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Two new examples of Banach spaces with a plastic
unit ball

Rainis Haller, Nikita Leo, and Olesia Zavarzina

Abstract. We prove that Banach spaces ℓ1 ⊕2 R and X ⊕∞ Y , with
strictly convex X and Y , have plastic unit balls (we call a metric space
plastic if every non-expansive bijection from this space onto itself is an
isometry).

1. Introduction

A function between two metric spaces is called an isometry if it pre-
serves distances between points, and non-expansive if it does not increase
distances between points. We call a metric space X Expand-Contract plastic
(or simply plastic) if every non-expansive bijection from X onto itself is an
isometry. The last notion was introduced by S. A. Naimpally, Z. Piotrowski,
and E. J. Wingler in [8]. It is known that every totally bounded metric
space is plastic, see [3, Satz IV] or [8, Theorem 1.1]. On the other hand,
a plastic metric space need not be totally bounded nor bounded – e.g., the
set of integers with the usual metric is plastic [8, Theorem 3.1]. There are
also examples of bounded metric spaces that are not plastic, one of our fa-
vorite examples here is a solid ellipsoid in Hilbert space ℓ2(Z) with infinitely
many semi-axes equal to 1 and infinitely many semi-axes equal to 2, see [2,
Example 2.7].

It is a challenging open problem, posed by B. Cascales, V. Kadets, J. Ori-
huela, and E. J. Wingler in 2016 [2], whether the unit ball of every Banach
space is a plastic metric space. The unit ball of a finite-dimensional space
is compact, and therefore plastic. So the question is really just about the
infinite-dimensional spaces. So far, the plasticity of the unit ball has suc-
cessfully been proved for the following spaces and classes of spaces:
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• strictly convex spaces,
• the space ℓ1,
• ℓ1-sums of strictly convex spaces,
• spaces whose unit sphere is the union of all its finite-dimensional
polyhedral extreme subsets,

• the space c.

The first result was for strictly convex spaces, and it was obtained by B. Cas-
cales, V. Kadets, J. Orihuela, and E. J. Wingler in 2016 [2]. In the same
year, V. Kadets and O. Zavarzina proved the plasticity of the unit ball of ℓ1
[4]. They generalized this result to ℓ1-sums of strictly convex spaces in 2017
[5]. The fourth item was obtained by C. Angosto, V. Kadets, and O. Zavarz-
ina in 2018 [1, Theorem 4.11]. The plasticity of the unit ball of c was proved
by N. Leo in 2021 [6, Theorem 4.1].

In this paper, we present two new examples of Banach spaces whose unit
balls are plastic: the sum of ℓ1 and R by ℓ2, and the sum of any two strictly
convex spaces by ℓ∞.

2. Preliminaries

We consider only real Banach paces. For a Banach space X, we denote
the closed unit ball and the unit sphere of X by BX and SX .

Extreme points turn out to be essential to the study of plasticity of the
unit ball. Recall that for a vector space X and for a convex subset C of X,
a point x ∈ C is called an extreme point of C if it does not belong to the
interior of any non-trivial line segment connecting two distinct points of C.
We use extC to denote the set of extreme points of a set C. Henceforth,
we focus on extreme points of the unit ball. Extreme points of the unit ball
lie on the unit sphere. A space such that all the points of the unit sphere
are extreme is called strictly convex. Strictly convex spaces have a property
that, for any two distinct points x and y and any non-negative scalars α and
β with α+ β = ∥x− y∥, the point β

∥x−y∥x+ α
∥x−y∥y is the only point of the

space that is distance α from x and distance β from y. This is going to be
used in the proof for ℓ∞-sum of strictly convex spaces.

The next proposition describes the behaviour of a non-expansive bijection
from the unit ball of a Banach space onto itself. It provides some of the main
tools for the study of plasticity of the unit ball. The last item is the reason
why are extreme points so important to the topic at hand. This proposition
is going to be used extensively throughout both of the proofs.

Proposition 1 ([2, Theorem 2.3]). Let X be a Banach space and let
F : BX → BX be a non-expansive bijection. Then

(1) F (0) = 0,
(2) for each x ∈ BX , ∥F (x)∥ ≤ ∥x∥,
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(3) if x ∈ SX , then F−1(x) ∈ SX ,
(4) if x ∈ extBX , then F−1(x) ∈ extBX and F−1(αx) = αF−1(x) for each

α ∈ [−1, 1].

It is also useful to know the following result.

Theorem 1 ([7, Theorem 2]). Let X and Y be normed spaces and let
U be a subset of X and V be a subset of Y . If U and V are convex with
non-empty interior and there exists an isometric bijection F : U → V , then

F extends to an affine isometric bijection F̃ : X → Y .

The theorem implies that if X is a Banach space and F : BX → BX is
an isometric bijection, then F extends to an isometric automorphism of X –
a linear isometric bijection from X onto itself. If we want to prove that every
non-expansive bijection on the unit ball of some space X is an isometry, it
might be useful to know what isometric bijections are there. The last result
says that these are precisely the restrictions of the isometric automorphisms
of X.

There is also a sufficient condition for a non-expansive bijection F : BX →
BX to be an isometry.

Theorem 2 ([2, Theorem 2.6]). Let X be a Banach space and let F : BX →
BX be a non-expansive bijection. If F (SX) = SX and F (αx) = αF (x) for
every x ∈ SX and every α ∈ [−1, 1], then F is an isometry.

The latter will be used to finish the proof for the case of ℓ∞-sum of two
strictly convex spaces.

3. The space ℓ1 ⊕2 R
Theorem 3. The unit ball of ℓ1 ⊕2 R is a plastic metric space.

Proof. Denote the space ℓ1 ⊕2 R by Z. Let ek stand for the k-th element
of the canonical basis of ℓ1. Denote by h the projection of Z onto R. For
each b ∈ [−1, 1] denote by Lb the set {z ∈ BZ : h(z) = b}. Note that

extBZ = {(aem, b) : a, b ∈ R, a2 + b2 = 1, m ∈ N}.
Let (aei, b) and (cej , d) be two arbitrary extreme points. If i = j, then

the distance between these two points is
√

(a− c)2 + (b− d)2, and we have√
(a− c)2 + (b− d)2 = 2 ⇐⇒ (a− c)2 + (b− d)2 = 4

⇐⇒ a2 − 2ac+ c2 + b2 − 2bd+ d2 = 4

⇐⇒ 0 = a2 + 2ac+ c2 + b2 + 2bd+ d2

⇐⇒ 0 = (a+ c)2 + (b+ d)2

⇐⇒ a = −c & b = −d.
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If i ̸=j, then the distance between (aei, b) and (cej , d) is
√
(|a|+|c|)2+(b−d)2,

and we have√
(|a|+ |c|)2 + (b− d)2 = 2 ⇐⇒ (|a|+ |c|)2 + (b− d)2 = 4

⇐⇒ a2 + 2|a||c|+ c2 + b2 − 2bd+ d2 = 4

⇐⇒ 0 = a2 − 2|a||c|+ c2 + b2 + 2bd+ d2

⇐⇒ 0 = (|a| − |c|)2 + (b+ d)2

⇐⇒ |a| = |c| & b = −d.

That is, the distance between points (aei, b) and (cej , d) is equal to two if
and only if either i = j, a = −c, and b = −d, or i ̸= j, |a| = |c|, and b = −d.
In particular, if u and v are extreme points that are distance two apart, then
h(u) = −h(v). This is going to be used in Step 1.

Step 1. Let F be a non-expansive bijection from BZ onto itself. We need
to show that F is an isometry. Let us first show that for each m ∈ N we
have F−1(em, 0) = (θen, 0), where θ ∈ {−1, 1} and n ∈ N.

Let m ∈ N be arbitrary. Choose indices i and j such that m, i, and j
are pairwise distinct. Note that x = (em, 0), y = (ei, 0), and z = (ej , 0)
are extreme points. Item (4) of Proposition 1 implies that x′ = F−1(x),
y′ = F−1(y), and z′ = F−1(z) are also extreme points. Note that x, y, and
z are distance two apart. The non-expansiveness of F implies that x′, y′,
and z′ are also distance two apart. Since x′, y′, and z′ are extreme points
that are distance two apart, we have h(x′) = −h(y′), h(y′) = −h(z′), and
h(z′) = −h(x′), from which it follows that h(x′) = 0. As x′ is an extreme
point, it has the form (aen, b), where a, b ∈ R, a2+ b2 = 1, and n ∈ N. Since
h(x′) = 0, we have b = 0 and a ∈ {−1, 1}, which finishes the proof. For
further reference define σm = n, θm = a, and gm = θmeσ(m).

This way we obtain a function σ : N → N, which describes the permutation
of indices exerted by F . Note that this function is an injection. Indeed, let
i and j be two indices with σ(i) = σ(j). Denote by n the common value
of σ(i) and σ(j). Then F−1(ei, 0) = (θien, 0) and F−1(ej , 0) = (θjen, 0),
where θi, θj ∈ {−1, 1}. Suppose that θj = −θi. Then item (4) of Proposition
1 implies F−1(−ei, 0) = (θjen, 0), but the latter implies (−ei, 0) = (ej , 0),
which is impossible. Hence θi = θj , so we get (ei, 0) = (ej , 0), from which it
follows that i = j. Therefore, σ is indeed an injection. This fact is going to
be implicitly used in what follows. However, note that we do not yet know
whether σ is also a surjection.

Now we know that F−1(em, 0) = (gm, 0) for every m ∈ N. Further, item
(4) of Proposition 1 implies F−1(aem, 0) = (agm, 0) for every a ∈ [−1, 1].
The latter can be restated as that F (agn, 0) = (aen, 0) for every n ∈ N and
a ∈ [−1, 1].
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Step 2. Using the same argument as in [4], we can show that for every

N ∈ N and real numbers a1, . . . , aN with
∑N

n=1 |an| ≤ 1 we have

F

(
N∑

n=1

angn, 0

)
=

(
N∑

n=1

anen, 0

)
,

where gn is defined as in Step 1. The proof is by induction on N . We are
going to omit the proof, since it repeats the argument from [4] almost word
to word. The proof depends on the fact that F (agn, 0) = (aen, 0) for every
n ∈ N and a ∈ [−1, 1] as was established in Step 1.

Step 3. The previous step and continuity of F imply that for every real
sequence (an)

∞
n=1 with

∑∞
n=1 |an| ≤ 1 we have

F

( ∞∑
n=1

angn, 0

)
=

( ∞∑
n=1

anen, 0

)
.

If we denote the set {z ∈ BZ : h(z) = 0} by L0, the latter implies F−1(L0) ⊂
L0.

Step 4. We have seen that F−1(L0) ⊂ L0. Now, let us show that
F−1(L0) = L0. We are going to use a proof by contradiction. Suppose that
F−1(L0) ̸= L0. Then there is z ∈ L0 \ F−1(L0). Let s stand for F−1(0, 1).
Item (4) of Proposition 1 implies that F−1(0,−1) = −F−1(0, 1). Hence
F (s) = (0, 1) and F (−s) = (0,−1). Let us consider two cases.

Case 1. Suppose that s ̸∈ L0. Consider a continuous curve ξ : [0, 1] → BZ

composed of line segments [s, z] and [z,−s]. Note that Im ξ ∩L0 = {z}, but
z ̸∈ F−1(L0). Hence Im ξ does not intersect F−1(L0). Since F is continuous,
ξ′ = F ◦ ξ is also a continuous curve in BZ . We know that Im ξ does not
intersect F−1(L0), so Im ξ′ should not intersect L0. Since h is a continuous
functional, f = h ◦ ξ′ is a continuous function from [0, 1] into R. Note that
f(0) = 1 and f(1) = −1. Therefore, there exists t ∈ (0, 1) such that f(t) = 0,
which implies that Im ξ′ ∩ L0 ̸= ∅, which is a contradiction.

Case 2. For the second case, suppose that s ∈ L0. The argument is
the same except that now we consider a curve composed of line segments
[s, (0, 1)] and [(0, 1),−s]. Again, we see that Im ξ does not intersect F−1(L0),
thus Im ξ′ should not intersect L0. However, we have f(0) = 1 and f(1) =
−1, which implies that there exists t ∈ (0, 1) with f(t) = 0. The latter
means that Im ξ′ ∩ L0 ̸= ∅, which is again a contradiction.

Therefore, we have F−1(L0) = L0. Note that this implies that the function
σ defined earlier is a bijection from N onto N. This allows us to give the set
of extreme points an alternative description:

extBZ = {(agn, b) : a, b ∈ R, a2 + b2 = 1, n ∈ N}.

Step 5. Let us show that F (0, 1) = (0, 1) or F (0, 1) = (0,−1). First,
item (4) of Proposition 1 implies that F−1(0, 1) ∈ extBZ . Hence we have
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F−1(0, 1) = (agn, b), where a, b ∈ R, a2+b2 = 1, and n ∈ N. Consider points
(agn, b) and (agn, 0). These points are distance |b| from each other. We have
F (agn, b) = (0, 1) and by Step 1 we have F (agn, 0) = (aen, 0). The distance

between these points is
√
1 + a2. Since F is non-expansive, we must have√

1 + a2 ≤ |b|, which implies that 1 + a2 ≤ b2. Keeping in mind the relation
a2 + b2 = 1, we can infer that a = 0 and b ∈ {−1, 1}. Therefore, either
F (0, 1) = (0, 1) or F (0, 1) = (0,−1).

For the case F (0, 1) = (0, 1), item (4) of Proposition 1 implies that
F (0, b) = (0, b) for all b ∈ [−1, 1]. In particular, we have F (0,−1) =
F (0,−1). For the case F (0, 1) = (0,−1), item (4) of Proposition 1 im-
plies that F (0, b) = (0,−b) for all b ∈ [−1, 1]. In particular, we have
F (0,−1) = F (0, 1). Further we deal with the case F (0, 1) = (0, 1). The
case F (0, 1) = (0,−1) can be handled in an analogous way.

Step 6. Note that an operator L : ℓ1 → ℓ1 defined by the formula

L

( ∞∑
n=1

angn

)
=

∞∑
n=1

anen

is an isometric automorphism of ℓ1. Hence the operator L′ : Z → Z defined
by L′(x, y) = (L(x), y) is an isometric automorphism of Z. Our goal is to
show that F is the restriction of the latter operator to BZ . Obviously, this
will also prove that F is an isometry. So we need to show that F (z) = L′(z)
for every z ∈ BZ . Note that the latter has already been established for
h(z) = 0 and h(z) ∈ {−1, 1}. Hence, we only need to consider the case
|h(z)| ∈ (0, 1). Let b be an arbitrary real number with |b| ∈ (0, 1), let a

stand for
√
1− b2, and let us show that F (z) = L′(z) for h(z) = b. Note

that z has the form (ax, b), where x ∈ Bℓ1 . Also note that L′(z) = (L(ax), b).
Therefore, we need to show that F (ax, b) = (L(ax), b) for every x ∈ Bℓ1 .

We begin with showing that F (ax, b) = (L(ax), b) holds for every x ∈ Sℓ1 .
This is the same as to show that F−1(ay, b) = (L−1(ay), b) for every y ∈ Sℓ1 .
Hence, fix an arbitrary y ∈ Sℓ1 . Since F−1(ay, b) ∈ BZ , it has the form
(cx, d), where c, d ∈ R, c2+d2 = 1, and x ∈ Bℓ1 . Further, since (ay, b) ∈ SZ ,
by item (3) of Proposition 1 we have (cx, d) ∈ SZ . Therefore, x ∈ Sℓ1 .

Consider points (cx, d) and (0, 1). The distance between these points

is equal to
√

c2 + (1− d)2 =
√
2− 2d. We have F (cx, d) = (ay, b) and

by Step 5 we have F (0, 1) = (0, 1). The distance between these points

is
√

a2 + (1− b)2 =
√
2− 2b. Since F is non-expansive, we must have√

2− 2b ≤
√
2− 2d, which implies that d ≤ b. Now, consider points (cx, d)

and (0,−1). The distance between these points is equal to
√

c2 + (1 + d)2 =√
2 + 2d. We have F (cx, d) = (ay, b) and by Step 5 we have F (0,−1) =

(0,−1). The distance between these points is
√
a2 + (1 + b)2 =

√
2 + 2b.

Since F is non-expansive, we must have
√
2 + 2b ≤

√
2 + 2d, which implies

that b ≤ d. Therefore, we have b = d.
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Consider now points (cx, b) and (cx, 0). The distance between these points
is equal to |b|. We have F (cx, b) = (ay, b) and by Step 2 we have F (cx, 0) =

(L(cx), 0). The distance between these points is
√

∥ay − L(cx)∥2 + b2. Since

F is non-expansive, we must have
√
∥ay − L(cx)∥2 + b2 ≤ |b|, but this im-

plies L(cx) = ay. Therefore, we have F−1(ay, b) = (L−1(ay), b), which
finishes the argument.

Step 7. The relation F (ax, b) = (L(ax), b) is now established for ∥x∥ = 1.
Note that the latter relation is obvious for x = 0, being a corollary of Step
5. Therefore, let us consider the case where ∥x∥ ∈ (0, 1).

To begin with, let us consider points (a x
∥x∥ , b), (ax, b), and (0, b). The

distance between the first two is a(1 − ∥x∥) and the distance between the
second two is a∥x∥. Note that F (0, b) = (0, b) by Step 5 and F (a x

∥x∥ , b) =

(L(a x
∥x∥), b) by Step 6. Since F is non-expansive, we have∥∥∥(L(a x

∥x∥

)
, b
)
− F (ax, b)

∥∥∥ ≤ a(1− ∥x∥)

and

∥F (ax, b)− (0, b)∥ ≤ a∥x∥.

However, as the distance between (L(a x
∥x∥), b) and (0, b) is equal to a, the

last two inequalities must be in fact equalities, since otherwise we have a
contradiction with the triangle inequality. Let (

∑∞
n=1 ynen, d) be the expan-

sion of F (ax, b) and let (
∑∞

n=1 ỹnen, b) be the expansion of (L(a x
∥x∥), b). Now

we have

a =
∥∥∥L(a x

∥x∥

)∥∥∥ =
∞∑
n=1

|ỹn| ≤
∞∑
n=1

|ỹn − yn|+
∞∑
n=1

|yn|

≤

√√√√( ∞∑
n=1

|ỹn − yn|

)2

+ (b− d)2 +

√√√√( ∞∑
n=1

|yn|

)2

+ (b− d)2

=
∥∥∥(L(a x

∥x∥

)
, b
)
− F (ax, b)

∥∥∥+ ∥F (ax, b)− (0, b)∥

= a(1− ∥x∥) + a∥x∥ = a.

Therefore, all the inequalities in between are in fact equalities, which is only
possible when b = d.

Finally, consider points (ax, b) and (ax, 0). The distance between these
two points is |b|. By Step 2 we have F (ax, 0) = (L(ax), 0). Since F is

non-expansive, it follows that
√

∥
∑∞

n=1 ynen − L(ax)∥2 + b2 ≤ |b|, hence∑∞
n=1 ynen = L(ax). Therefore, F (ax, b) = (L(ax), b) as needed.
We have shown that F is a restriction of an isometric automorphism of

Z. Therefore, F is an isometry as required. □
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4. The space X ⊕∞ Y

In this section, we are going to prove the plasticity of the unit ball of the
ℓ∞-sum of two strictly convex Banach spaces.

Theorem 4. Let X and Y be two strictly convex Banach spaces. Then
the unit ball of X ⊕∞ Y is a plastic metric space.

Proof. Denote the space X ⊕∞ Y by Z. The unit ball of this space is the
set of all pairs (x, y) where x ∈ BX and y ∈ BY . Extreme points are the
pairs (x, y) where x ∈ SX and y ∈ SY . If one of the two spaces is trivial,
then Z is itself strictly convex, so we can limit ourselves with the case where
X and Y are both non-trivial.

Let F : BZ → BZ be an arbitrary non-expansive bijection from the unit
ball of Z onto itself. Our goal is to show that F is an isometry. Let us fix
the notation. Denote by G the inverse of F . For z ∈ Z denote by zx and zy
the first and the second element of z. Denote by ZX the set

{z ∈ BZ : ∥zx∥ > ∥zy∥},

denote by ZY the set

{z ∈ BZ : ∥zx∥ < ∥zy∥},
and denote by E the set

{z ∈ BZ : ∥zx∥ = ∥zy∥}.

These three sets form a partition of the unit ball of Z – they are pairwise
disjoint and their union isBZ . The set E is closed, the closure of ZX is ZX∪E
and the closure of ZY is ZY ∪ E. Since E = {αz : α ∈ [0, 1], z ∈ extBZ},
the last item of Proposition 1 implies G(E) ⊂ E. The proof is going to
depend on the number of dimensions of X and Y . If X has more than
one dimension, then ZX is a connected set. However, if X is R (that is,
X is one-dimensional), then the set ZX has two connected components:
Z−
X = {z ∈ ZX : zx < 0} and Z+

X = {z ∈ ZX : zx > 0}. Obviously, the same
can be said about Y and ZY . If X and Y are both one-dimensional, then Z
is finite-dimensional, so we can omit this case. Hence, we have to handle two
cases: 1) both spaces have more than one dimension, 2) one of the spaces is
R and the other has more than one dimension.

1) Let us start with the first case. We know that G(E) ⊂ E, so it follows
that F (ZX ∪ ZY ) ⊂ ZX ∪ ZY . The set ZX ∪ ZY has two connected compo-
nents, these are ZX and ZY , so the continuity of F together with the last
inclusion imply that there are four possible cases:

i) F (ZX) ⊂ ZX and F (ZY ) ⊂ ZX ,
ii) F (ZX) ⊂ ZX and F (ZY ) ⊂ ZY ,
iii) F (ZX) ⊂ ZY and F (ZY ) ⊂ ZX ,
iv) F (ZX) ⊂ ZY and F (ZY ) ⊂ ZY .
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Consider case i). For this case, the continuity of F implies that F (ZX) ⊂ ZX

and F (ZY ) ⊂ ZX , and since the union of ZX and ZY is the unit ball, we have
F (BZ) ⊂ ZX , which contradicts the surjectivity of F . Case iv) is similar.
Therefore, we are left with cases ii) and iii), which we are going to refer to
as cases A) and B).

2) Now, let us consider the case where one of the spaces is R and the other
has more than one dimension. We are going to show that this reduces to
case A). Suppose that X has more than one dimension and Y is R. Let us
introduce the following notations:

Z−
Y = {z ∈ ZY : zy < 0},

Z+
Y = {z ∈ ZY : zy > 0},

E− = {z ∈ E : zy ≤ 0},
E+ = {z ∈ E : zy ≥ 0}.

Note that the closure of Z−
Y is Z−

Y ∪E− and the closure of Z+
Y is Z+

Y ∪E+. As
with the previous case, the starting point is the inclusion F (ZX∪ZY ) ⊂ ZX∪
ZY , but the set ZX ∪ ZY is now comprised of three connected components:
Z−
Y , Z+

Y , and ZX . The continuity of F together with the last inclusion imply
that there are 27 = 33 possible cases, but some of these can be excluded,
because they contradict the surjectivity of F . As a result, we are left with
a total of 6 = 3! possible cases. We can divide these cases into three groups
of two, obtaining the following three cases:

i) F (ZX) ⊂ ZX and F (ZY ) ⊂ ZY ,
ii) F (ZX) ⊂ Z−

Y and F (ZY ) ⊂ ZX ∪ Z+
Y ,

iii) F (ZX) ⊂ Z+
Y and F (ZY ) ⊂ ZX ∪ Z−

Y .

The first case is the same as case A). Our goal is to exclude cases ii) and
iii). Consider case ii). The continuity of F implies the inclusions F (ZX) ⊂
Z−
Y ∪E− and F (ZY ) ⊂ ZX ∪Z+

Y ∪E. Since E is a subset of ZX and a subset

of ZY , we obtain the inclusion F (E) ⊂ E−, which contradicts the previously
obtained inclusion G(E) ⊂ E. Case iii) is similar. As we see, we are left
with case A).

Thereby, we have two cases to consider: A) F (ZX) ⊂ ZX and F (ZY ) ⊂
ZY , B) F (ZX) ⊂ ZY and F (ZY ) ⊂ ZX . Let us make some additional
conclusions. For case A), the continuity of F implies that F (ZX) ⊂ ZX

and F (ZY ) ⊂ ZY . As E is a subset of ZX and a subset of ZY , it follows
that F (E) ⊂ ZX ∩ ZY . The latter is equal to E, so we have the inclusion
F (E) ⊂ E. We can use the same argument to show this for case B). Now,
for case A) we have F (ZX) ⊂ ZX , F (ZY ) ⊂ ZY and F (E) ⊂ E. Since F is
a bijection, while ZX , ZY , and E form a partition of BZ , we can conclude
that F (ZX) = ZX , F (ZY ) = ZY , and F (E) = E. Analogously, for case B)
we obtain F (ZX) = ZY , F (ZY ) = ZX , and F (E) = E.
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The last item of Proposition 1 asserts that G(extBZ) ⊂ extBZ . We can
also show that F (extBZ) ⊂ extBZ . To demonstrate this, let z ∈ extBZ

be arbitrary. Since F (E) = E and z belongs to E, F (z) belongs to E as
well, so F (z) = αz′ where z′ ∈ extBZ and α ∈ [0, 1]. We need to show that
α = 1. The last item of Proposition 1 implies that G(αz′) = αG(z′) and
G(z′) ∈ extBZ , so we obtain the equation z = αG(z′). Taking the norm of
both sides, we see that α = 1. This proves the inclusion F (extBZ) ⊂ extBZ ,
hence F (extBZ) = extBZ .

To finish the proof, we would have to consider cases A) and B) separately.
However, the proofs for these two cases are almost identical, so we will only
consider case A).

First, we are going to show that

∀z, w ∈ BZ (zx = wx ∈ SX =⇒ G(z)x = G(w)x ∈ SX),

∀z, w ∈ BZ (zy = wy ∈ SY =⇒ G(z)y = G(w)y ∈ SY ).

Let us demonstrate the first item. Fix z, w ∈ BZ and suppose zx = wx ∈ SX .
Let us consider four possible cases.

• First, we consider the case where zy ∈ SY and wy ̸∈ SY . Since
wx ∈ SX and wy ̸∈ SY , it follows that w ∈ ZX . As w ∈ ZX and
F (ZX) = ZX , we have G(w) ∈ ZX . Therefore, G(w)y ̸∈ SY . Since
zx = wx ∈ SX , the distance between −z and w is two. Therefore,
the distance between G(−z) and G(w) is also two. This means that
either G(−z)x and G(w)x are distance two apart or G(−z)y and
G(w)y are distance two apart. The second possibility is excluded,
because G(w)y ̸∈ SY . Consequently, we have the first case. As
G(−z)x and G(w)x are distance two apart, they should belong to
SX . Moreover, since X is strictly convex, it follows that G(−z)x =
−G(w)x. Finally, since z ∈ extBZ , the last item of Proposition 1
implies that G(−z) = −G(z), so we have G(z)x = G(w)x ∈ SX as
wanted.

• The same argument can be applied to the case where zy ̸∈ SY and
wy ∈ SY by swapping the roles of z and w.

• If zy ∈ SY and wy ∈ SY , then we take p ∈ BZ such that py ̸∈ SY

and px is the same as zx and wx. Then zx = px ∈ SX , zy ∈ SY ,
and py ̸∈ SY , so G(z)x = G(p)x ∈ SX by the first item of this list.
Similarly, as wx = px ∈ SX , wy ∈ SY , and py ̸∈ SY , we have G(w)x =
G(p)x ∈ SX . Combining these two yields G(z)x = G(w)x ∈ SX as
wanted.

• An argument similar to the one used in the third item of this list
can be applied to the case where zy ̸∈ SY and wy ̸∈ SY by choosing
p ∈ BZ such that py ∈ SY and px is the same as zx and wx.
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We have considered all four possible cases. One can use the same argument
to prove the second item. The obtained result brings us to consider functions
gx : SX → SX and gy : SY → SY that can be defined with gx(x) = G(x, 0)x
and gy(y) = G(0, y)y. So now we have

∀z ∈ BZ (zx ∈ SX =⇒ G(z)x = gx(zx)),

∀z ∈ BZ (zy ∈ SY =⇒ G(z)y = gy(zy)).

We go on to prove some facts about these functions. First, let us show that
these functions are injective. Consider gx. Suppose by contrary that there
are x, x′ ∈ SX such that x ̸= x′ and gx(x) = gx(x

′). Choose arbitrary y ∈ SY

and consider pairs (x, y) and (x′, y). We have G(x, y) = (gx(x), gy(y)) and
G(x′, y) = (gx(x

′), gy(y)). Note that (x, y) ̸= (x′, y), but G(x, y) = G(x′, y).
This contradicts the injectivity of G. Thus, gx is actually injective. We can
use the same argument to show that gy is injective too.

Let us consider surjectivity. Let x ∈ SX and y ∈ SY be arbitrary. Then
(x, y) is extreme and hence F (x, y) is also extreme, because F (extBZ) =
extBZ . Denote by x′ and y′ the first and the second element of F (x, y).
Since (x′, y′) is extreme, we have x′ ∈ SX and y′ ∈ SY . Since F sends (x, y)
to (x′, y′), we have G(x′, y′) = (x, y), thus gx(x

′) = x and gy(y
′) = y, which

proves the surjectivity of both gx and gy. Now that we know gx and gy are
bijective, denote the inverse of gx by fx and the inverse of gy by fy.

Let us show that gx and gy are symmetric. That is, we demonstrate that
gx(−x) = −gx(x) and gy(−y) = −gy(y) for every x ∈ SX and y ∈ SY .
Pick an arbitrary x ∈ SX . Let us show that gx(−x) = −gx(x). Choose an
arbitrary y ∈ SY . Consider pairs z = (x, y) and w = (−x, y). The distance
between them is two, so the distance between G(z) and G(w) should be also
two. We know that G(z) = (gx(x), gy(y)) and G(w) = (gx(−x), gy(y)). For
distance between these two pairs to be equal to two, elements gx(x) and
gx(−x) should be distance two apart. Since X is a strictly convex space,
it follows that gx(−x) = −gx(x). The same argument can be used to show
that gy(−y) = −gy(y) for y ∈ SY . Obviously, the symmetricity of gx and gy
implies that fx and fy are also symmetric.

Define a function Gx : X → X with Gx(0) = 0 and Gx(tx) = tgx(x)
for all x ∈ SX and t > 0. Similarly, define a function Gy : Y → Y with
Gy(0) = 0 and Gy(ty) = tgy(y) for all y ∈ SY and t > 0. We see that
Gx coincides with gx on SX and Gy coincides with gy on SY . Using the
properties of gx and gy established above, one can show that Gx and Gy are
bijective and homogeneous (that is, for every x ∈ BX , y ∈ BY and t ∈ R we
have Gx(tx) = tGx(x) and Gy(ty) = tGy(y)). Denote the inverses of Gx and
Gy by Fx and Fy. It is easy to see that Fx and Fy are also homogeneous.
Moreover, we see that Fx coincides with fx on SX and Fy coincides with fy
on SY .
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Now, we are going to examine what G does with a pair one element of
which lies on the sphere and the other element of which is arbitrary. Our
goal is to show that

∀x ∈ SX ∀y ∈ BY G(x, y) = (Gx(x), Gy(y)),

∀x ∈ BX ∀y ∈ SY G(x, y) = (Gx(x), Gy(y)).

Let us consider the first item. Fix arbitrary x ∈ SX and arbitrary y ∈ BY .
First, let us consider the case y = 0. Our goal is to show that G(x, 0) =
(gx(x), 0). We know that G(x, 0) = (gx(x), y0) where y0 ∈ BY . Suppose
by contrary that y0 ̸= 0. Denote by y∗0 the element y0/∥y0∥ ∈ SY . We see
that G sends (x, 0) to (gx(x), y0) and (x, fy(y

∗
0)) to (gx(x), y

∗
0). The distance

between (x, 0) and (x, fy(y
∗
0)) is one, while the distance between (gx(x), y0)

and (gx(x), y
∗
0) is smaller than one, which is a contradiction. Next, consider

the case y ̸= 0. Then y = tu where u ∈ SY and t ∈ (0, 1]. Our goal
is to show that G sends (x, tu) to (gx(x), tgy(u)). Again, we know that
G(x, tu) = (gx(x), y0) where y0 ∈ BY . We need to show that y0 = tgy(u). If
y0 = 0, then G sends both (x, 0) and (x, tu) to (gx(x), 0), which contradicts
the injectivity of G. Therefore, y0 ̸= 0 and we can consider the element
y∗0 = y0/∥y0∥ ∈ SY . We see that G sends (x, fy(y

∗
0)) to (gx(x), y

∗
0), (x, tu)

to (gx(x), y0), and (x, 0) to (gx(x), 0). The distance between (gx(x), y
∗
0) and

(gx(x), y0) is 1−∥y0∥, the distance between (gx(x), y0) and (gx(x), 0) is ∥y0∥.
So the distance between (x, fy(y

∗
0)) and (x, tu) should be at most 1−∥y0∥ and

the distance between (x, tu) and (x, 0) should be at most ∥y0∥. This means
that the distance between fy(y

∗
0) and tu should also be at most 1−∥y0∥ and

the distance between tu and 0 should also be at most ∥y0∥. Since Y is a
strictly convex space, we have tu = ∥y0∥fy(y∗0). It follows that t = ∥y0∥ and
u = fy(y

∗
0). Thus we have y0 = ∥y0∥y∗0 = tgy(u) as wanted. The proof of the

second item is analogous.
From the last obtained result it follows directly that F has the analogous

properties. That is, we have

∀x ∈ SX ∀y ∈ BY F (x, y) = (Fx(x), Fy(y)),

∀x ∈ BX ∀y ∈ SY F (x, y) = (Fx(x), Fy(y)).

Finally, we show that for every z ∈ BZ we have F (z) = (Fx(zx), Fy(zy)).
Let us first show that for every z ∈ BZ we have F (z)x = Fx(zx). Fix
arbitrary z ∈ BZ . Denote the elements of z by x and y and the elements
of F (z) by x′ and y′. The element x ∈ BX can be represented in the form
tu where t ∈ [0, 1] and u ∈ SX . As Fx(tu) = tFx(u) by homogeneity of
Fx, the equality that we need to prove takes the form x′ = tFx(u). We
know that F sends (tu, y) to (x′, y′), (u, y) to (Fx(u), Fy(y)) and (−u, y) to
(Fx(−u), Fy(y)). By homogeneity of Fx we have Fx(−u) = −Fx(u). The
distance between (u, y) and (tu, y) is 1− t, the distance between (tu, y) and
(−u, y) is 1 + t. Thus the distance between (Fx(u), Fy(y)) and (x′, y′) is at
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most 1− t and the distance between (x′, y′) and (−Fx(u), Fy(y)) is at most
1 + t. This implies that the distance between Fx(u) and x′ is also at most
1− t and the distance between x′ and −Fx(u) is also at most 1+ t. Since X
is a strictly convex space, it follows that x′ = tFx(u) as wanted. One can use
the same argument to show that for every z ∈ BZ we have F (z)y = Fy(zy).

We can finish the proof by applying Theorem 2.
□

Acknowledgements

This work was supported by the EstonianResearchCouncil grant PRG1901.
The third author is grateful to her scientific advisor Vladimir Kadets for
help with this project. The third author was supported by the National Re-
search Foundation of Ukraine funded by Ukrainian State budget in frames
of project 2020.02/0096 “Operators in infinite-dimensional spaces: the in-
terplay between geometry, algebra and topology”.

References

[1] C. Angosto, V. Kadets, and O. Zavarzina, Non-expansive bijections, uniformities and
polyhedral faces, J. Math. Anal. Appl. 471 (2019), 38–52.

[2] B. Cascales, V. Kadets, J. Orihuela, and E. J. Wingler, Plasticity of the unit ball of a
strictly convex Banach space, Rev. R. Acad. Cienc. Exactas F́ıs. Nat. Ser. A Mat. 110
(2016), 723–727.

[3] H. Freudenthal and W. Hurewicz, Dehnungen, Verkürzungen, Isometrien, Fund. Math.
26 (1936), 120–122.

[4] V. Kadets and O. Zavarzina, Plasticity of the unit ball of ℓ1, Visnyk of V. N. Karazin
Kharkiv National Univ. Ser. Math., Applied Math. and Mechanics 83 (2016), 4–9.

[5] V. Kadets and O. Zavarzina, Nonexpansive bijections to the unit ball of the ℓ1-sum of
strictly convex Banach spaces, Bull. Aust. Math. Soc. 97 (2018), 285–292.

[6] N. Leo, Plasticity of the unit ball of c and c0, J. Math. Anal. Appl. 507(1) (2022), 13
pp., Paper No. 125718.

[7] P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon.
Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 367–371.

[8] S. A. Naimpally, Z. Piotrowski, and E. J. Wingler, Plasticity in metric spaces, J. Math.
Anal. Appl. 313 (2006), 38–48.

Institute of Mathematics and Statistics, University of Tartu, Narva mnt
18, 51009 Tartu, Estonia

E-mail address: rainis.haller@ut.ee
E-mail address: nikita.leo@ut.ee

Department of Mathematics and Informatics, V. N. Karazin Kharkiv Na-
tional University, 61022 Kharkiv, Ukraine.

E-mail address: olesia.zavarzina@yahoo.com


