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Sasaki—-Kenmotsu manifolds

GHERICI BELDJILALI AND AYDIN GEZER

ABSTRACT. In the present paper, we introduce a new class of structures
on an even dimensional differentiable Riemannian manifold which com-
bines, well known in literature, the Sasakian and Kenmotsu structures
simultaneously. The structure will be called a Sasaki-Kenmotsu struc-
ture by us. Firstly, we discuss the normality of the Sasaki-Kenmotsu
structure and give some basic properties. Secondly, we present some im-
portant results concerning with the curvatures of the Sasaki—-Kenmotsu
manifold. Finally, we show the existence of the Sasaki-Kenmotsu struc-
ture by giving some concrete examples.

1. Introduction

Yano introduced the notion of f-structure on a (2n+ s)-dimensional mani-
fold which satisfies f2 + f = 0, where f is a (1,1)-tensor field of constant
rank 2n [10]. An f-structure is a generalization of some structures defined
on differentiable manifolds of different type. Almost complex (s = 0) and
almost contact (s = 1) structures are well-known examples of f-structures.
Later, some authors continued to study f-structures. Goldberg and Yano
[7] introduced and studied globally framed metric f-structures on (2n + s)-
dimensional differentiable manifolds. It is important to define and study new
structures on differentiable manifolds for differential geometry. In this direc-
tion, Blair [2] defined K-structures which are special cases of S-structures
and C-structures. We note that K-structures are the analogue of Kéhlerian
structures in the almost complex geometry and also S-structures (resp., C-
structures) of Sasakian structures in the almost contact geometry. In [1],
Alegre, Fernandez and Prieto-Martin introduced a new class of metric f-
manifolds which are called trans-S-manifolds because they play the same
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role as trans-Sasakian manifolds in metric f-geometry. The class of trans-
S-manifolds includes S-manifolds, C-manifolds and f-Kenmotsu manifolds
as special cases. They prove some properties of trans-S-manifolds and show
that several examples constructed by other authors are included in this class.

An f-structure with s = 2 has arisen in the study of hypersurfaces in
almost contact spaces [4]. The structure has been studied first by Goldberg
and Yano [6]. Inspired by this structure, Debnath and Konar [5] constructed
a new kind of structure on an even dimensional Riemannian manifold with
dimension 2n + 2 (s = 2), named as almost pseudo contact structure with
two associated vector fields. They presented some basic properties of this
structure and gave an example to show the existence of such structures.

Motivated by their research, in this paper, we study almost pseudo contact
structures or more precisely we call them almost bi-contact structures to
indicate the presence of two global vector fields, as a class of f-structures on
a (2n+2)-dimensional Riemannian manifold. The structure which combines
the Sasaki and Kenmotsu structures is a structure of new kind on an even
dimensional differentiable Riemannian manifold and at the same time it is
different from the trans-Sasakian structure and not a class of the trans-S-
manifolds introduced by Alegre et al. [1].

The paper is organized as follows. In section 2, we review basic definitions
and results that are needed to state and prove our results. In section 3, we
study the normality of an almost bi-contact metric structure. In section 4, we
consider a particular type of this class which we call Sasaki—-Kenmotsu struc-
ture and we give some basic properties. Then, we construct an interesting
class of examples to prove the existence of this type on (2n + 2)-dimensional
Euclidean space. The last section is devoted to establishing some basic re-
sults for Riemannian curvature tensor of a Sasaki-Kenmotsu manifold.

2. Review of definitions and needed results

Let (M, g) be a Riemannian manifold. The Lie algebra of all C*° vector
fields on M will be denoted by X(M). We denote by R and S the Riemannian
curvature tensor and the Ricci tensor, respectively, defined for all X,Y, Z €
X(M) by

R(X,Y)Z =VxVyZ —VyVxZ —VixyZ, (1)

S(X,Y) = Y R(e;, X,Y,e)
=1

= Z g(R(ei, X)Y,e;), (2)
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where {e;}i=1, is a local orthonormal basis.

2.1. Almost Hermitian manifolds. An almost complex manifold M is
a differentiable manifold equipped with a (1,1) tensor field J which satisfies
J? = —1I, where I is the identity. Such a manifold is even-dimensional. M?"
is an almost Hermitian manifold provided it is almost complex and has a
Riemannian metric g for which

g(JX,JY)=g(X,Y)

for all X,Y € X(M?"). To describe the geometry of an almost Hermitian
manifold M?", it is useful to consider two special tensors. The first, called
the Nijenhuis tensor, is a (1,2) tensor field N; defined by

NJ(X,Y) =[JX,JY] - [X,Y] - J[X,JY] - JJX,Y]. (3)

An almost complex structure J is integrable if its Nijenhuis tensor N; van-
ishes. In this case, the almost Hermitian manifold M?" is a Hermitian
manifold. The second is a 2-form 2, called the Kéhler form, and it is defined
by

QX,Y) =g(X,JY)
for all X, Y € X(M?"). The almost Hermitian manifold M?" is an almost
Kahler manifold if €2 is closed, i.e., d2 = 0. If both d2 = 0 and Ny = 0
are satisfied, then M?" is called a Kéhler manifold. Recall that d©2 = 0 and
Nj =0 are equivalent to

VJ =0,

where V denotes the Levi-Civita connection corresponding to g. For more
background on almost complex manifolds, we refer to [11].

2.2. Almost contact metric manifolds. An odd-dimensional Riemann-
ian manifold (M2 g) is said to be an almost contact metric manifold if on
M*F1 there exist a (1, 1)-tensor field ¢, a vector field ¢ (called the structure
vector field) and a 1-form 7 such that

n(€) =1,
P?(X) = —X +n(X)E, (4)
9(pX,pY) = g(X,Y) = n(X)n(Y)
for any X,Y € X(M?"*1). On an almost contact metric manifold we imme-
diately have ¢& =0 and no ¢ = 0.
The fundamental 2-form ¢ is defined by ¢(X,Y) = g(X, ¢Y). It is known
that the almost contact structure (¢, &, n) is said to be normal if and only if

NO(X,Y) = Ny(X,Y) + 2dn(X,Y)E =0 (5)

for all X, Y € X(M?" 1), where N, denotes the Nijenhuis torsion of ¢ given
by
No(X,Y) = @[X,Y] + [pX, ¢Y] = olpX, Y] = [ X, Y] (6)
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Some special cases are worthy of attention. A contact metric structure is an
almost contact metric structure with dn = ¢ and a Sasakian manifold is a
normal contact metric manifold if

where V denotes the Levi-Civita connection of g.

An almost contact metric structure is said to be almost cosymplectic if
both 7 and ¢ are closed. In addition, if the structure is normal, then it
is said to be cosymplectic, equivalently (Vx¢)Y = 0. An almost contact
metric manifold is an almost Kenmotsu manifold if dn = 0 and d¢ = 2n A ¢.
Moreover, if the structure (¢,&,n) is normal, the manifold is said to be
Kenmotsu. Kenmotsu manifolds can also be characterized by

(Vx@)Y = g(eX, V) —n(Y)pX, (8)
where V denotes the Levi-Civita connection of g. In [9], Oubina proves that
(p,&,m,9) is a trans-Sasakian structure of type (a, ) if and only if it is
normal and

dn=a¢,  do=20nAN9, (9)
where a = ﬁ&b(f), B = %divé and ¢ is the codifferential of g. It is well
known that the trans-Sasakian structure may be described as an almost
contact metric structure satisfying

(Vxp)Y = a(g(X,Y)E —n(Y)X) + B(9(¢X, Y)E = n(Y)pX).  (10)
For more background on almost contact metric manifolds, we refer to
[3, 8,9, 11].

2.3. Almost bi-contact metric manifolds. A (2n + 2)-dimensional dif-
ferentiable manifold M of class C'™ is said to have a (p, £, 9, n, w)-structure
or almost bi-contact structure if it admits a field ¢ of endomorphisms of the
tangent spaces, two global vector fields ¢ and %, and two 1-forms n and w
satisfying

€ =w@) =1 P=-I+10(+wa, (11)

nW)=w(@) =¢{=pp=0 and nop=wop=0. (12)
Here the endomorphism ¢ has rank 2n.
If the manifold M2"+2 with an almost bi-contact structure (i, &, 1,1, w)
admits a Riemannian metric g satisfying
9(@X,0Y) = g(X,Y) = n(X)n(Y) — w(X)w(Y) (13)

for all X, Y € X(M), then (¢, &,1,n,w, g) is said to be an almost bi-contact
metric structure and (M?"+2 ¢, €, 4, n,w, g) is called an almost bi-contact
metric manifold. An immediate consequences is that

n(X)=9(X,§) and  w(X)=g(X,9).
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The 2-form ¢ on M?"+? defined by
P(X,Y) =g(X,pY) (14)

is called the fundamental 2-form of the almost bi-contact metric structure.
If V is the Riemannian connection of g, then it is easy to prove that

(Vxn)Y =g(Vx&Y) and  (Vxw)Y =g(Vxvy,Y), (15

and
(Vxo)(¥,2) = g(Y,(Vx¥)Z) = —g((Vx )Y, Z). (16)
The exterior derivatives of 1, w and ¢ are given by
2dn(X,Y) = (Vxn)Y — (Vyn)X, (17)
2dw(X,Y) = (Vxw)Y — (Vyw)X, (18)
3dp(X,Y, Z) = o(Vx9)(Y, Z), (19)

where o denotes the cyclic sum over X, Y, Z € X(M).

3. Normality of almost bi-contact metric structure

Theorem 1. For any almost bi-contact metric structure (¢,&,1,n,w) on
a Riemannian manifold (M?"*2, g) there exist an almost hermitian structure
J on (M?"2 g) given by

where the operator N is defined by

(X AY)Z = g(Y, 2)X — g(X, 2)Y, (21)
for every tangent vectors fields X,Y and Z on M?"t2.

Proof. Let (M?"2 ,¢,4,m,w,g) be an almost bi-contact metric mani-
fold. For all X € X(M), we have

JX =X + (X)) — w(X)E.
It follows that J¢ = ¢ and Ji = —¢. So, using formulas (11) and (12) we
get
X = J(pX +n(X)Y —w(X)E)

= X +(X)E+w(X)y

= —-X.
Moreover, we have

g(JIX,JY) = g(eX +n(X)) - w(X)E§, Y +n(Y )y —w(Y)E)
9(X,Y)

for every tangent vectors fields X and Y on M?"*2 which completes the
proof. O
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Using formulas (3) and (20), straightforward and long calculations give

NJ(X7Y) = N(l)(Xa

=
+
=
=
<
+
=
=
78%

nAw)(X,Y)[E, ¢, (22)

() are the following tensor fields on M?2"+2

=

where NS), N®@ NG and

defined respectively by
NOXY) = QXY+ [pX, oY) - o[pX,Y] - o[ X, Y]

X,Y)¢ + 2dw(X, Y )y, (23)

+
b
ot
=

N ()

NEL(X) = = (Lyp)(X),
NL(X) = (Len)(X),
NE(X) = (Lyn)(X)

and

2N Am) (X, Y) = N (X)n(Y) = NV )n(X)
for i € {3,4}, where Lx denotes the Lie derivative with respect to the vector
field X.

Proposition 1. For an almost bi-contact manifold (M?"*2 ¢, &, 1,0, w, g),

the vanishing of the tensor field Né,l) implies the vanishing of the tensor fields
N® NGO NW and [¢,¢].

Proof. Suppose that Né,l) = 0. Replacing (X,Y) = (£, %) in the formula
(23), we obtain [£,¢] = 0. Setting Y = £ (resp., Y = 1) and applying 7
(resp., w), we get dn(X,&) = 0 (resp., dw(X,) = 0), which easily gives
N® =,

Next, we notice that replacing X by X in NS)(X, €) (resp., NS)(X, 1)),
gives

0= ND(pX,€) = [6,0X] — 9l€. X] = (Lep) X = NJU(X),

(resp., 0 = NS (X, ) = [, oX] — o[, X] = (Lyp) X = NP (X). )
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Finally, applying n (resp., w) to Nél)(ch,Y) gives
0 = (NP (eX,Y))
= 0([p" X, Y]) + eXn(Y) — ([pX,Y])
which simplifies to N7$2) =0 (resp., NP = 0). O
The almost bi-contact structure (¢, &, 1, n,w) is normal if and only if the
tensor NS) vanishes. So, the normality condition transforms into
[o, 0](X,Y) +2dn(X, Y )€ 4 2dw(X, Y)Y = 0, (24)
where
[0, el(X,Y) = @?[X, Y] + [pX, 0Y] - ¢[pX, Y] = 0l X, oY].
Next, we will establish a formula for the covariant derivative of ¢.

Proposition 2. For an almost bi-contact structure (p,&,9,n,w,g), the
covariant derivative of p is given by

20(Vxp)Y,Z) = 3do(X,¢Y,9Z) —3dp(X,Y, Z) + g(N(Y, Z), oX)
+ NP, Z)n(X) + NP, Z)w(X)
+  2dn(eY, X)n(Z) = 2dn(eZ, X)n(Y)
+ 2dw(eY, X)w(Z) — 2dw(pZ, X)w(Y). (25)
Proof. Using Koszul’s formula
2(VxY,Z) = Xg(V,Z2)+Yg(X,Z) - Zg(X,Y)
+ 9([X,Y],2) +9([2, X].Y) — g([Y, Z], X)
and the formulas
2(dn)(X,Y) = X (n(Y)) =Y (n(X)) = n([X,Y])
2(dw)(X,Y) = X (w(Y)) = Y (w(X)) — w([X,Y])

3(d9)(X,Y,Z) = X((Y,2)) +Y(6(2, X)) + Z(6(X,Y))
- o([XY],2) - 6(IV, 2], X) - 6([2, X]Y)
with
(Vxp)Y = VxpY + pVxY,
the result is easily obtained. We omit standard calculations. g

Depending on Proposition 2, one can define several classes of almost bi-
contact metric structures by discussing the different values for d¢, dn and
dw. While this is an area of possible future research, we study here an
interesting structure which combines the Sasakian and Kenmotsu structures
simultaneously. We refer to this structure as Sasaki-Kenmotsu structure.
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4. Sasaki—-Kenmotsu structure

Definition 1. An almost bi-contact metric structure (¢, &,1,n,w, g) on
M?"*2 is said to be a Sasaki-Kenmotsu structure if (¢, &,,n,w) is normal,
w is closed and dn = ¢ — 2n A w.

Remark 1. Another class of Sasaki-Kenmotsu structures can be obtained
if (¢,&,1,n,w) is normal, 7 is closed and dw = ¢ — 2w A 7).

Remark 2. On a Sasaki-Kenmotsu manifold, differentiating the formula
dn = ¢ — 2n Aw and using dw = 0 we get
d¢ = 2dn A w,
which easily gives
dop = 2w A ¢.

Let D, :={X € X(M) / n(X) =0} and D, :={X € X(M) / w(X) =0}
be two distributions of rank 2n 4 1 transversal to the characteristic vector
fields & and v, respectively. So, we notice that we have dw = 0 and d¢ =
2w A ¢ on Dy, and therefore (¢,9,w,g) is a Kenmotsu structure on D,,.

Having dn = ¢ on D,, implies that (¢, 1, w, g) is a Sasaki structure on D,,.
That is why we call these structures Sasaki—-Kenmotsu structures.

Theorem 2. If the structure (¢, &, 1, n,w, g) is a Sasaki—-Kenmotsu struc-
ture, then

(Vx@)Y = g(pX, oY )E —n(YV)9*X + g(oX, V) —w(Y)pX.  (26)

Proof. The proof follows easily from Proposition 2 with conditions in Def-
inition 1 and Remark 2. ]

Example 1. Let (z% 3%, z,t) denote the Cartesian coordinates in M =
R?™+2 1 > 1. Latin indices take on values from 1 to 2m + 2, Greek indices
will run from 1 to m and o = a+m for all @ € {1,...,m}.

Let (e;) be the frame of vector fields on M defined by

10 10 a0, 1o 9
€Ca = T3 1= =z T — = —=— = t—
a topa’ @ n 3ya 92 2m+1 292 2m+2 ot’

and let (6) be the dual frame of differential 1-forms

! 1
0% = tdz®, 0% = tdy®, 0°" =£2(=2) 2 dy* + dz), 07" = St
A
For the non-zero Lie brackets of (¢;), we have

[eou 66’] = 25aﬂ62m+17 [ea, 62m-‘,—2] = €q,

lears €2mi2] = ear, [e2m+1, €2m+2] = 2€2m11.
Define an almost bi-contact structure (¢, &, 1, n,w) on M by assuming

Py = €oly  Pey = —E€q , PEM 1 = Peomya = 0,
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€ =eamr1, % =eamia, n=0""T W=
For the normality (i.e., vanishing of the tensor Nél)), it can be checked that
N (ei,e5) = @, @] (s, €5) + 2dn(es, e5)€ + 2dw(e;, e5)p = 0
for any 4,j. Then (¢, &,1,n,w) is normal.
Let g be a Riemannian metric on M for which (e;) is an orthonormal

frame, so that g = > §?®6°. Tt is obvious that (p, £, 1, n,w, g) is a bi-contact
metric structure on M. For the fundamental form ¢(X,Y) = g(X, ¢Y), we

have
¢=-2) 0*N0Y =262 da Ady,
A A
from which it follows that

¢ = dO*mT 4 297 A 922 — dp 4 2 A w.

Hence (¢, &,%,n,w) is normal (i.e., Né,l) =0) and dw = d§?™*? = 0. As a
result, (¢, &,1,n,w,g) becomes a Sasaki-Kenmotsu structure on M.

To verify the result in Theorem 2, we give the Levi-Civita connection
corresponding to g by

Veaeﬁ = vea/eﬁ’ = —5a51/1,
vea€5/ = _Vea’eﬂ = 6@557

vea§ = Vgea = —Vea,¢ = —€u,
Ve b = Vea/é~ = vfeo/ = €a,
Vel = =29,

Vep = 2¢€.

The non-zero components of Vg are the following;:

(Vea%@)eﬂ = (vea/ ‘P)eﬁ’ = dap¢,
(vea@)eﬁ’ = _(veQISD)@B = dapt,
(Ve,p)§ = (vea/ ) = eq,
(Veao)th = =(Ve,,9)§ = e

One can easily check that for all i € {1,...,2m + 2}
(Vep)ej = glei, )€ —nej)ei + glpei, e — wlej)pe; —wlei) (EAY)e;.

Based on formula (22), a Sasaki-Kenmotsu structure is normal (i.e., Né,l) =
0), which implies the integrability of the almost complex structure J, i.e.,
N;=0.

On the other hand, using the formula (20) we get

QUX)Y) = g(X,JY)
= (¢ —2nrw)(X,Y)
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= dn(X,Y), (27)

which implies that dQ2 = 0. Thus, (J,g) becomes a Kéhlerian structure.
Using this fact, it follows that VJ = 0.

Lemma 1. Let (M2 p & 4,n,w,g) be a Sasaki-Kenmotsu manifold.
We have

1) Ve&=—-2¢ and Vep = 2€,
2) Vg€ =Vyp =0,

3) w(Vx§) = —2n(X),

4) n(Vx) = 2n(X).

Proof. For the first formula, for all X, Y € X(M) we have
QXY) =dn(X,Y) « 29(X, JY) = g(Vx&Y) —g(Vy§, X). (28

Taking Y = § and using g(Vx&,§) = 0, we have V& = —21¢. With the help
of VJ =0, we get Vb = 2¢.
For the second, we have

dw(X,Y) =0 & g(Vx1,Y) — g(Vyth, X) = 0. (29)

Taking Y = ¢ and using g(Vx1,1) = 0, we obtain V41 =0 and V€ = 0.
For the third, we have

w(Vx¢) = 9(Vx¢&,v)
= 2dn(X,v) + g9(Vy, X)
= 29(X,JY)
= —2n(X).

Finally
n(Vxv) = g(Vey, X) = 2n(X).
O

Now, we are going to give an explicit expression for Vx& and Vx for
any X € X(M).

Proposition 3. For a Sasaki—-Kenmotsu manifold, we have
Vxé=—oX —2n(X)y  and  Vxip=—¢*X +2p(X)E.  (30)
Proof. In formula (26), setting Y = £ (resp., Y = 1) gives
eVxE=—p?X  (resp., pVxtp = —pX),
from which using formula (11) we get

Vxé=—-oX +w(Vx&y (resp., pVx1 = —p?X + n(Vx)E).
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Using formulas 3) and 4) in Lemma 1 we obtain

Vx&=—pX —2n(X),  (resp., Vx¥p = —¢p°X + 2n(X)E.

5. Curvature tensor

The equations (30) give important information about the curvature prop-
erties of Sasaki-Kenmotsu manifold. Now, we give the following proposition
without proof, because it can easily be obtained by standard calculations.

Proposition 4. Let (M*"*2 0, &,4,1,w,g) be a Sasaki-Kenmotsu man-
ifold. Then, we have

R(X,Y)§ = =(XAY)E+o(XAY)P+6(nAw)(X, Y )b +29(X, ¢Y )¢, (31)
R(X,Y)p = =(XAY)p—p(XAY)E=6(nAw)(X,Y)E+29(X, pY)E, (32)
R(X, )Y = =(X AY — (X AP)Y +3w(X)(EAD)Y —w(X)pY, (33)

R(X, )Y = (X A)Y = (pX AY +3n(X)(EAP)Y + 2p(X)pY, (34)

S(X,€) = =2(n +2)n(X), (35)

S(X, 1) = 2(n + 2)w(X), (36)

where R denotes the Riemannian curvature tensor and S is the Ricci curva-
ture defined in (1) and (2), respectively and (XN\Y)Z = g(Y,Z)X —g(X,2)Y
for all vectors fields X,Y and Z on M?>*"+2.

Let X be the unit vector field orthogonal to £ and . Then, by using (31)
(resp. (32)), we obtain R(X,£){ = —X (resp., R(X,¢)y = —X) which gives
g(R(X,€)¢,X) = —1 (resp., g(R(X,v)y, X) = —1). Thus we have

Proposition 5. On a Sasaki—-Kenmotsu manifold, the sectional curvature
of all plane sections containing £ or ¢ is —1.
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