

l2 . . . (z − bs)
ls(f(z)− α(z))

(z − a1)k1(z − a2)k2 . . . (z − at)kt
= ep(z), (4.1)

for some polynomial p(z), and from above we have

f(z) = α(z) +
(z − a1)

k1(z − a2)
k2 . . . (z − at)

ktep(z)

(z − b1)l1(z − b2)l2 . . . (z − bs)ls
. (4.2)

Therefore, from above we conclude that

T (r, f) ≤ O(rdeg(p(z))) +O(log r). (4.3)
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Now from (4.1)–(4.3) and Lemma 3, we have ρ(f) = deg(p(z)), which implies
that ρ(f) is an integer and f is not of maximal type. Hence we arrive at a
contradiction. Therefore f − α has infinitely many zeros. □

Lemma 6. Let f be a non-constant meromorphic function of finite order
and a, b be two distinct rational functions. Suppose

La,b(f) =

∣∣∣∣ f − a b− a
f ′ − a′ b′ − a′

∣∣∣∣ .
Then m

(
r,
La,b(f)
f−x

)
= S(r, f) for x = a, b.

Proof. Here

La,b(f) = (f ′ − a′)(f − b)− (f − a)(f ′ − b′)

= (f − a)(b′ − a′)− (f ′ − a′)(b− a)

= (f − b)(b′ − a′)− (f ′ − b′)(b− a).

With the help of Lemma 2, m
(
r,
La,b(f)
f−a

)
= m

(
r,
La,b(f)
f−b

)
= S(r, f) follows

immediately. □

5. Proofs of theorems

Proof of Theorem 6. It is given that f , g share {a} CM and {b} IM. First,
we will show thatρ(f) = ρ(g). To this end, in view of Lemma 1 we see that

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f − b) +N(r,∞; f) + S(r, f)

≤ N(r, 0; g − a) +N(r, 0; g − b) +O(log r)

≤ 2T (r, g) +O(log r), (5.1)

which implies ρ(f) ≤ ρ(g). Proceeding similarly again we get

T (r, g) ≤ 2T (r, f) +O(log r), (5.2)

which implies ρ(g) ≤ ρ(f).
We obtain ρ(f) = ρ(g) hence S(r, f) = S(r, g) = O(log r). Now let us

define the function

G =
f − a

g − a
.

Since f , g share {a} CM and have finitely many poles, we can get a rational
function Q such that GQ is a zero free entire function. Then

GQ =
Q(f − a)

g − a
= eϕ, (5.3)

where ϕ is an entire function. Since ρ(f) (= ρ(g)) is finite and T (r, a) =
O(log r), from 3 we obtain ρ(eϕ) ≤ ρ(f), hence ϕ is a polynomial of finite
degree.
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Now let z0 be a zero of f − b such that it is not a common zero of f − a
and f − b, that is to say a(z0) ̸= b(z0). From (5.3) we see that z0 is also a

zero of e
ϕ

Q − 1.

If z0 is a common zero of f − a and f − b, i.e., a(z0) = b(z0), then
z0 ∈ E(0, a− b).

Hence,

N(r, 0; f − b | f − a) ≤ N(r, 0; a− b) ≤ T (r, a− b) +O(1) = O(log r).

Therefore from the above discussion and noting that Q is a rational func-
tion we have

N(r, 0; f − b) ≤ N(r, 1; eϕ/Q) +O(log r) ≤ T (r, eϕ) +O(log r). (5.4)

Next, introduce the following auxiliary function:

∆ =

(
La,b(f)

(f − a)(f − b)
−

La,b(g)

(g − a)(g − b)

)
(f − g). (5.5)

We claim that ∆ = 0. Suppose that this is not the case. We will derive a
contradiction below.

Let z0 be a zero of f − b. Then it is easy to verify that z0 is not a pole
of ∆. The only poles of ∆ occur at the poles of f and g which are finitely
many in number. Hence,

N(r,∞; ∆) ≤ O(log r).

Now using Lemma 6 we have

m(r,∆) = m

(
r,
La,b(f)(f − g)

(f − a)(f − b)
−
La,b(g)(f − g)

(g − a)(g − b)

)
≤ m

(
r,
La,b(f)

f − b

)
+m

(
r, 1− g − a

f − a

)
+m

(
r,
La,b(g)

g − b

)
+m

(
r,
f − a

g − a
− 1

)
+O(1)

≤ m

(
r, 1− eϕ

Q

)
+m

(
r,
Q

eϕ
− 1

)
+O(log r)

≤ O(T (r, eϕ)) +O(log r).

Therefore from above T (r,∆) ≤ O(T (r, eϕ)) +O(log r).
Next let z1 be a zero of f − a such that a(z1) ̸= b(z1). Then from (5.5) it

is easy to verify that z1 is also a zero of ∆. The case a(z1) = b(z1) implies
z1 ∈ E(0, b− a) and N(r, 0; b− a) = O(log r).

Therefore we have

N(r, 0; f − a) ≤ N(r, 0;∆) +O(log r)

≤ T (r,∆) +O(log r)
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≤ O(T (r, eϕ)) +O(log r). (5.6)

Now using Lemma 1 and (5.4), (5.6) we get

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f − b) +N(r,∞; f) +O(log r)

≤ O(T (r, eϕ)) +O(log r)

≤ O(rdeg(ϕ)) +O(log r). (5.7)

Now from ρ(eϕ) ≤ ρ(f) and from (5.7) we have ρ(eϕ) = ρ(f).
If ρ(f) is not an integer, then from ρ(eϕ) = ρ(f) we get a contradiction.
If ρ(f) ≥ 1 is an integer, then as (5.7) yields Γ(f) = O(1), we get a

contradiction against the maximal type assumption of f .
Hence our claim is proved and we have ∆ = 0. Now let f ̸= g, then we

have
La,b(f)

(f − a)(f − b)
−

La,b(g)

(g − a)(g − b)
= 0.

Now let z1 be a zero of f−b of multiplicity p and zero of g−b of multiplicity
q. Then from the above relation we get p = q. Since z1 is arbitrary, we get

N(r, 0; f − b) +N(r, 0; g − b)− 2N(r, 0; f − b | g − b) = 0.

In view of Definition 5 we have N∗(r, 0; f − b | g − b) = 0. That is to say
f and g share b CM.

Now considering an auxiliary function eψ = Q(f−b)
(g−b) , for some polynomial

ψ and rational Q and then arguing exactly in the same way as in (5.3) – (5.4),
we deduce that N(r, 0; f − a) ≤ O(T (r, eψ)).

Finally, using Lemma 1 we get

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f − b) +N(r,∞; f) +O(log r)

≤ O(T (r, eϕ)) +O(T (r, eψ)) +O(log r)

≤ O(rd) +O(log r), (5.8)

where d = max{deg(ϕ), deg(ψ)}.
Clearly (5.8) leads to a contradiction. Therefore we must have f = g. □

Proof of Theorem 7. It is given that f , g share S1 = {a} CM and S2 = {b, c}
IM. Then using The Second Main Theorem for small functions (see [12],
Corollary 1) and proceeding similarly as in (5.1), (5.2) we get ρ(f) = ρ(g).
Wve introduce the auxiliary function

F =
f − a

g − a
.

Now we can have a rational function U such that U(f−a)
g−a has neither a pole

nor a zero in C. Such a U does exist since f , g have only finitely many poles
and in view of the assumption that f and g share a CM, a possible zero or
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pole of f−a
g−a may only come from a pole of g or f . Thus, UF is an entire

function without any zero. Hence, there is an entire function η such that

UF =
U(f − a)

g − a
= eη. (5.9)

Since f, g have finite order, by Lemma 3 η is a polynomial such that deg(η) ≤
ρ(f) (= ρ(g)).

Now let z0 be a zero of (f − b)(f − c) such that a(z0) ̸= b(z0), c(z0). Then
we have

F (z0) = 1 or
b(z0)− a(z0)

c(z0)− a(z0)
or
c(z0)− a(z0)

b(z0)− a(z0)
.

Therefore z0 is a zero of

τ = (F − 1)

(
F − b− a

c− a

)(
F − c− a

b− a

)
.

Again let z0 be a common zero of f − b and f − a, then z0 is a a zero of
b− a. Hence N(r, 0; f − b | f − a) = O(log r).

Similarly it can be shown that N(r, 0; f − a | f − c) = O(log r).
Therefore using Lemma 1 we get

T (r, f) ≤ N(r, 0; f − b) +N(r, 0; f − c) +N(r,∞; f) + S(r, f)

≤ N(r, 0; τ) +O(log r) ≤ O(T (r, F ) +O(log r)

≤ O(T (r, eη/U)) +O(log r)

≤ O(rdeg(η)) +O(log r).

Next resorting to the same analysis as done immediately after (5.7), we
can have a contradiction.

Therefore we must have τ = 0.
First let 2a ̸= b+ c. We have to consider the following cases.
Case 1. Let F = 1. Then we have f = g.
Case 2. Let F = b−a

c−a i.e., f−a
g−a = b−a

c−a . Now let z0 be a zero of f − b

such that a(z0) ̸= b(z0), c(z0). Then the set sharing property of f and g
yields that z0 is a zero of g − b or g − c. If z0 is a zero of g − b, then
from the given relation f−a

g−a = b−a
c−a , we get that z0 is a zero of b − c. Again

N(r, 0; (a − b)(a − c)) = O(log r). Hence we have N(r, 0; f − b | g − b) ≤
N(r, 0; b− c) +O(log r) ≤ O(log r).

As from Lemma 5 we know that N(r, 0; f − b) ̸= O(log r), it follows that
N(r, 0; f − b | g − c) ̸= O(log r). Proceeding similarly we can show that
N(r, 0; f − c | g − c) = O(log r) and N(r, 0; f − c | g − b) ̸= O(log r).

Now let us consider z1 ∈ E(0, f − c)∩E(0, g− b) where a(z1), b(z1), c(z1)
are all distinct. Clearly from the above relation we get that z1 is a zero of
b+ c− 2a. Again if a(z1), b(z1), c(z1) are not all distinct, then z1 is a zero
of (b − a)(b − c)(c − a) and N(r, 0; (b − a)(b − c)(c − a)) = O(log r). Hence
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finally we have N(r, 0; f − c) = N(r, 0; f − c | g− c)+N(r, 0; f − c | g− b) ≤
O(log r) +N(r, 0; b+ c− 2a) ≤ O(log r), a contradiction.
Case 3. Let F = c−a

b−a . Proceeding similarly as above we can discard this
case.
Next let 2a = b + c. Then b−a

c−a = −1 = c−a
b−a . Hence from τ = 0 we will get

either f = g or f + g = 2a. □

Proof of Theorem 8. It is given that f and g share {b, c} CM. Then using
The Second Main Theorem for small functions (see [12], Corollary 1) and
proceeding similarly as done in (5.1), (5.2) we get ρ(f) = ρ(g).

Now let us define

H =
(f − b)(f − c)U
(g − b)(g − c)

,

where U is a rational function such that H has no zero and pole. Then there
exist an entire function q(z) such that

H =
(f − b)(f − c)U
(g − b)(g − c)

= eq.

Since ρ(f), ρ(g) is finite then clearly from Lemma 3 we get ρ(eq) ≤ ρ(f) =
ρ(g) and so q(z) is a polynomial of finite degree.
Case 1. Suppose f ̸= g and 2a ̸= b + c. Now we claim that f + g ̸= b + c,
because if f + g = b+ c, then we have

z0 ∈ E(0, f − a) =⇒ z0 ∈ E(0, b+ c− 2a) =⇒ N(r, 0; f − a) = O(log r)

which implies ‘0’ is a generalized exceptional value of f − a, a contradiction
with Lemma 5. Therefore we must have f + g ̸= b+ c.

Now

eq

U
− 1 =

(f − g)(f + g − b− c)

(g − b)(g − c)
,

thus eq

U − 1 ̸= 0.
Let z0 be a zero of f − a. If a(z0) ̸= b(z0), c(z0) then clearly z0 is a zero

of e
q

U − 1. If a(z0) = b(z0) or c(z0), then z0 is a zero of (b− a)(c− a) and we

have N(r, 0; (b− a)(c− a)) = O(log r).
Therefore from the above discussion we get

N(r, 0; f − a) ≤ N

(
r, 0;

eq

U
− 1

)
+O(log r) ≤ O(rdeg(q)) +O(log r).(5.10)

Let us consider the following two functions:

∆0 =

(
La,b(f)

(f − a)(f − b)(f − c)
−

La,b(g)

(g − a)(g − b)(g − c)

)
(f−g)(f+g−b−c),

∆1 =

(
La,b(f)

(f − a)(f − b)(f − c)
+

La,c(g)

(g − a)(g − b)(g − c)

)
(f−g)(f+g−b−c).
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First we claim that at least one of ∆0, ∆1 is identically equal to zero. On
the contrary, suppose ∆0 ̸= 0 and ∆1 ̸= 0, which implies f ̸= g. Now

m(r,∆0)

= m

(
r,
(f − g)(f + g − b− c)

(f − b)(f − c)
.
La,b(f)

f − a
− (f − g)(f + g − b− c)

(g − b)(g − c)
.
La,b(g)

g − a

)
≤ m

(
r,

U
eq

− 1

)
+m

(
r,
La,b(f)

(f − a)

)
+m

(
r,
eq

U
− 1

)
+m

(
r,
La,b(g)

(g − a)

)
+O(1)

≤ O(T (r, eq/U)) +O(log r) ≤ O(rdeg(q)) +O(log r).

It is easy to verify that a point, say, z0 which is either a zero of f − a or
f − b or f − c, provided that all of a(z0), b(z0), c(z0) are distinct, is not a
pole of ∆0.

Therefore, N(r,∞; ∆0) = O(log r). Hence we have

T (r,∆0) ≤ O(rdeg(q)) +O(log r).

Proceeding similarly, we can deduce that T (r,∆1) ≤ O(rdeg(q))+O(log r).
Now let z0 be a common zero of f − b and g − b of multiplicity k but

b(z0) ̸= c(z0), a(z0). Then we conclude that z0 is also a zero of ∆0. We have

N(r, 0; f−b | g−b) ≤ N(r, 0;∆0) +O(log r) ≤ O(rdeg(q)) +O(log r). (5.11)

Let z1 be a common zero of f − b and g − c and a(z1), b(z1), c(z1) are all
distinct. Since f and g share {b, c} CM, the multiplicity of a common zero
say z1 of f − b and g − c (b(z1) ̸= c(z1)) is the same. So it is easy to verify
that z1 is also a zero of ∆1.

Hence we have

N(r, 0; f−b | g−c) ≤ N(r, 0;∆1) +O(log r) ≤ O(rdeg(q)) +O(log r). (5.12)

Using Lemma 1, from (5.10), (5.11) and (5.12) we have

T (r, f) ≤ N(r, 0; f − a) +N(r, 0; f − b) +N(r,∞; f) + S(r, f)

≤ N(r, 0; f − a) +N(r, 0; f − b | g − b) +N(r, 0; f − b | g − c)

+O(log r)

≤ O(rdeg(q)) +O(log r). (5.13)

Next following the same analysis as just after (5.7) we can get a contra-
diction again. Hence our claim is proved. Therefore at least one of ∆0, ∆1

is identically zero.
Now let us consider the following cases.

Case 1.1. Let us suppose that ∆0 = 0. Then by f ̸= g and 2a ̸= b + c we
have

La,b(f)

(f − a)(f − b)(f − c)
−

La,b(g)

(g − a)(g − b)(g − c)
= 0. (5.14)
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Here f and g share {a} IM. Now let us suppose that z0 is a zero of f − a
of multiplicity p and a zero of g − a of multiplicity q and a(z0), b(z0), c(z0)
are all distinct. Then considering the coefficient of 1

z−z0 from (5.14) we must
have p = q. Since z0 is arbitrary, it follows that the number of zeros of f −a
and g − a with different multiplicity is finite. Hence

N(r, 0; f − a) +N(r, 0; g − a)− 2N(r, 0; f − a | g − a) = O(log r).

Therefore, f − a and g − a share {0} almost CM. Then we can find a

rational function Q such that F0 = (f−a)Q
(g−a) is a zero free entire function.

Hence we can write it in the form

F0 =
(f − a)Q
(g − a)

= ep(z)

for some polynomial p(z).
Now adopting the same method as done in Theorem 7 we will get f = g.

Case 1.2. Let us consider ∆1 = 0. Then from the assumption f ̸= g and
2a ̸= b+ c we have

∆̂1 =
La,b(f)

(f − a)(f − b)(f − c)
+

La,c(g)

(g − a)(g − b)(g − c)
= 0. (5.15)

Let S = E(0, (b− a)(c− a)(b− c)(b+ c− 2a)). Let z0 be a zero of f − b
of multiplicity k but z0 ̸∈ S. Now according to the definition of set sharing
for f and g, z0 is a zero of g − b or g − c of multiplicity k.

Let z0 be a zero of g − b. Now it is given that b − a, c − a are linearly
dependent. Here since z0 ̸∈ S and ∆̂1(= 0) has no pole, considering the
coefficient of 1

z−z0 we must have 2a = b + c, a contradiction. Hence z0 is a
zero of g − c.

Similarly it can be shown that for some z1 ̸∈ S, z1 ∈ E(0, g − c) implies
z1 ∈ E(0, f − b). Hence E(0, g − c)\S = E(0, f − b)\S. Immediately we
have E(0, g− b)\S = E(0, f − c)\S. Since f and g share {b, c} CM, any zero
z2, a zero of g − b of multiplicity p, is also a zero of f − c of order p. Now
N(r, 0; (b−a)(c−a)(b− c)(b+ c− 2a)) = O(log r), therefore from Lemma 5,

there exists z′ ̸∈ S which is a zero of g − b. Again since ∆̂1 has no pole
and z′ ̸∈ S, from (5.15), considering the coefficient of 1

z−z′ , we must have
2a = b+ c, a contradiction.

Hence, E(0, g− b)\S = E(0, f − c)\S = ∅. It follows that N(r, 0; g− b) =
N(r, 0; f − c) = O(log r), which again contradicts Lemma 5.

Therefore from the above discussion when 2a ̸= b+ c we must have f = g.
Case 2. If 2a = b+ c, then (f − b)(f − c) = f2 − 2af + bc.

Now let us consider the following function:

δ =
((f − b)(f − c))′

(f − b)(f − c)
− ((g − b)(g − c))′

(g − b)(g − c)
.
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Since f and g share {b, c} CM, any zero of (f − b)(f − c), (g− b)(g− c) can
not be a pole of δ. Thus

N(r,∞; δ) ≤ N(r,∞; f) +N(r,∞; g) ≤ O(log r).

Also it is easy to verify that

N(r, 0; f − a) ≤ N(r, 0; δ) +O(log r) ≤ T (r, δ) ≤ O(log r),

which contradicts Lemma 5. Therefore one must have δ = 0. Now from
δ = 0, integrating we get (f − b)(f − c) = C(g− b)(g− c) for some constant
C. First we note that the common zeros of f − a and (f − b)(f − c) are
zeros of (a− b)(a− c) and N(r, 0; (a− b)(a− c)) = O(log r). Since f and g
share {a} IM, from Lemma 5 it follows that there are infinitely many zeros
of f − a which are not the zeros of (f − b)(f − c).

Considering such a zero of f − a, which is not a zero of (f − b)(f − c), we
will have C = 1 and this implies either f = g or f + g = 2a. □

Proof of Theorem 9. Let

G0 =
(f − a)(f − b)

(g − a)(g − b)
.

Now since f, g share {a, b} CM and f, g have finitely many poles, we can

find a rational function Q̂ such that Q̂G0 has no zero and no pole. Then we
can write

Q̂G0 =
(f − a)(f − b)Q̂

(g − a)(g − b)
= ev. (5.16)

Using The Second Main Theorem for small functions (see [12]), proceeding
similarly as done in (5.1), (5.2) we get ρ(f) = ρ(g). Hence by Lemma 3 we
get that v is a polynomial with deg(v) ≤ ρ(f) (= ρ(g)).

It is given that f and g share {c, d} IM. Let us consider z0 to be a zero of
(f − c)(f − d) but z0 ̸∈ S = E(0, (b− a)(b− c)(b− d)(c− d)(c− a)(d− a)).
Clearly z0 is a zero of Ψ, where Ψ is defined by

Ψ = (G0 − 1)

(
G0 −

(c− a)(c− b)

(d− a)(d− b)

)(
G0 −

(d− a)(d− b)

(c− a)(c− b)

)
.

If z0 ∈ S, then from N(r, 0; (b − a)(b − c)(b − d)(c − d)(c − a)(d − a)) =
O(log r) and from the above finally we get

N(r, 0; f − c) +N(r, 0; f − d) ≤ N(r, 0;Ψ) +O(log r)

≤ O(T (r,G0)) +O(log r)

≤ O(T (r, ev/Q̂)) +O(log r) ≤ O(rdeg(v))

+O(log r). (5.17)

Now from Lemma 1 and (5.17) we have

T (r, f) ≤ N(r, 0; f − c) +N(r, 0; f − d) +N(r,∞; f)
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≤ O(rdeg(v)) +O(log r). (5.18)

Here from the discussion after (5.7) we get a contradiction again. Therefore
Ψ = 0.

Now let us consider the following cases.
Case 1. If G0 = 1, then we have f = g or f + g = a + b. Since f and g
share {c, d} IM, from f + g = a + b we must have either a + b = c + d or
a+ b = 2c = 2d, which leads to a contradiction. Hence we will have f = g.

Case 2. G0 =
(c−a)(c−b)
(d−a)(d−b) .

Let z0 be a zero of f − d and z0 ̸∈ S. Since f and g share {c, d} IM,
z0 may be a zero of g − c or g − d. Let z0 be a zero of g − d, then from
the given relation we have that z0 is a zero of (c− d)(c+ d− a− b). Hence(
E(0, f − d) ∩ E(0, g − d)

)
\S ⊆ E(0, (c−d)(c+d−a−b)) implies N(r, 0; f−

d | g − d) = O(log r). Therefore from Lemma 5, N(r, 0; f − d | g − c) ̸=
O(log r).

Now let z1 ( ̸∈ S) be a zero of f − d and g − c. Then from the given
relation we have that z1 is a zero (c− a)2(c− b)2 − (d− a)2(d− b)2. Hence(
E(0, f − d) ∩ E(0, g − c)

)
\S ⊆ E(0, (c− a)2(c− b)2 − (d− a)2(d− b)2).

Now from the above discussion and the line just before (5.17) we have

N(r, 0; f − d) = N(r, 0; f − d | g − d) +N(r, 0; f − d | g − c)

≤ N(r, 0; (c− d)(c+ d− a− b)) +N(r, 0; (c− a)2(c− b)2

−(d− a)2(d− b)2) +O(log r)

≤ O(log r),

which contradicts Lemma 5.
Proceeding in the same way as in Case 2, we can discard the third case:

G0 =
(d−a)(d−b)
(c−a)(c−b) . This completes the proof of the theorem. □

Proof of Corollary 1. Here we will prove the corollary only for Theorem 9.
For the remaining theorems, it can be proved easily in the same manner.

Let us consider the case when f and g share {a, b} almost CM and {c, d}
almost IM. Denote the functions F = (f − a)(f − b), G = (g− a)(g− b) and
Fo = (f − c)(f − d), Go = (g − c)(g − d).

Now let us define the function

Ψ =
F ′

F
− G′

G
.

We note that the zeros of F and G with different multiplicities and poles
of F , G are responsible for poles of Ψ, i.e.,

N(r,∞; Ψ) = N(r,∞; Ψ) ≤ N(r, 0;F ) +N(r, 0;G)− 2N(r, 0;F | G)
+N(r,∞;F ) +N(r,∞;G)

≤ O(log r).
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Now, T (r,Ψ) = m(r,Ψ) +N(r,∞; Ψ) = O(log r), and this implies that Ψ is
a rational function having simple poles. Then we can write it as

Ψ =
F ′

F
− G′

G
= P +

m∑
i=1

ai
z − bi

, (5.19)

where P is a polynomial. Now integrating both sides of (5.19) we get

F

G
=

(f − a)(f − b)

(g − a)(g − b)
=

m∏
i=1

(z − bi)
aie

∫
P = Qoe

p, (5.20)

where p is a polynomial of finite degree and Qo =
∏m
i=1(z − bi)

m.

Also here f and g share {c, d} almost IM, thereforeN(r, 0;Fo)−N(r, 0;Fo |
Go) = O(log r). Now from Lemma 5 and from the above discussion we must
have N(r, 0;Fo) ̸= O(log r). Here from (5.20) we have

N(r, 0; (f − c)(f − d)) ≤ N(r, 0; (Qoe
p − 1)(Qoe

p − x)(Qoe
p − 1/x))

+O(log r), (5.21)

where x = (c−a)(c−b)
(d−a)(d−b) .

Now from (5.21) we get

T (r, f) ≤ N(r, 0; f − c) +N(r, 0; f − d) +N(r,∞; f)

≤ O(T (r, ep)) +O(log r).

Now proceeding similarly as done after (5.18) in Theorem 9 the rest of
the proof can be carried out to get the desired result.

Adopting the same procedure we can get the other results also from strict
CM (IM) sharing to almost CM (almost IM) sharing.

□
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