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Natural vibrations of curved nano-beams and
nano-arches

Jaan Lellep and Shahid Mubasshar

Abstract. The natural vibrations of curved nano-beams and nano-
arches are studied. The nano-arches under consideration have piecewise
constant thickness; these are weakened with stable cracks located at
re-entrant corners of the steps. A method of determination of natural
frequencies is developed making use of the method of weightless rotating
spring. The aim of the paper is to assess the sensitivity of the eigenfre-
quencies on the geometrical and physical parameters of the nano-arch.
The results of the calculations favourably compare with similar works of
other researchers.

1. Introduction

The main ideas of the non-local theory of elasticity were initially for-
mulated by Eringen [7] and Eringen and Edelen [8] several decades ago.
However, the rapid progress in the non-local theories got its start with the
wide use of nanomaterials (see Thai [27], Thai et al. [28], Reddy [21]).
Comprehensive reviews of papers dedicated to the mechanical behaviour of
nano-beams, nano-plates and nano-arches can be found in the review pa-
pers by Faghidian [9, 10], Farajpour, Ghayesh, and Farokhi [11], also by
Wang and Arash [31]. It is interesting to remark that the non-local theory
was initially formulated in the integral form and later it was reformulated
by Eringen in the differential form making use of a specific kernel function.
Since the differential form is more simple it is widely used in the analysis of
nanostructures.

A general approach to the application of the non-local theories of the elas-
ticity in the bending, buckling and vibration of nano-beams was developed by
Aydogdu [2]. Resorting to the results obtained by Nayfeh and Emam [20]
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a comparative study on the buckling and post-buckling analysis of nano-
beams was undertaken by Emam [6]. The formulations corresponding to
the classical Euler–Bernoulli approach, the first order Timoshenko theory
and higher order shear deformation Reddy theories are analysed in detail.
The comparison of the classical bending theory and the shear deformation
theories is carried out by Reddy [21, 22], as well.

Vibrations of nano-beams containing cracks and other defects are studied
by Roostai and Haghpanahi [24], Loya [19], also by Lellep and Lenbaum [17],
Loghmani and Yazdi [18], Hossain and Lellep [12, 13]. In the paper [13] the
effect of the temperature is taken into account. In the paper by Jiang and
Wang [14] analytical solutions are developed for nano-beams subjected to
axial and thermal stresses.

The vibrations of curved beams or arches and the detection of damages
in these structures is studied by Cerri and Ruta [3], Viola, Artioli, and
Dilena [29] with the help of vibrational analysis. Viola and Tornabene [30]
undertake the analysis of circular arches of variable cross-section. The effects
of cracks are taken into account in the paper by Karaagac et al. [15].

In the present paper the natural frequencies of circular nano-beams are de-
fined, and the sensitivity of eigenfrequencies on the geometrical and material
parameters of a nano-arch is studied.

2. Formulation of the problem

Let us consider the dynamic behaviour of a nano-arch of radius R. For
determination of the positions of central points of the arch the polar angle
φ is introduced (Figure 1). Assume that the angles φ = 0 and φ = β
correspond to the edges of the nano-arch, respectively.

It is assumed that the thickness of the nano-arch is defined as

h =

{
h0, φ ∈ [0, α),

h1, φ ∈ (α, β].
(1)

In (1), h0, h1 are given numbers and α ∈ (0, β). The width b of the nano-
arch is assumed to be a constant. The aim of the study is to determine
the eigenfrequencies of stepped nano-beams weakened with defects at the
re-entrant corners of steps. It is assumed that at the cross section φ = α,
a crack with length c is located. The defect is treated as a stable crack; no
attention will be paid to the extension of the crack during vibrations.

However, the sensitivity of the eigenfrequency with respect to the position
of the crack and other parameters will be clarified.
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Figure 1. Stepped arch.

3. Governing equations and main hypotheses

The system of governing equations includes the equilibrium equations and
constitutive and geometrical relations with boundary conditions. The equi-
librium equations for an element of the arch or curved beam can be presented
as (see Soedel [25])

∂N

∂s
+

Q

R
+ pu = ρ̄hÜ ,

∂Q

∂s
− N

R
+ p = ρ̄hẄ ,

∂M

∂s
−Q = 0.

(2)

In (2), N , M and Q denote the membrane force, bending moment, and shear
force, respectively. Here s is the curvilinear coordinate related to the current
angle as

s = Rφ.

In (2), U , W stand for the displacements in the circumferential and normal
directions, respectively and pu and p are the intensities of the distributed
loading in these directions. Here h stands for the thickness of the arch and
ρ̄ is the mass per unit length of the arch. Let b be the width of the arch. In
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(2), dots denote the differentiation with respect to time t. This means that

Ü =
∂2U

∂t2
, Ẅ =

∂2W

∂t2
.

The strain-displacement equations can be taken according to Soedel [25] as

ε =
1

R
W +

∂U

∂s
, (3)

and

κ = −∂2U

∂s2
+

∂U

∂s

1

R
. (4)

In (3), (4) ε stands for the relative extension of the curved element and κ is
the curvature of the middle line of the arch.

It is assumed herein that the vibrations of the arch are in-plane motions
only. According to the Hook’s law in the classical theory of the elasticity
one has

Mc = EIκ, (5)

where Mc denotes the bending moment in the classical theory. Here E is
the Young’s modulus and I is the moment of inertia of the cross section of
the arch. Evidently, in the case of a rectangular cross section

I =
1

12
bh3. (6)

As h is a piecewise continuous function of the current angle, the second
moment (6) has the constant values I0 and I1 in the regions (0, α) and
(α, β), respectively. It is assumed that the material of the arch obeys the
constitutive equations of the non-local theory of elasticity (see Eringen [7],
Reddy [21]). In the non-local theory the stresses at a given point of the body
depend on the strains at all points of the body. One of the simplest physical
relations of this type can be presented as (see Reddy [21], Emam [6])

σij − η∇2σij = σc
ij , (7)

where σij denotes the components of the non-local stress tensor and σc
ij

stands for the classical elastic stress tensor. Here η = (e0a)
2 stands for a

material constant, a is the dimension of the lattice of the material and e0 is
a physical constant to be defined experimentally.

Instead of the stress components σij in (7) one can use the generalized
stresses used in the equilibrium equations (2). However, it is reasonable to
adapt the system (2) to the current problem.
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Let us assume that pu = 0, U(φ, t) is small and that Ü is also negligible.
In this case the system (2) can be rewritten as

N
′
= −Q,

Q
′
= N +R(ρhẄ − p),

M
′
= RQ,

(8)

where prime denotes the differentiation with respect to the current angle φ.
It can be seen from (8) that in the case when M(φ) and N(φ) vanish at the
same cross section one has

M = −RN. (9)

Equations (8) and (9) result in

M
′′
+M +R2(p− ρhẄ ) = 0. (10)

Taking in (7) instead of σij the moment M yields

M − ηM
′′
= Mc. (11)

Combining (11) and (5) with (10) one obtains

M =
1

1 + η
[
−EI

R2
(W

′′
+W ) + hηρR2Ẅ ]. (12)

Substituting the bending moment from (12) into (10) where p = 0 one
obtains the equation

−EI

R2
(W IV + 2W

′′
+W ) + ρhR2(ηẄ

′′ − Ẅ ) = 0. (13)

Equation (13) is a fourth order equation. The boundary conditions for (13)
are in the case of simply supported arches

W (0, t) = 0,

W (β, t) = 0,
(14)

and
M(0, t) = 0,

M(β, t) = 0.
(15)

4. Solution of the governing equations

Making use of the method of separation of variables it is assumed that

W (φ, t) = X(φ)T (t), (16)

whereX(φ) is a function of the coordinate φ and T (t) is a function depending
on time t only.
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Differentiating (16) one can easily find that

Ẅ = X(φ)T̈ (t),

W
′′
= X

′′
(φ)T (t),

W IV = XIV (φ)T (t),

Ẅ
′′
= X

′′
(φ)T̈ (t).

(17)

The substitution of (17) in (13) leads to the differential equations

T̈ + ω2T = 0, (18)

and

−EI

R2
(XIV + 2X

′′
+X)− ρhR2ω2(ηX

′′ −X) = 0. (19)

In (18) ω stands for the frequency of natural vibrations of the arch. The
equation (19) must be solved separately in regions (0, α) and (α, β) respec-
tively, since h is defined by (1) so that it has different values in these sections.
Evidently, the equation (18) has periodical solutions. One of these can be
taken as

T = Ā sin(ωt),

where Ā is a constant. Equation (19) can be presented in the form

X
′′′′

+ (2 +Kjη)X
′′
+ (1−Kj)X = 0, (20)

where

Kj =

{
K0, φ ∈ (0, α),

K1, φ ∈ (α, β).
(21)

In (20), (21)

Kj =
ω2ρhjR

4

EIj
,

where j = 0, 1. Here

I0 =
bh30
12

, I1 =
bh31
12

.

In order to solve the linear fourth order equation (20) one has to solve the
characteristic equation

λ4
j + (2 +Kjη)λ

2
j + 1−Kj = 0. (22)

It is easy to recheck that

λj = ±
(
1

2

(
−2−Kjη ±

√
(2 +Kjη)2 − 4(1−Kj)

)) 1
2

. (23)

Thus the general solution of the (19) has the form

Xj = C1 coshµjφ+ C2 sinhµjφ+ C3 cos νjφ+ C4 sin νjφ, (24)
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where

µj =

(
−1

2
(2 +Kjη) +

1

2

√
(Kjη)2 + 4Kjη + 4Kj

) 1
2

,

νj =

(
1

2
(2 +Kjη) +

1

2

√
(Kjη)2 + 4Kjη + 4Kj

) 1
2

.

(25)

It is expected in (22)–(25) that j = 0, if φ ∈ (0, α), and j = 1 if φ ∈ (α, β).
The boundary conditions (14) and (15) together with (16) admit to assert
that the boundary requirements for Xj(t) are

Xj(0) = 0,

X
′′
j (0) = 0,

(26)

and
Xj(β) = 0,

X
′′
j (β) = 0.

(27)

Note that (26) and (27) hold in the case of an arch simply supported at both
edges.

5. Local flexibility due to the crack

It is recognized long time ago that cracks and other defects are the sources
of additional structural compliance. Dimarogonas [5], Chondros et al [4] also

Kukla [16], suggested to treat the slope of deflection W
′
as a discontinuous

variable and to define a new variable

θ = W
′
(α+ 0, t)−W

′
(α− 0, t),

so that

θ = CM(α, t),

where C can be considered as the additional compliance, and M stands for
the moment of internal forces at φ = α. Evidently, C can be an appropriate
matrix, as well. In this case instead of M one has the vector of corresponding
internal forces applied at the same cross section.

It is known in the linear elastic fracture mechanics that the energy release
rate due to the crack can be calculated as

G =
M2

2b

dC

dc
. (28)

In (28) b is the width of the crack of rectangular cross section and M is the
moment applied at this cross section and c stands for the length of the crack.

On the other hand, the stress intensity factor can be defined as (see An-
derson [1])

K = σ
√
πcF (s),
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where s = c
h , F (s) is the shape function, and

σ =
6M

bh2
.

The quantity K is coupled with the energy release rate as

G =
K2

E′ . (29)

In (29) E
′
= E for the plane stress state and E

′
= E

1−ν2
for plane strain

state. In the literature (see Anderson [1], Dimarogonas [5], Tada et al. [26])
one can find different forms of shape functions. In the present paper we are
following Dimarogonas [5], Rizos et al. [23], and using the function F (s) in
the form

F (s) = 1.93− 3.07s+ 14.53s2 − 25.11s3 + 25.8s4.

6. Numerical results

Numerical results are presented for nano-arches simply supported at both
ends in Figures 2–7. Here the nano-arches have a single step and the material
constants are E = 7 × 1011 Pa, ν = 0.3, η = 1 nm and R = 30 nm. It is
assumed that β = 1 rad, if β is not specified in the legend. The wall thickness
is h0 = 10 nm, h1 = 20 nm, except in Figure 2.

In Figure 2 by considering h0 = 10 nm the natural frequency of the nano-
arch versus the thickness h1 is depicted for different values of the radius
R. It can be seen from Figure 2 that the natural frequency increases if the
thickness of the arch increases. However, if the radius of the arch increases
then the natural frequency decreases.

In Figures 3 and 4 the natural frequency as a function of the step location
α is presented. In Figure 3 the nano-arch with the central angle β = 1 rad
is treated. Different curves in Figure 3 correspond to the crack extensions
s = 0, s = 0.1, s = 0.2, s = 0.3, s = 0.4 respectively. It can be seen from
Figure 3 that the lowest values of the natural frequency correspond to the
arch without any cracks.

In Figure 4 similar results are presented for different values of the central
angle β (here s = 0.7).
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Figure 2. Natural frequency vs thickness of the nano-arch.

Figure 3. Natural frequency vs step location.
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Figure 4. Natural frequency vs step location for different
angles β.

Figure 5. Natural frequency vs radius of the nano-arch.
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Figure 6. Natural frequency vs material constant of the
nano-arch.

Figure 7. Natural frequency vs central angle of the nano-arch.
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Mode η Present Thai [27]
1 0 9.75821445 9.2745

1 7.05584295 8.8482
2 5.80188130 8.4757
3 5.04192108 8.1466
4 4.51883759 7.8530

Table 1: Natural vibration of the nano-arches of the constant thickness.

Figure 4 reveals that in the case of smaller values of the angle α the lowest
eigenfrequency is achieved in the case of the largest value of the central angle
β. However, in the case when β > 2α this relationship is more complicated.

The relationship between the natural frequency and the radius R of the
nano-arch is shown in Figure 5 in the case β = 1 and s = 0.7 (here η = 1 nm).
Figure 5 reveals that the smaller is α the larger is the the natural frequency
of the nano-arch. On the other hand, the larger is α the lower is the eigen-
frequency.

The dependence of the eigenfrequency on the material parameter η =
(e0a)

2 is demonstrated in Figure 6 for different values of the radius R. Gen-
erally speaking, the eigenfrequency decreases if the material parameter in-
creases. Thus, in the case η = 0 the natural frequency has its maximal
value.

The sensitivity of the eigenfrequency on the central angle β of the nano-
arch is shown in Figure 7 for radius R = 30 nm. Different curves in Figure 7
correspond to nano-arches having the step in different cross sections (here
η = 1 nm). One can see from Figure 7 that in the case of larger values of the
angle β curves corresponding to different values of the step angle are quite
close to each other. However, if β is around the value 0.5 the discrepancies
between these curves are large.

The results obtained in the current study are compared with those ob-
tained by Thai [27] in the case when α = 0, β = 0.5◦. Table 1 shows that
the results are in reasonable correspondence. One can see from Table 1 that
for small values of η the results are close to each other but for larger values
of η the discrepancy between corresponding results is larger.

7. Concluding remarks

Natural vibrations of curved nano-beams are treated in the current study.
The nano-beams have piecewise constant thickness with stable cracks at
the re-entrant corners of steps. A method for determination of natural fre-
quencies based on the methods of the linear elastic fracture mechanics is
developed. Calculations carried out showed that the cracks effect essentially
the values of natural frequencies. It is shown that the lowest values of the
natural frequency correspond to nano-arches without any defect. The results
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of the current study are compared with results obtained by Thai [27]. The
results compare favourably in the case of small values of the parameter η.
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