Coefficients bounds for a family of bi-univalent functions defined by Horadam polynomials

Basem A. Frasin ${ }^{1}$, Yerragunta Sailaja ${ }^{2}$, Sondekola R. Swamy ${ }^{3}$, and Abbas K. Wanas ${ }^{4}$

Abstract

In the present paper, we determine upper bounds for the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a certain family of holomorphic and bi-univalent functions defined by using the Horadam polynomials. Also, we solve Fekete-Szegö problem of functions belonging to this family. Further, we point out several special cases of our results.

1. Introduction

Denote by \mathcal{A} the collection of holomorphic functions in the open unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ that have the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1}
\end{equation*}
$$

Further, assume that S stands for the sub-collection of the set \mathcal{A} containing functions in U satisfying (1) which are univalent in U.

According to the Koebe One-Quarter Theorem [7] every function $f \in S$ has an inverse f^{-1} defined by $f^{-1}(f(z))=z(z \in U)$ and $f\left(f^{-1}(w)\right)=w$ $\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where
$g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.
A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ stand for the class of bi-univalent functions in U given by (1). In fact, Srivastava et al. [20] have actually revived the study of holomorphic and bi-univalent functions in recent years, it was followed
by such works as those by Bulut [6], Adegani and et al. [2], Güney et al. [9], Srivastava and Wanas [21] and others (see, for example [8, 19, 22]). We notice that the class Σ is not empty. For example, the functions $z, \frac{z}{1-z}$, $-\log (1-z)$ and $\frac{1}{2} \log \frac{1+z}{1-z}$ are members of Σ. Until now, the coefficient estimate problem for each of the following Taylor-Maclaurin coefficients $\left|a_{n}\right|$ ($n=3,4, \cdots$) for functions $f \in \Sigma$ is still an open problem.

With a view to recalling the principle of subordination between holomorphic functions, let the functions f and g be holomorphic in U. We say that the function f is subordinate to g, if there exists a Schwarz function ω holomorphic in U with $\omega(0)=0$ and $|\omega(z)|<1(z \in U)$ such that $f(z)=g(\omega(z))$. This subordination is denoted by $f \prec g$ or $f(z) \prec g(z)(z \in U)$. It is well known that (see [17]), if the function g is univalent in U, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(U) \subset g(U)$.

Recently, Hörçum and Koçer [13] considered the Horadam polynomials $h_{n}(r)$, which are given by the following recurrence relation (see also Horadam and Mahon [12]):

$$
\begin{equation*}
h_{n}(r)=p r h_{n-1}(r)+q h_{n-2}(r) \quad(r \in \mathbb{R}, n \in \mathbb{N} \backslash\{1,2\} ; \mathbb{N}=\{1,2,3, \cdots\}), \tag{3}
\end{equation*}
$$

with $h_{1}(r)=a$ and $h_{2}(r)=b r$, for some real constants a, b, p and q. The characteristic equation of repetition relation (3) is $t^{2}-p r t-q=0$. This equation has two real roots $x=\frac{p r+\sqrt{p^{2} r^{2}+4 q}}{2}$ and $y=\frac{p r-\sqrt{p^{2} r^{2}+4 q}}{2}$.

Remark 1. By selecting the particular values of a, b, p and q, the Horadam polynomial $h_{n}(r)$ reduces to several polynomials. Some of them are illustrated below.
(1) Taking $a=b=p=q=1$, we obtain the Fibonacci polynomials $F_{n}(r)$.
(2) Taking $a=2$ and $b=p=q=1$, we attain the Lucas polynomials $L_{n}(r)$.
(3) Taking $a=q=1$ and $b=p=2$, we have the Pell polynomials $P_{n}(r)$.
(4) Taking $a=b=p=2$ and $q=1$, we get the Pell-Lucas polynomials $Q_{n}(r)$.
(5) Taking $a=b=1, p=2$ and $q=-1$, we obtain the Chebyshev polynomials $T_{n}(r)$ of the first kind.
(6) Taking $a=1, b=p=2$ and $q=-1$, we have the Chebyshev polynomials $U_{n}(r)$ of the second kind.

These polynomials, the families of orthogonal polynomials and other special polynomials as well as their generalizations are potentially important in a variety of disciplines in many sciences, especially in mathematics, statistics and physics. For more information associated with these polynomials see [11, 12, 14].

The generating function of the Horadam polynomials $h_{n}(r)$ (see [13]) is given by

$$
\begin{equation*}
\Pi(r, z)=\sum_{n=1}^{\infty} h_{n}(r) z^{n-1}=\frac{a+(b-a p) r z}{1-p r z-q z^{2}} \tag{4}
\end{equation*}
$$

In fact, Srivastava et al. [18] have already applied the Horadam polynomials in a similar context involving analytic and bi-univalent functions. It was followed by such works as those by Abirami et al. [1], Al-Hawary et al. [10], Wanas and Yalçin [23].

2. Main Results

We begin this section by defining the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ as follows.
Definition 1. For $0 \leq \gamma \leq 1,0 \leq \lambda \leq 1,0 \leq \delta \leq 1$ and $r \in \mathbb{R}$, a function $f \in \Sigma$ is said to be in the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ if it satisfies the subordinations

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\delta) \frac{z f^{\prime}(z)}{f(z)}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\lambda} \prec \Pi(r, z)+1-a
$$

and

$$
\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left[(1-\delta) \frac{w g^{\prime}(w)}{g(w)}+\delta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\lambda} \prec \Pi(r, w)+1-a
$$

where a is real constant and the function $g=f^{-1}$ is given by (2).
Remark 2. It should be remarked that the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ is a generalization of well-known families considered earlier. These families are:
(1) for $\gamma=0$ and $\lambda=1$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $M_{\Sigma}(\delta, r)$ which was introduced by Magesh et al. [16];
(2) for $\lambda=0$ and $\gamma=1$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $S_{\Sigma}^{*}(r)$ which was studied by Srivastava et al. [18];
(3) for $\gamma=0$ and $\lambda=\delta=1$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $\mathcal{K}_{\Sigma}(r)$ which was considered by Magesh et al. [16];
(4) for $\gamma=0, \lambda=a=1, b=p=2, q=-1$ and $r \longrightarrow t$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $H_{\Sigma}(\delta, t)$ which was given by Altınkaya and Yalçin [3];
(5) for $\lambda=0, \gamma=a=1, b=p=2, q=-1$ and $r \longrightarrow t$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $S_{\Sigma}(t)$ which was introduced by Altınkaya and Yalçin [4];
(6) for $\gamma=0, \lambda=a=1, b=p=2, q=-1, r \longrightarrow t$ and $\Pi(t, z)=$ $\left(\frac{1}{1-2 t z+z^{2}}\right)^{\alpha}, 0<\alpha \leq 1$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $M_{\Sigma}(\alpha, \delta)$ which was investigated by Liu and Wang [15];
(7) for $\lambda=0, \gamma=a=1, b=p=2, q=-1, r \longrightarrow t$ and $\Pi(t, z)=$ $\left(\frac{1}{1-2 t z+z^{2}}\right)^{\alpha}, 0<\alpha \leq 1$, the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$ reduces to the family $S_{\Sigma}^{*}(\alpha)$ which was studied by Brannan and Taha [5].

Theorem 1. For $0 \leq \gamma \leq 1,0 \leq \lambda \leq 1,0 \leq \delta \leq 1$ and $r \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$. Then

$$
\left|a_{2}\right| \leq \frac{|b r| \sqrt{2|b r|}}{\sqrt{\left|\left[(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma)) b-2 p \Phi^{2}(\lambda, \delta, \gamma)\right] b r^{2}-2 q a \Phi^{2}(\lambda, \delta, \gamma)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{|b r|}{2(\gamma+\lambda(2 \delta+1))}+\frac{b^{2} r^{2}}{2 \Phi^{2}(\lambda, \delta, \gamma)}
$$

where

$$
\begin{align*}
& \Upsilon(\lambda, \delta, \gamma)=\lambda(\delta+1)[2(\gamma+1)+(\lambda-1)(\delta+1)] \\
& \Phi(\lambda, \delta, \gamma)=\gamma+\lambda(\delta+1) \tag{5}
\end{align*}
$$

Proof. Let $f \in \mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$. Then there are two holomorphic functions $u, v: U \longrightarrow U$ given by

$$
\begin{equation*}
u(z)=u_{1} z+u_{2} z^{2}+u_{3} z^{3}+\cdots \quad(z \in U) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
v(w)=v_{1} w+v_{2} w^{2}+v_{3} w^{3}+\cdots \quad(w \in U) \tag{7}
\end{equation*}
$$

with $u(0)=v(0)=0,|u(z)|<1,|v(w)|<1, z, w \in U$ such that

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\delta) \frac{z f^{\prime}(z)}{f(z)}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\lambda}=\Pi(r, u(z))+1-a
$$

and

$$
\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left[(1-\delta) \frac{w g^{\prime}(w)}{g(w)}+\delta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\lambda}=\Pi(r, v(w))+1-a
$$

Or, equivalently

$$
\begin{align*}
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\delta) \frac{z f^{\prime}(z)}{f(z)}\right. & \left.+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\lambda} \\
& =1+h_{1}(r)+h_{2}(r) u(z)+h_{3}(r) u^{2}(z)+\cdots \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left[(1-\delta) \frac{w g^{\prime}(w)}{g(w)}+\delta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\lambda} \\
& \quad=1+h_{1}(r)+h_{2}(r) v(w)+h_{3}(r) v^{2}(w)+\cdots \tag{9}
\end{align*}
$$

Combining (6), (7), (8) and (9) yields

$$
\begin{align*}
&\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\gamma}\left[(1-\delta) \frac{z f^{\prime}(z)}{f(z)}+\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]^{\lambda} \\
&=1+h_{2}(r) u_{1} z+\left[h_{2}(r) u_{2}+h_{3}(r) u_{1}^{2}\right] z^{2}+\cdots \tag{10}
\end{align*}
$$

and

$$
\begin{align*}
&\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\gamma}\left[(1-\delta) \frac{w g^{\prime}(w)}{g(w)}+\delta\left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right]^{\lambda} \\
&=1+h_{2}(r) v_{1} w+\left[h_{2}(r) v_{2}+h_{3}(r) v_{1}^{2}\right] w^{2}+\cdots \tag{11}
\end{align*}
$$

It is quite well-known that if $|u(z)|<1$ and $|v(w)|<1, z, w \in U$, then

$$
\begin{equation*}
\left|u_{i}\right| \leq 1 \quad \text { and } \quad\left|v_{i}\right| \leq 1 \text { for all } i \in \mathbb{N} \tag{12}
\end{equation*}
$$

Comparing the corresponding coefficients in (10) and (11), after simplifying, we have

$$
\begin{equation*}
(\gamma+\lambda(\delta+1)) a_{2}=h_{2}(r) u_{1} \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& 2(\gamma+\lambda(2 \delta+1)) a_{3} \\
& \quad+\frac{1}{2}[\gamma(\gamma-1)+\lambda(\delta+1)(2 \gamma+(\lambda-1)(\delta+1))-2(\gamma+\lambda(3 \delta+1))] a_{2}^{2} \\
& =h_{2}(r) u_{2}+h_{3}(r) u_{1}^{2} \tag{14}\\
& \quad-(\gamma+\lambda(\delta+1)) a_{2}=h_{2}(r) v_{1} \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
& 2(\gamma+\lambda(2 \delta+1))\left(2 a_{2}^{2}-a_{3}\right) \\
& \quad+\frac{1}{2}[\gamma(\gamma-1)+\lambda(\delta+1)(2 \gamma+(\lambda-1)(\delta+1))-2(\gamma+\lambda(3 \delta+1))] a_{2}^{2} \\
& =h_{2}(r) v_{2}+h_{3}(r) v_{1}^{2} \tag{16}
\end{align*}
$$

It follows from (13) and (15) that

$$
\begin{equation*}
u_{1}=-v_{1} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
2(\gamma+\lambda(\delta+1))^{2} a_{2}^{2}=h_{2}^{2}(r)\left(u_{1}^{2}+v_{1}^{2}\right) \tag{18}
\end{equation*}
$$

If we add (14) to (16), we find that

$$
\begin{align*}
& {[\gamma(\gamma+1)+\lambda(\delta+1)(2(\gamma+1)+(\lambda-1)(\delta+1))] a_{2}^{2}} \\
& =h_{2}(r)\left(u_{2}+v_{2}\right)+h_{3}(r)\left(u_{1}^{2}+v_{1}^{2}\right) \tag{19}
\end{align*}
$$

Substituting the value of $u_{1}^{2}+v_{1}^{2}$ from (18) in the right hand side of (19), we deduce that

$$
\begin{equation*}
a_{2}^{2}=\frac{h_{2}^{3}(r)\left(u_{2}+v_{2}\right)}{h_{2}^{2}(r)(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma))-2 h_{3}(r) \Phi^{2}(\lambda, \delta, \gamma)} \tag{20}
\end{equation*}
$$

where $\Upsilon(\lambda, \delta, \gamma)$ and $\Phi(\lambda, \delta, \gamma)$ are given by (5).
Further computations using (3), (12) and (20) give

$$
\left|a_{2}\right| \leq \frac{|b r| \sqrt{2|b r|}}{\sqrt{\left|\left[(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma)) b-2 p \Phi^{2}(\lambda, \delta, \gamma)\right] b r^{2}-2 q a \Phi^{2}(\lambda, \delta, \gamma)\right|}}
$$

Next, if we subtract (16) from (14), we can easily see that

$$
\begin{equation*}
4(\gamma+\lambda(2 \delta+1))\left(a_{3}-a_{2}^{2}\right)=h_{2}(r)\left(u_{2}-v_{2}\right)+h_{3}(r)\left(u_{1}^{2}-v_{1}^{2}\right) \tag{21}
\end{equation*}
$$

In view of (17) and (18), we get from (21)

$$
a_{3}=\frac{h_{2}(r)\left(u_{2}-v_{2}\right)}{4(\gamma+\lambda(2 \delta+1))}+\frac{h_{2}^{2}(r)\left(u_{1}^{2}+v_{1}^{2}\right)}{2 \Phi^{2}(\lambda, \delta, \gamma)}
$$

Thus applying (3), we obtain

$$
\left|a_{3}\right| \leq \frac{|b r|}{2(\gamma+\lambda(2 \delta+1))}+\frac{b^{2} r^{2}}{2 \Phi^{2}(\lambda, \delta, \gamma)}
$$

This completes the proof of Theorem 1.
In the next theorem, we discuss the "Fekete-Szegö problem" for the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$.

Theorem 2. For $0 \leq \gamma \leq 1,0 \leq \lambda \leq 1,0 \leq \delta \leq 1$ and $r, \mu \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|b r|}{2(\gamma+\lambda(2 \delta+1))}, \\
\text { for }|\mu-1| \leq \frac{\left|\left[(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma)) b-2 p \Phi^{2}(\lambda, \delta, \gamma)\right] b r^{2}-2 q a \Phi^{2}(\lambda, \delta, \gamma)\right|}{4 b^{2} r^{2}(\gamma+\lambda(2 \delta+1))} ; \\
\frac{2|b r|^{3}|\mu-1|}{\left|\left[(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma)) b-2 p \Phi^{2}(\lambda, \delta, \gamma)\right] b r^{2}-2 q a \Phi^{2}(\lambda, \delta, \gamma)\right|}, \\
\text { for }|\mu-1| \geq \frac{\left|\left[(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma)) b-2 p \Phi^{2}(\lambda, \delta, \gamma)\right] b r^{2}-2 q a \Phi^{2}(\lambda, \delta, \gamma)\right|}{4 b^{2} r^{2}(\gamma+\lambda(2 \delta+1))} .
\end{array}\right.
$$

Proof. It follows from (20) and (21) that

$$
\begin{gathered}
a_{3}-\mu a_{2}^{2}=\frac{h_{2}(r)\left(u_{2}-v_{2}\right)}{4(\gamma+\lambda(2 \delta+1))}+(1-\mu) a_{2}^{2}=\frac{h_{2}(r)\left(u_{2}-v_{2}\right)}{4(\gamma+\lambda(2 \delta+1))} \\
\\
+\frac{h_{2}^{3}(r)\left(u_{2}+v_{2}\right)(1-\mu)}{h_{2}^{2}(r)(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma))-2 h_{3}(r) \Phi^{2}(\lambda, \delta, \gamma)} \\
=h_{2}(r)\left[\left(\psi(\mu, r)+\frac{1}{4(\gamma+\lambda(2 \delta+1))}\right) u_{2}+\left(\psi(\mu, r)-\frac{1}{4(\gamma+\lambda(2 \delta+1))}\right) v_{2}\right],
\end{gathered}
$$

where

$$
\psi(\mu, r)=\frac{h_{2}^{2}(r)(1-\mu)}{h_{2}^{2}(r)(\gamma(\gamma+1)+\Upsilon(\lambda, \delta, \gamma))-2 h_{3}(r) \Phi^{2}(\lambda, \delta, \gamma)}
$$

According to (3), we find that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{lr}
\frac{|b r|}{2(\gamma+\lambda(2 \delta+1))}, & 0 \leq|\psi(\mu, r)| \leq \frac{1}{4(\gamma+\lambda(2 \delta+1))} \\
2|b r||\psi(\mu, r)|, & |\psi(\mu, r)| \geq \frac{1}{4(\gamma+\lambda(2 \delta+1))}
\end{array}\right.
$$

After some computations, we have proved the statement of Theorem 2.
Putting $\mu=1$ in Theorem 2, we obtain the following result:
Corollary 1. For $0 \leq \gamma \leq 1,0 \leq \lambda \leq 1,0 \leq \delta \leq 1$ and $r \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the family $\mathcal{F}_{\Sigma}(\gamma, \lambda, \delta, r)$. Then

$$
\left|a_{3}-a_{2}^{2}\right| \leq \frac{|b r|}{2(\gamma+\lambda(2 \delta+1))}
$$

Remark 3. Our theorems give the known results for special families which are described in (1) - (5) of Remark 2.

References

[1] C. Abirami, N. Magesh, and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal. (2020), Art. ID 7391058, 8 pp.
[2] E. A. Adegani, S. Bulut, and A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc. 55 (2018), 405-413.
[3] Ş. Altınkaya and S. Yalçin, Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions, (2017), 7 pp., arXiv :1605.08224v2.
[4] Ş. Altınkaya and S. Yalçin, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math. 5 (2017), 34-40.
[5] D. A. Brannan and T. S. Taha, On Some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31 (1986), 70-77.
[6] S. Bulut, Coefficient estimates for general subclasses of m-fold symmetric analytic biunivalent functions, Turk. J. Math. 40 (2016), 1386-1397.
[7] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259, Springer Verlag, New York, 1983.
[8] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[9] H. Ö. Güney, G. Murugusundaramoorthy and J. Sokól, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univ. Sapientiae, Mathematica 10(2018), 70-84.
[10] T. Al-Hawary, A. Amourah and B. A. Frasin, Fekete-Szegö inequality for biunivalent functions by means of Horadam polynomials, Bol. Soc. Mat. Mex. 27, (2021), https://doi.org/10.1007/s40590-021-00385-5.
[11] A. F. Horadam, Jacobsthal Representation Polynomials, Fibonacci Quart. 35 (1997), 137-148.
[12] A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, Fibonacci Quart. 23 (1985), 7-20.
[13] T. Hörçum and E. G. Koçer, On some properties of Horadam polynomials, Int. Math. Forum 4 (2009), 1243-1252.
[14] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, New York, 2001.
[15] X. F. Li and A. P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (2012), 1495-1504.
[16] N. Magesh, J. Yamini and C. Abirami, Initial bounds for certain classes of bi-univalent functions defined by Horadam Polynomials, (2018), 14 pp., arXiv:1812.04464v1.
[17] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York and Basel, 2000.
[18] H. M. Srivastava, Ş. Altınkaya, and S. Yalçin, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), 1873-1879.
[19] H. M. Srivastava, S. Gaboury, and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), 693-706.
[20] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[21] H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J. 59 (2019), 493-503.
[22] A. K. Wanas, Applications of (M, N)-Lucas polynomials for holomorphic and biunivalent functions, Filomat 34 (2020), 3361-3368.
[23] A. K. Wanas and S. Yalçin, Horadam polynomials and their applications to new family of bi-univalent functions with respect to symmetric conjugate points, Proyecciones $\mathbf{4 0}$ (2021), 107-116.
${ }^{1}$ Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan

E-mail address: bafrasin@yahoo.com
${ }^{2}$ Department of Mathematics, RV College of Engineering, Bengaluru - 560 059, Karnataka, India,

E-mail address: sailajay@rvce.edu.in
${ }^{3}$ Department of Computer Science and Engineering, RV College of Engineering, Bengaluru - 560 059, Karnataka, India

E-mail address: mailtoswamy@rediffmail.com
${ }^{4}$ Department of Mathematics, College of Science, University of Al-Qadisiyah, IraQ

E-mail address: abbas.kareem.w@qu.edu.iq

