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Fekete’s lemma for componentwise subadditive
functions of two or more real variables

Silvio Capobianco

Abstract. We prove an analogue of Fekete’s subadditivity lemma for
functions of several real variables which are subadditive in each variable
taken singularly. This extends both the classical case for subadditive
functions of one real variable, and a similar result for functions of integer
variables. While doing so, we prove that the functions with the property
mentioned above are bounded in every closed and bounded subset of
their domain. The arguments expand on those in Chapter 6 of E. Hille’s
1948 textbook.

1. Introduction

A real-valued function f defined on a semigroup (S, ·) is subadditive if

f(x · y) ⩽ f(x) + f(y) (1)

for every x, y ∈ S. Examples of subadditive functions include the absolute
value of a complex number; the ceiling of a real number (smallest integer not
smaller than it); the cardinality of a a finite subset of a given set; and the
length of a word over an alphabet. Subadditive functions have applications in
many fields including information theory [9], economics, and combinatorics.

A classical result in mathematical analysis, Fekete’s lemma [3] states that,
if f is a real-valued subadditive function of one positive integer or positive
real variable, then f(x)/x converges, for x → +∞, to its greatest lower
bound. This simple fact has a huge number of applications in many fields,
including symbolic dynamics (cf. [9, Chapter 4]) and the theory of neu-
ral networks (see [5]). Reusing a metaphor from [1], Fekete’s lemma says
that for a sequence of independent observations, the average information
per observation converges to its greatest lower bound.
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Given the importance and ubiquity of Fekete’s lemma, we wonder if similar
results may hold for functions of many variables. Oddly, the mathematical
literature seems to contain generalizations where, in almost all cases, the
function in the limit actually depends again on a single variable, which is
sometimes a real number, sometimes a finite set; many of these are closer
to a corollary than to an extension. So maybe we could look for a different
type of limit, or even for a different flavor of subadditivity.

With the aim of understanding which of the above could be feasible, we
note that, if S = S1 × S2 is a product semigroup, we can also consider the
case of a function which is subadditive in each variable, however given the
other. That is, instead of requiring f(x1y1, x2y2) ⩽ f(x1, x2) + f(y1, y2) for
every x1, x2, y1, and y2, we could demand that:

(1) f(x1y1, x2) ⩽ f(x1, x2) + f(y1, x2) for every x1, x2, and y1; and
(2) f(x1, x2y2) ⩽ f(x1, x2) + f(x1, y2) for every x1, x2, and y2.

The two requirements above, even together, do not imply subadditivity as
a function defined on the product semigroup, nor does the latter imply the
former: see Example 3.4. Oddly again, this multivariate “componentwise
subadditivity” seems not to have been addressed very often in the literature.

In this paper, we state and prove an extension of Fekete’s lemma to com-
ponentwise subadditive functions of d ⩾ 2 real variables. We state a special
case as an example, leaving the full statement to Section 5.

Proposition 1.1. Let f be a function of two positive real variables which
is subadditive in each of them, however given the other. For every δ > 0
there exists R > 0 such that, if both x1 > R and x2 > R, then

f(x1, x2)

x1 · x2
< inf

x1,x2>0

f(x1, x2)

x1 · x2
+ δ .

In addition,

lim
x1→+∞

lim
x2→+∞

f(x1, x2)

x1 · x2
= lim

x2→+∞
lim

x1→+∞

f(x1, x2)

x1 · x2
= inf

x1,x2>0

f(x1, x2)

x1 · x2
.

That is: if the componentwise subadditive function f(x, y) is considered as
a net on the directed set of pairs of positive reals with the product ordering
where (x1, x2) ⩽ (y1, y2) if and only if x1 ⩽ y1 and x2 ⩽ y2, then the

simultaneous limit on this directed set of the net
f(x1, x2)

x1 · x2
is its greatest

lower bound. This is a generalization of the original statement where: the
functions depend on multiple independent real variables; both notions of
subadditivity and limit are extended; and the original lemma is a special
case for d = 1. The double limit is also remarkable, because multiple limits
need not commute, let alone coincide with a simultaneous limit.

A similar statement for functions defined on d-tuples of positive integers
(instead of reals) was proved in [1]; see also [10] for an application. The
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argument presented there, however, relies on a hidden hypothesis of bound-
edness on compact subsets, which comes for free in the integer setting (where
compact subsets are precisely the finite subsets) but must be proved in the
new one, and cannot be inferred from boundedness in each variable however
given the others (see Example 4.3). By adapting the proof of [6, Theorem
6.4.1] we obtain the following result: componentwise subadditive functions
defined on suitable regions of Rd are indeed bounded on compact subsets.
For d = 2 and positive variables the statement goes as follows.

Proposition 1.2. Under the hypotheses of Proposition 1.1, the function
f is bounded on [a, b]× [c, d] for every 0 < a < b and 0 < c < d.

The paper is organized as follows. Section 2 provides the theoretical back-
ground. In Section 3 we introduce componentwise subadditivity and explain
how it is different from subadditivity in the product semigroup. In Section 4
we adapt the argument from [6, Theorem 6.4.1] to prove that componentwise
subadditive functions of d real variables are bounded on compact subsets of
Rd. In Section 5 we state, prove, and discuss the main theorem; boundedness
will have a crucial role in the proof. Section 6 is a discussion on how the
beautiful Ornstein–Weiss lemma [11], an important result on subadditive
functions defined on finite subsets of groups of a certain class which includes
Z and R, is not an extension of Fekete’s lemma.

2. Background

Throughout the paper, the subsets of Rd and the real-valued functions of
real variables are presumed to be Lebesgue measurable. We also let real-
valued functions take value either +∞ or −∞, but not both. We assume
that the reader is familiar with the notions of directed set, net, subnet, and
upper limit, lower limit, and limit of a net.

We denote by R, R+, and R− the sets of real numbers, positive real
numbers, and negative real numbers, respectively. Similarly, we denote by
Z, Z+, and Z− the sets of integers, positive integers, and negative integers,
respectively. All these sets are considered as additive semigroups (groups in
the case of R and Z). If m and n are integers and m ⩽ n, we denote the
slice {m,m+1, . . . , n− 1, n} = [m,n]∩Z as [m :n]. If X is a set, we denote
by PF(X) the set of its finite subsets. For an integer d ⩾ 0 we denote by 2d

the set of binary words of length d.
The ordered product of a family {(Xi,⩽i)}i∈I of ordered sets is the ordered

set (X,⩽Π) where X =
∏

i∈I Xi and the product ordering ⩽Π is defined as

x ⩽Π y ⇐⇒ xi ⩽ yi for every i ∈ I . (2)
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If each (Xi,⩽i) is a directed set, then so is (X,⩽Π). If d ⩾ 1 and w ∈ 2d,
the orthant denoted by w is the directed set

Rw = (Rw,⩽Π) =

d∏
i=1

(Xi,⩽i) (3)

where (Xi,⩽i) = (R+,⩽) if wi = 0 and (Xi,⩽i) = (R−,⩾) if wi = 1.
For example, R10 is the open second quadrant of the Cartesian plane, with
(x1, x2) ⩽ (y1, y2) if and only if x1 ⩾ y1 and x2 ⩽ y2. In particular, the
main orthant of Rd, corresponding to w = 0d, is Rd

+ =
(
Rd
+,⩽Π

)
. Note

that, if f : Rd
+ → R is a net on Rd

+ and {xi,n}n⩾1, i ∈ [1 :d], are sequences
of positive reals such that limn→∞ xi,n = +∞ for every i ∈ [1 :d], then
g(n) = f (x1,n, . . . , xd,n) is a subnet of f . Consequently, if f converges to

L ∈ R in Rd
+, then g(n) converges to L for n → ∞.

3. Componentwise subadditivity

In the literature, subadditivity is most often studied in functions of a
single variable, which sometimes may be vector rather than scalar. But in
some cases, it is of interest to consider functions of d independent variables,
which are subadditive when considered as functions of only one of those, but
however given the remaining ones.

Definition 3.1. Let S1, . . . , Sd be semigroups, let S =
∏d

i=1 Si, and let
f : S → R. Given i ∈ [1 :d], we say that f is subadditive in xi independently
of the other variables if, however given xj ∈ Sj for every j ∈ [1 :d] \ {i}, the
function xi 7→ f(x1, . . . , xi, . . . , xd) is subadditive on Si. We say that f is
componentwise subadditive if it is subadditive in each variable independently
of the others.

Example 3.2. If f1 : S1 → R and f2 : S2 → R are both subadditive and
nonnegative, then f : S1 × S2 → R defined by f(x1, x2) = f1(x1) · f2(x2) is
componentwise subadditive.

If one between f1 and f2 takes negative values, then f might not be
componentwise subadditive. For example, f(x1) = −x1 is subadditive on
R+, because it is linear, and f2(x2) =

√
x2 is also subadditive on R+, because

it is nondecreasing and x2+ y2 <
(√

x2 +
√
y2
)2

for every x2, y2 > 0; but for
any fixed x1 > 0, the function x2 7→ −x1

√
x2 is not subadditive on R+.

Example 3.3. (cf. [1, Section 3]) Let d be a positive integer and let A be a
finite set with a ⩾ 2 elements, considered as a discrete space. The translation

by v ∈ Zd is the function σv : AZd → AZd
defined by σv(c)(x) = c(x+ v) for

every x ∈ Zd. A d-dimensional subshift on A is a subset X of AZd
which is

closed in the product topology and invariant by translation, that is, if c ∈ X,
then σv(c) ∈ X for every v ∈ Zd. Given d positive integers n1, . . . , nd, an
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allowed pattern of sides n1, . . . , nd for X is a function p :
∏d

i=1 [1 :ni] → A

such that there exists c ∈ X for which the restriction of c to
∏d

i=1 [1 :ni]
coincides with p. Let AX(n1, . . . , nd) be the number of allowed patterns for
X of sides n1, . . . , nd. Then

f(n1, . . . , nd) = logaAX(n1, . . . , nd) for every n1, . . . , nd ∈ Z+ (4)

is componentwise subadditive, because every allowed pattern of sides n1 +
m1, n2, . . . , nd can be obtained by joining an allowed pattern of sides n1, n2,
. . . , nd with an allowed pattern of sides m1, n2, . . . , nd, but joining two such
allowed patterns does not necessarily produce an allowed pattern; similarly
for the other d− 1 coordinates. This works because X is invariant by trans-
lations.

Componentwise subadditivity is very different from subadditivity with
respect to the operation of the product semigroup. Already with d = 2, if
f : S1 × S2 → R is subadditive, then for every x1, y1 ∈ S1 and x2, y2 ∈ S2

we have

f(x1y1, x2y2) ⩽ f(x1, x2) + f(y1, y2) , (5)

while if f is componentwise subadditive, then for every x1, y1 ∈ S1 and
x2, y2 ∈ S2 we have the more complex upper bound:

f(x1y1, x2y2) ⩽ f(x1, x2) + f(x1, y2) + f(y1, x2) + f(y1, y2) . (6)

If f is nonnegative, then (5) implies (6), which however is weaker than the
conditions of Definition 3.1; if f is nonpositive, then (6) implies (5). In
general, however, neither implies the other.

Example 3.4. By our discussion in Example 3.2, the function f(x1, x2) =√
x1x2 is componentwise subadditive on R2

+. However, f is not subadditive,

because f(3, 3) = 3 > 2
√
2 = f(1, 2) + f(2, 1).

Example 3.5. The function (4) of Example 3.3 is not, in general, subad-

ditive. For example, for d = 2 and X = AZ2
, every pattern is allowed,

so f(n1, n2) = n1n2; but if n1, n2, m1, and m2 are all positive, then
(n1 +m1)(n2 +m2) > n1n2 +m1m2.

Although componentwise subadditivity is very different from subadditiv-
ity in the product semigroup, Fekete’s lemma can tell us something impor-
tant for the case of positive integer or real variables.

Lemma 3.6. Let S =
∏d

i=1 Si with each Si being either R+ or Z+, and

let f : Sd → R ∪ {−∞} be componentwise subadditive. Having fixed k ∈
[1 :d− 1], let i, j1, . . . , jk ∈ [1 :d] be pairwise different. However fixing the
values of the remaining variables, the function h : Si → R ∪ {−∞} defined
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by the multiple limit

h(xi) = lim
xj1

→+∞
. . . lim

xjk
→+∞

f(x1, . . . , xd)∏k
i=1 xji

(7)

is subadditive.

Proof. It is sufficient to prove the claim for k = 1; the general case follows
by repeated application. To simplify notation, let j = j1. Fix the values of
xs for s ∈ [1 :d] \ {i, j}. By hypothesis, for every xi ∈ Si the function xj 7→
f(x1, . . . , xd) is subadditive, so by Fekete’s lemma h(xi) = limxj→∞

f(x1,...,xd)
xj

exists. But for every xi, x
′
i, xj > 0 it is:

f(. . . , xi + x′i, . . .)

xj
⩽

f(. . . , xi, . . .)

xj
+

f(. . . , x′1, . . .)

xj
,

so it must be h(x1 + x′1) ⩽ h(x1) + h(x′1), too. Note that the proof relies on
xj being positive. □

The following observation is crucial for the next sections; we leave the
proof to the reader.

Proposition 3.7. Let w = w1 . . . wd be a binary word of length d and
let f : Rw → R. For every i ∈ [1 :d], let xw,i = (−1)wixi ∈ R+, and let

fw : Rd
+ → R be defined by fw(xw,1, . . . , xw,d) = f(x1, . . . , xd). The following

are equivalent:

(1) f(x1, . . . , xd) is componentwise subadditive in Rw;
(2) fw(xw,1, . . . , xw,d) is componentwise subadditive in Rd

+.

The same holds if Rw and Rd
+ are replaced with Zw = Rw ∩ Zd and Zd

+,
respectively.

4. Componentwise subadditive functions of d real variables
are bounded on compacts

In [1] the following is proved:

Proposition 4.1 (Fekete’s lemma in Zd
+; [1, Theorem 1]). Let U =(

Zd
+,⩽Π

)
and let f : Zd

+ → R be componentwise subadditive. Then

lim
(x1,...,xd)∈U

f(x1, . . . , xd)

x1 · · ·xd
= inf

x1,...,xd∈Z+

f(x1, . . . , xd)

x1 · · ·xd
. (8)

Example 4.2. With the notation of Example 3.3 and U as in Proposi-
tion 4.1, the value:

h(X) = lim
(x1,...,xd)∈U

logaAX(x1, . . . , xd)

x1 · · ·xd
(9)

is well defined, and is called the entropy of the subshift X. For d = 1 this
coincides with [9, Definition 4.1.1].
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We try to reuse the argument from [1] to prove Proposition 1.1. Fix
s, t > 0. Every x > 0 large enough has a unique writing x = qs + r with
q a positive integer and r ∈ [s, 2s), and every y > 0 large enough has a
unique writing y = mt + p with m a positive integer and p ∈ [t, 2t). By
componentwise subadditivity,

f(x, y)

xy
⩽

qm

xy
f(s, t) +

q

xy
f(s, p) +

m

xy
f(r, t) +

1

xy
f(r, p) .

Consider the four summands on the right-hand side. Clearly, limx→+∞ q/x =
1/s and limy→+∞m/y = 1/t. Therefore, the first summand converges to
f(s, t)/st for (x, y) ∈ R2

+.
Now, by [6, Theorem 6.4.1], a subadditive function of one positive real

variable is bounded in every compact subset of R+. Then p 7→ f(s, p) is
bounded on [t, 2t] and r 7→ f(r, t) is bounded on [s, 2s]. Consequently, the
second and third summand vanish for (x, y) ∈ R2

+.
But the fourth summand presents a problem. What we know, is that

x 7→ f(x, y) is bounded in [s, 2s] for every y ∈ [t, 2t], and y 7→ f(s, y) is
bounded in [t, 2t] for every x ∈ [s, 2s]. This is, in general, strictly less than
f being bounded in [s, 2s] × [t, 2t], which is what we actually need to show
that the fourth summand vanishes when x and y both grow arbitrarily large!

Example 4.3 (suggested by Arthur Rubin). Let h : R+ → R be defined
as h(t) = n if t = m/n with m,n ∈ Z+ and gcd(m,n) = 1, and h(t) = 0 if t
is irrational. Then f : R2

+ → R defined by f(x, y) = min(h(x), h(y)) satisfies
the following conditions:

(1) for every x ∈ [1, 2], the function y 7→ f(x, y) is bounded in [1, 2];
(2) for every y ∈ [1, 2], the function x 7→ f(x, y) is bounded in [1, 2].

However, f is not bounded in [1, 2]× [1, 2], because f(1 + 1/n, 1 + 1/n) = n
for every n ∈ Z+. On the other hand, h(4) = 1 and h(π) = h(4− π) = 0, so
f is neither subadditive nor componentwise subadditive in R2

+.

We could overcome this issue if a result of boundedness such as the one in
[6, Theorem 6.4.1] held for componentwise subadditive functions. Luckily,
it is so, and we can follow the same idea of Hille’s proof. Given f : Rd

+ → R
and t1, . . . , td ∈ R+, let

Vt1,...,td,k = {(x1, . . . , xd) ∈ Rd
+ | 0 < xi < ti∀i ∈ [1 :d] , f(x1, . . . , xd) ⩾ k} .

(10)
Under our hypothesis that f is measurable, so is (10).

The next statement is the cornerstone of our argument. For Lemma 4.4
and Theorem 4.5, the symbol µ and the word “measure” denote the d-
dimensional Lebesgue measure.
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Lemma 4.4. Let f : Rd
+ → R be componentwise subadditive. Then, for

every t1, . . . , td ∈ R+,

µ

(
V
t1,...,td,

f(t1,...,td)

2d

)
⩾

t1 · · · td
2d

. (11)

Proof. Call V the set on the left-hand side of (11). For every i ∈ [1 :d], given

xi ∈ (0, ti), let y
(0)
i = xi and y

(1)
i = ti − xi. Then, for every w ∈ 2d, the

transformation

(x1, . . . , xd) 7→
(
y
(w1)
1 , . . . , y

(wd)
d

)
is a measure-preserving continuous involution, hence the set

Vw =
{(

y
(w1)
1 , . . . , y

(wd)
d

)
| (x1, . . . , xd) ∈ V

}
is measurable and satisfies µ(Vw) = µ(V ). Note that V = V0d .

By repeatedly applying subadditivity, once in each variable, we arrive at

f(t1, . . . , td) ⩽
∑
w∈2d

f
(
y
(w1)
1 , . . . , y

(wd)
d

)
. (12)

For example, for d = 2 we have

f(t1, t2) ⩽ f(x1, t2) + f(t1 − x1, t2)

⩽ f(x1, x2) + f(x1, t2 − x2)

+f(t1 − x1, x2) + f(t1 − x1, t2 − x2) .

For (12) to hold, at least one of the 2d summands on the right-hand side

must be no smaller than
f(t1, . . . , td)

2d
. Then

⋃
w∈2d Vw =

∏d
i=1(0, ti), so

t1 · · · td ⩽
∑
w∈2d

µ(Vw) = 2d µ(V ) .

□

From Lemma 4.4 the next theorem follows.

Theorem 4.5. Let w ∈ 2d and let f : Rw → R be componentwise subad-
ditive. Then f is bounded in every compact subset of Rw.

Proof. Thanks to Proposition 3.7, it is sufficient to prove the claim for w = 0d

(thus, Rw = Rd
+) and for every compact hypercube of the form H = [a, b]d

with 0 < a < b. We proceed by contradiction, following the argument from
[6, Theorem 6.4.1].

First, suppose that f is unbounded from above in H. Then, for every n ⩾
1 and i ∈ [1 :d], there exists xi,n ∈ [a, b] such that f(x1,n, . . . , xd,n) ⩾ 2dn.
Let Wt1,...,td be the set in (11). By construction, for every n ⩾ 1 we have

Wx1,n,...,xd,n
⊆ Vb,...,b,n ,
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and, by Lemma 4.4,

µ
(
Wx1,n,...,xd,n

)
⩾

x1,n · · ·xd,n
2d

⩾
(a
2

)d
.

Now, the sets Vb,...,b,n are measurable and form a nonincreasing sequence, so

V =
⋂

n⩾0 Vb,...,b,n is measurable and µ(V ) ⩾ (a/2)d; in particular, V cannot
be empty. But for (x1, . . . , xd) ∈ V we must have f(x1, . . . , xd) ⩾ n for every
n ⩾ 1: which is impossible.

Next, suppose that f is unbounded from below in H. Then, for every
n ⩾ 1 and i ∈ [1 :d], there exists xi,n ∈ [a, b] such that f(x1,n, . . . , xd,n) ⩽ −n.
We may assume that limn→∞ xi,n = xi ∈ [a, b] exists for every i ∈ [1 :d]. Let

s = min(a, 1), t = b+ 4, and J = [s, t]d, then every point (z1, . . . , zd) where
each zi belongs to either [a, b] or [1, 4] belongs to J . Let now yi ∈ [1, 4] for
every i ∈ [1 :d] and

M = sup{f(z1, . . . , zd) | (z1, . . . , zd) ∈ J} ,

which is a real number because of the previous point. By applying subaddi-
tivity in each variable, for such y1, . . . , yd and n we obtain

f(y1 + x1,n, . . . , yd + xd,n) ⩽ (2d − 1)M − n ,

because −n is an upper bound for f(x1,n, . . . , xd,n) and M is an upper bound

for the other 2d − 1 summands. For example, for d = 2 we have

f(y1 + x1,n, y2 + x2,n) ⩽ f(y1, y2) + f(y1, x2,n)

+f(x1,n, y2) + f(x1,n, x2,n)

⩽ 3M − n .

But for every n such that |xi,n − xi| ⩽ 1 we have [xi + 2, xi + 3] ⊆ [xi,n +
1, xi,n + 4]. Calling

K =

d∏
i=1

[xi + 2, xi + 3] ⊆ J ,

for every n large enough every element of K can be written in the form (y1+
x1,n, . . . , yd + xd,n) for suitable y1, . . . , yd ∈ [1, 4]. For every (z1, . . . , zd) ∈ K

we must then have f(z1, . . . , zd) ⩽ (2d − 1)M − n for every n large enough,
which is impossible. □

In turn, Theorem 4.5 allows us to prove the following result.

Theorem 4.6. Let f : Rd → R be componentwise subadditive. Then f is
bounded in every compact subset of Rd.
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Proof. It is sufficient to show finitely many open sets V1, . . . , Vn such that f
is bounded on the compacts of each Vi and

Rd =

 ⋃
w∈2d

Rw

 ∪

(
n⋃

i=1

Vi

)
.

We give the argument for d = 3, the ideas for arbitrary d ⩾ 1 are similar.
Let I = [−1/2, 1/2] and U = [−3/2,−1/2] ∪ [1/2, 3/2].

We start by proving that f is bounded in every compact subset of the
open set

Z00 = {(x, y, z) ∈ R3 | x > 0, y > 0} = R000 ∪ R001 ∪D00 ,

where D00 = {(x, y, z) ∈ R3 | x > 0, y > 0, z = 0} is the first quadrant
of the XY plane. To do this, we only need to show that f is bounded in
every set of the form H = [a, b] × [a, b] × I. Let V = [a, b] × [a, b] × U . If
(x, y, z) ∈ H, then (x, y, z − 1) and (x, y, z + 1) are both in V . Let T and
t be an upper bound and a lower bound for f in V , respectively. Then, for
every (x, y, z) ∈ H,

f(x, y, z) ⩽ f(x, y, z − 1) + f(x, y, 1) ⩽ 2T

and

f(x, y, z) ⩾ f(x, y, z + 1)− f(x, y, 1) ⩾ t− T .

By similar arguments, f is bounded in every compact subset of every subset
of R3 which is the union of two adjacent orthants and the corresponding
“quadrant”. As for each open orthant there are three which border it by one

“quadrant”, there are
8 · 3
2

= 12 such subsets.

We now show that f is bounded in every compact subset of the open
“upper demispace” Z0 = {(x, y, z) ∈ R3 | z > 0}. To do so, it will suffice
to show that f is bounded in every set of the form L = I × I × [a, b] with
0 < a < b. Let W = U ×U × [a, b] and let S and s be an upper bound for f
in W , respectively. Then, for every (x, y, z) ∈ L,

f(x, y, z) ⩽ f(x− 1, y, z) + f(1, y, z)

⩽ f(x− 1, y − 1, z) + f(x− 1, 1, z) + f(1, y − 1, z) + f(1, 1, z)

⩽ 4S

and

f(x, y, z) ⩾ f(x+ 1, y, z)− f(1, y, z)

⩾ f(x+ 1, y + 1, z)− f(x+ 1, 1, z)− f(1, y, z)

⩾ s− 2S .

Similarly, f is bounded in each of the other five open “demispaces”.
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To conclude the proof, we only need to show that f is bounded in K =
I × I × I. Let E = U × U × U and let M and m be an upper bound and a
lower bound for f in E, respectively. Then, for every (x, y, z) ∈ K,

f(x, y, z) ⩽ f(x− 1, y, z) + f(1, y, z)

⩽ f(x− 1, y − 1, z) + f(x− 1, 1, z) + f(1, y − 1, z) + f(1, 1, z)

⩽ f(x− 1, y − 1, z − 1) + f(x− 1, z − 1, 1)

+f(x− 1, 1, z − 1) + f(x− 1, 1, 1)

+f(1, y − 1, z − 1) + f(1, y − 1, 1)

+f(1, 1, z − 1) + f(1, 1, 1)

⩽ 8M

and

f(x, y, z) ⩾ f(x+ 1, y, z)− f(1, y, z)

⩾ f(x+ 1, y + 1, z)− f(x+ 1, 1, z)− f(1, y, z)

⩾ f(x+ 1, y + 1, z + 1)− f(x+ 1, y + 1, 1)

−f(x+ 1, 1, z)− f(1, y, z)

⩾ m− 3M .

□

Note that the argument of Lemma 4.4 also works if f is subadditive, rather
than componentwise subadditive. In this case, however, the denominator in
(11) and in the proof is 2 rather than 2d. A more complex variant of it can
then be stated, where f is a function of k variables xi, each taking values
in an orthant of Rdi

+ , and the denominator would then be 2k. From this, a
generalization of Theorem 4.5 to the case of componentwise functions of k
variables, the ith of which takes values in Rdi

+ , can be derived.

5. Fekete’s lemma for componentwise subadditive functions
of d real variables

We can now state and prove the main result of this paper.

Theorem 5.1 (Fekete’s lemma in Rd
+). Let d ⩾ 1 and let f : Rd

+ → R be
componentwise subadditive. Then

lim
(x1,...,xd)∈Rd

+

f(x1, . . . , xd)

x1 · · ·xd
= inf

x1,...,xd∈R+

f(x1, . . . , xd)

x1 · · ·xd
, (13)

which can be −∞. In addition, for every permutation σ of [1 :d],

lim
xσ(1)→+∞

. . . lim
xσ(d)→+∞

f(x1, . . . , xd)

x1 · · ·xd
= lim

(x1,...,xd)∈Rd
+

f(x1, . . . , xd)

x1 · · ·xd
, (14)

regardless of any of the limits being finite or (negatively) infinite.
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The proof of (13) is similar to that of [1, Theorem 1], with an important
change. The proof of (14) relies on (13), the original Fekete’s lemma, and
the following Lemma 5.2, whose proof we leave to the reader.

Lemma 5.2. Let u be a real-valued function depending on d ⩾ 1 variables
xi, no matter of what type. Then, for every permutation σ of [1 :d],

inf
xσ(1)

. . . inf
xσ(d)

u(x1, . . . , xd) = inf
x1,...,xd

u(x1, . . . , xd) . (15)

Proof of Theorem 5.1. Fix t1, . . . , td ∈ R+. For every i ∈ [1 :d] and xi ⩾ 2ti
there exist unique qi ∈ Z+ and ri ∈ [ti, 2ti) such that xi = qiti+ri. For every

i ∈ [1 :d] let y
(0)
i = ri and y

(1)
i = ti. By repeatedly applying subadditivity,

once per each variable, we find that

f(x1, . . . , xd) ⩽
∑
w∈2d

qw1
1 · · · qwd

d · f
(
y
(w1)
1 , . . . , y

(wd)
d

)
. (16)

Now, on the right-hand side of (16), each occurrence of f has k arguments
chosen from the ti’s and d− k chosen from the ri’s, is multiplied by the qi’s
corresponding to the ti’s, and is bounded from above by the constant

M = sup{f(y1, . . . , yd) | yi ∈ [ti, 2ti] ∀i ∈ [1 :d]} ,

which exists because of Theorem 4.5. Such boundedness is crucial for the
proof, and was ensured for free in the case of positive integer variables from
[1], but had to be proved for positive real variables. From now on, the proof
of (13) is identical to the proof of the equality of (4) and (5) from [1].

Now, by Lemma 3.6, for every choice of i, j1, . . . , jk ∈ [1 :d] all different,
and however fixed the remaining variables, the function (7) is subadditive.
Then (14) follows from Lemma 5.2 by repeated application of (13):

lim
xσ(1)→+∞

. . . lim
xσ(d)→+∞

f(x1, . . . , xd)

x1 · · ·xd

= inf
xσ(1)>0

lim
xσ(2)→+∞

. . . lim
xσ(d)→∞

f(x1, . . . , xd)

x1 · · ·xd
= . . .

= inf
xσ(1)>0

. . . inf
xσ(d)>0

f(x1, . . . , xd)

x1 · · ·xd

= inf
x1,...,xd>0

f(x1, . . . , xd)

x1 · · ·xd

= lim
(x1,...,xd)∈Rd

+

f(x1, . . . , xd)

x1 · · ·xd
.

□

From Theorem 5.1 and Proposition 3.7 the next result follows.
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Theorem 5.3. Let d ⩾ 1, let w,w′ ∈ 2d and let f : Rw → R be compo-
nentwise subadditive.

(1) If w contains evenly many 1s, then

lim
(x1,...,xd)∈Rw

f(x1, . . . , xd)

x1 · · ·xd
= inf

(x1,...,xd)∈Rw

f(x1, . . . , xd)

x1 · · ·xd
(17)

is not +∞, but can be −∞.
(2) If w contains oddly many 1s, then

lim
(x1,...,xd)∈Rw

f(x1, . . . , xd)

x1 · · ·xd
= sup

(x1,...,xd)∈Rw

f(x1, . . . , xd)

x1 · · ·xd
(18)

is not −∞, but can be +∞.
(3) Suppose now w contains evenly many 1s, w′ differs from w in exactly

one coordinate, and f is defined and componentwise subadditive in Rw ∪
Rw′ ∪ Uw,w′, where

Uw,w′ = {x ∈ Rd | xi = 0, (x1, . . . , xi−1, 1, xi+1, . . . , xd) ∈ Rw ∪ Rw′}
is the boundary between Rw and Rw′. Then

lim
(x1,...,xd)∈Rw′

f(x1, . . . , xd)

x1 · · ·xd
⩽ lim

(x1,...,xd)∈Rw

f(x1, . . . , xd)

x1 · · ·xd
; (19)

consequently, both limits are finite.

For d = 1 we recover [6, Theorem 6.6.1]. To prove Theorem 5.3, we make
use of the following result, whose proof we leave to the reader.

Lemma 5.4. Let S be a semigroup and f : S → R be a subadditive
function. If S is a monoid with the identity e, then f(e) ⩾ 0. If, in addition,
S is a group, then f(x) + f(x−1) ⩾ 0 for every x ∈ S.

Proof of Theorem 5.3. For x = (x1, . . . , xd) ∈ Rw and i ∈ [1 :d] let xw =
(xw,1, . . . , xw,d) and fw be defined as in Proposition 3.7. If w contains evenly
many 1s, then x1 · · ·xd = xw,1 · · ·xw,d and

lim
x∈Rw

f(x1, . . . , xd)

x1 · · ·xd
= lim

xw∈Rd
+

fw(xw,1, . . . , xw,d)

xw,1 · · ·xw,d

= inf
xw∈Rd

+

fw(xw,1, . . . , xw,d)

xw,1 · · ·xw,d

= inf
x∈Rw

f(x1, . . . , xd)

x1 · · ·xd
.

If w contains oddly many 1s, then x1 · · ·xd = −xw,1 · · ·xw,d and

lim
x∈Rw

f(x1, . . . , xd)

x1 · · ·xd
= − lim

xw∈Rd
+

fw(xw,1, . . . , xw,d)

xw,1 · · ·xw,d
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= − inf
xw∈Rd

+

fw(xw,1, . . . , xw,d)

xw,1 · · ·xw,d

= sup
x∈Rw

f(x1, . . . , xd)

x1 · · ·xd
.

Suppose now w has evenly many 1s and w′ differs from w only in component
i, and f is defined and componentwise subadditive in Rw∪Rw′∪Uw,w′ . Then,
for every x1, . . . , xi−1, xi+1, . . . xd, the function xi 7→ f(x1, . . . , xi, . . . , xd) is
subadditive on R. By Lemma 5.4, for every xi ∈ R,

f(x1, . . . , xi, . . . , xd) + f(x1, . . . ,−xi, . . . , xd) ⩾ 0 .

Then

lim
x∈Rw

f(x1, . . . , xd)

x1 · · ·xd
− lim

x′∈Rw′

f(x′1, . . . , x
′
d)

x′1 · · ·x′d

= lim
x∈Rw

f(x1, . . . , xi, . . . , xd)

x1 · · ·xd
+ lim

x∈Rw

f(x1, . . . ,−xi, . . . , xd)

x1 · · ·xd

= lim
x∈Rw

f(x1, . . . , xi, . . . , xd) + f(x1, . . . ,−xi, . . . , xd)

x1 · · ·xd
is nonnegative. The last passage is valid because the two limits on the second
line are either finite or −∞. □

As every subnet of a convergent net converges to the same limit, we get
the following corollary.

Corollary 5.5. Let f : Rd
+ → R be componentwise subadditive and let

T be either R+ or Z+. For every i ∈ [1 :d] let xi(t) : T → R+ satisfy
limt→+∞ xi(t) = +∞. Then

lim
t→+∞

f(x1(t), . . . , xd(t))

x1(t) · · ·xd(t)
= inf

x1,...,xd>0

f(x1, . . . , xd)

x1 · · ·xd
, (20)

and also

inf
t∈T

f(x1(t), . . . , xd(t))

x1(t) · · ·xd(t)
= inf

x1,...,xd>0

f(x1, . . . , xd)

x1 · · ·xd
. (21)

In particular,

lim
n→∞

f(n, . . . , n)

nd
= inf

n⩾1

f(n, . . . , n)

nd
= inf

x1,...,xd>0

f(x1, . . . , xd)

x1 · · ·xd
. (22)

Sketch of proof. We only remark that (21) follows from (13) and

inf
x1,...,xd>0

f(x1, . . . , xd)

x1 · · ·xd
⩽ lim inf

t→∞

f(x1(t), . . . , xd(t))

x1(t) · · ·xd(t)
.

□
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Note that, in general, even if f is componentwise subadditive on Rd
+, t 7→

f(t, . . . , t) is not subadditive on R+: a simple example is f(x1, x2) = x1 · x2.
This provides further evidence that Theorems 5.1 and 5.3 are not special
cases of [6, Theorem 6.6.1].

A real-valued function defined on a semigroup (S, ·) is superadditive if it
satisfies f(x · y) ⩾ f(x) + f(y) for every x, y ∈ S. As f is superadditive if
and only if −f is subadditive, an analogue of Theorem 5.1 holds for com-
ponentwise superadditive functions, provided one swaps the roles of inf and
sup and those of −∞ and +∞. If f is superadditive in some variables and
subadditive in other variables, however, Theorem 5.1 does not hold.

Example 5.6. The function f : R2
+ → R defined by f(x1, x2) = x21

√
x2

is superadditive in x1 and subadditive in x2, and f(x1, x2)/x1x2 = x1/
√
x2.

But lim(x1,x2)∈R2
+

f(x1,x2)
x1x2

does not exist, because for every y,R > 0 there

exist x1, x2 > R such that x1/
√
x2 = y. Also, limx1→∞ limx2→∞

f(x1,x2)
x1·x2

= 0

but limx2→∞ limx1→∞
f(x1,x2)
x1·x2

= +∞.

As a final remark for this section, the following statement appears in the
literature as an extension to arbitrary dimension of [6, Theorem 6.1.1].

Proposition 5.7 (cf. [8, Theorem 16.2.9]). Let f : Rd → R be subadditive
in the variable x ∈ Rd. Then, for every x ∈ Rd, the following limit exists:

Lx = lim
t→+∞

f(tx)

t
.

This, however, is not so much an extension than a corollary. If f : Rd → R
satisfies f(x+ y) ⩽ f(x) + f(y) for every x,y ∈ Rd, then obviously gx(t) =
f(tx) satisfies gx(s + t) ⩽ gx(s) + gx(t) for every s, t > 0, and Lx is simply
the limit of gx(t)/t according to [6, Theorem 6.1.1]. On the other hand,
Theorem 5.3 is an extension.

6. A comparison with the Ornstein–Weiss lemma

A group G is amenable if there exist a directed set U = (U,≼) and a net
{Fx}x∈U of finite nonempty subsets of G such that:

lim
x∈U

|gFx \ Fx|
|Fx|

= 0 for every g ∈ G . (23)

A net such as in (23) is called a (left) Følner net on the group G, from
the Danish mathematician Erling Følner who introduced them in [4]. Every
abelian group is amenable: for a proof, see [2, Chapter 4].

Proposition 6.1 (Ornstein–Weiss lemma; cf. [11]). Let G be an amenable
group and let f : PF(G) → R be a function which
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(1) is subadditive with respect to set union, that is, f(A∪B) ⩽ f(A)+ f(B)
for every A,B ∈ PF(G); and

(2) satisfies f(A) = f(gA) for every A ∈ PF(G) and g ∈ G.

Then, for every directed set U = (U,≼) and every left Følner net F =
{Fx}x∈U on G,

L = lim
x∈U

f(Fx)

|Fx|
(24)

exists, and does not depend on the choice of U and F .

The Ornstein–Weiss lemma says that, for “well behaved” functions on
amenable groups, a notion of asymptotic average is well defined. A detailed
proof of Proposition 6.1 is given by F. Krieger in [7].

Example 6.2. Let G be an amenable group and let A be a finite set with
a ⩾ 2 elements. The shift by g ∈ G is the function σg : AG → AG defined by
σg(c)(x) = c(g · x) for every c ∈ AG and x ∈ G. The notions of subshift and
of allowed pattern with support S ∈ PF(G) are extended naturally from
those of Example 3.3. Calling AX(S) the number of allowed patterns for
X with support S, and convening that the unique empty pattern e : ∅ → A
appears in every configuration, we have for every S, T ∈ PF(G),

AX(S) ⩽ AX(S ∪ T ) ⩽ AX(S) · AX(T \ S) ⩽ AX(S) · AX(T ) .

Indeed, every allowed pattern on S (resp., T \S) can be extended to at least
one allowed pattern on S ∪ T (resp., T ) but joining an allowed pattern over
S and an allowed pattern over T \ S does not necessarily yield an allowed
pattern on S ∪ T . Hence, f(S) = logaAX(S) is subadditive on PF(G), and
clearly satisfies f(gS) = f(S) for every g ∈ G and S ∈ PF(G). The entropy
of X can then be defined as:

h(X) = lim
x∈U

logaAX(Fx)

|Fx|
(25)

where U = (U,≼) is an arbitrary directed set and {Fx}x∈U is an arbitrary
Følner net on G.

As the sets Ex1,...,xd
=
∏d

i=1 [1 :xi] with x1, . . . , xd ∈ Z+ constitute a

Følner net on Zd, defining the entropy of a d-dimensional subshift according
to either Example 4.2 or Example 6.2 yields the same result. Nevertheless,
the Ornstein–Weiss lemma does not generalize Fekete’s lemma, nor it is
possible to prove the latter from the former, as the limit (24) is only ensured
to exist, not to coincide with any specific value. In addition, even if f : Z →
R is subadditive, the “natural” conversion

g(A) =

{
f(|A|) if A ̸= ∅ ,
0 otherwise

(26)
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is invariant by translations, but needs not be subadditive on PF(Z), the
main reason being that |A ∪B| needs not equal |A| + |B|. Moreover, while
invariance by translations is essential in the Ornstein–Weiss lemma, a trans-
late of a subadditive function needs not be subadditive.

Example 6.3. The function f(n) = n mod 2 is easily seen to be subad-
ditive on Z. But the function g defined from f by (26) is not subadditive
on PF(Z), because if U = {1, 2} and V = {2, 3}, then g(U ∪ V ) = 1 and
g(U) = g(V ) = 0. Note that h(n) = f(n + 1) is not subadditive, because
h(1) = 0 but h(2) = 1.

7. Conclusions

We have discussed an extension of the notion of subadditivity in the case
of many independent variables. In this context, we have proved a nontrivial
extension of the classical Fekete’s lemma to the case of functions of d ⩾ 1 real
variables, which recovers the original statement for d = 1, and which is more
general than other extensions already present in the literature. While doing
so, we have also proved that these componentwise subadditive functions
satisfy the important property of being bounded on compact subsets, the
case d = 1 being already known from the literature.

We believe that our results can be of interest for researchers in economics,
optimization, theory of dynamical systems, and mathematical analysis.
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