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Current Hom-Lie algebras

TORKIA BEN JMAA, ABDENACER MAKHLOUF, AND NEJIB SAADAOUI

ABSTRACT. In this paper, we study Hom-Lie structures on tensor prod-
ucts. In particular, we consider current Hom-Lie algebras and discuss
their representations. We determine faithful representations of minimal
dimension of current Heisenberg Hom-Lie algebras. Moreover deriva-
tions, including generalized derivations and centroids, are studied. Fur-
thermore, cohomology and extensions of current Hom-Lie algebras are
also considered.

Introduction

Current algebra or Current Lie algebras were introduced first in Physics
by Murray Gell-Mann to describe weak and electromagnetic currents of the
strongly interacting particles, hadrons, leading to the Adler—Weisberger for-
mula and other important physical results. Important examples include
Affine Lie algebra, Chiral model, Virasoro algebra, Vertex operator algebra
and Kac—Moody algebra. The concept of a Hom-Lie algebra was initially
introduced by Hartwig, Larsson, and Silvestrov in [7]. It was motivated
by quantum deformations of algebras of vector fields like Witt and Vira-
soro algebras. Hom-Lie structures were discussed in [4, 9], their deriva-
tions, representations, cohomology and deformations were studied first in
[13, 2, 20]. In this paper we extend current Lie algebras theory introduced
in [24, 25, 26] to Hom-Lie context, see also [1, 19]. A current Lie algebra is
a Lie algebra of the form L ® A, where L is a Lie algebra, A is a commu-
tative associative algebra, and the multiplication in L ® A being defined by
the formula [z ® a,y ® b] = [z,y] ® (ab), for any z,y € L,a,b € A. More
generally, Lie structures on tensor products were studied by Zusmanovich in

Received December 17, 2021.
2020 Mathematics Subject Classification. 17B61, 17B67, 17B56.
Key words and phrases. Current Hom-Lie algebra, representation, current Heisenberg
Hom-Lie algebra, derivation, cohomology, extension.
https://doi.org/10.12697/ACUTM.2022.26.08
Corresponding author: Abdenacer Makhlouf
103



104 TORKIA BEN JMAA, ABDENACER MAKHLOUF, AND NEJIB SAADAOUI

[24], while Hom-Lie structures on a current Lie algebra L ® A were consid-
ered by Makhlouf and Zusmanovich in [15]. The second aim of this paper
is to discuss Hom-Lie structures on tensor products L ® A, where L and A
are vector spaces such that either L or A is finite dimensional and endowed
respectively with bilinear maps [-,-]: L x L — L and u: A x A — A.

The paper is organized as follows. In Section 1, we review definitions and
properties of Hom-Lie algebras and Hom-associative algebras. Moreover var-
ious relevant examples and low dimensional classification are given. In Sec-
tion 2, we characterize Hom-Lie structures on tensor products L ® A, where
either vector space L or vector space A is finite dimensional. We consider
current Hom-Lie algebras (L®A, |-, -|Lo4,7), where [, -] rga: LOAXL®A —
L ® A is a bilinear map and v: L® A — L ® A is a linear map, for which we
provide a classification of 4-dimensional current Hom-Lie structure algebras
L ® A. Section 3 is dedicated to representation theory of current Hom-Lie
algebras, and semidirect products and faithful representations of minimal
dimension for current Heisenberg Hom-Lie algebras are considered there.
In Section 4, we discuss derivations, including generalized derivations, and
centroids of current Hom-Lie algebras. Moreover, explicit computations are
provided. In Section 5, we study the second cohomology group of current
Hom-Lie algebras with respect to trivial representation and determine ex-
plicitly the second cohomology group H?(L(G)) of Hom-Loop algebra and
H 2(E(bl)p) of Hom-truncated Heisenberg algebra. Finally, we study central
extensions of current Hom-Lie algebras and establish their classification for
Hom-Loop algebra and Hom-truncated Heisenberg algebra.

Throughout this paper, all the vector spaces are over the complex field
C and all vector spaces are at least one-dimensional. Many of the results
included in this paper are still valid if one considers any field.

1. Hom-Lie and Hom-associative algebras
In this section we summarize the relevant definitions and provide some

examples of Hom-Lie and Hom-associative algebras.

1.1. Hom-Lie algebras.
Definition 1 ([2, 12, 7]). A Hom-Lie algebra is a triple (G, [,‘], «)

consisting of a vector space G, a bilinear map [,:]:GxG — G and a linear
map «: G — G satisfying

[z,y] = — [y, 2], (skew-symmetry)

[a(2), [9, 4] + [a(2), [#, 4] + [a(y), [2,]] = 0, (Hom-Jacobi identity)

for all elements x,y, z in G. A Hom-Lie algebra is called multiplicative if « is
an algebra morphism, i.e. for any z, y € G we have «a ([z,y]) = [a(z), a(y)],
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and it is called regular if o is an algebra automorphism. We recover Lie
algebras when the linear map is the identity map.

Example 1 (Jackson sl2(C), [3]). Let {x1,z2,23} be a basis of a 3-

dimensional vector space sla(C) over C. The following bracket [-,-] and
linear map « on sly(C) define a Hom-Lie algebra over C:
[3’:1,.%'2} = _2ax27 [3’:1,1’3] = 23;37 [x27x3] = _1—545517

a(z1) = ary, alxe) = a®z2, a(rs3) = axs, where a is a parameter in C .

Example 2 ([2, 12, 4]). Any non-abelian 2-dimensional complex multi-
plicative Hom-Lie algebra is isomorphic to one of the following isomorphism
classes defined with respect to a basis {ej, ez} by the bracket and a linear
map represented by a matrix with respect to the basis:

(a) Lq: [e1,ea] = —[e2,e1] = e1 and « is represented by the matrix (8 2)
(b) Lo : [e1,e2] = —[ea, e1] = e and aw is represented by the matrix <g 717),
with v # 0.
Proposition 1 ([5],[22]). Let (G,[,"]") be a Lie algebra and o be a Lie
algebra endomorphism. Then (G,a o [-,-],«) is a Hom-Lie algebra.
Moreover, let (G, [, ], ) be a regular multiplicative Hom-Lie algebra. Then

(G,a"t o)) is a Lie algebra.

Example 3 (Heisenberg Hom-Lie algebras, [16]). Let (bhm,[,]) be a
(2m+1)-dimensional Heisenberg Lie algebra and {x1, -, Zm, y1, * ,Ym, 2}
be a basis. The bracket is defined by [z;,y;] = 0;;z for i,j =1,--- ,m, where
0;; is the Kronecker symbol, other brackets are either zero or given by skew-
symimetry.

Let a be a Lie algebra morphism with respect to the previous bracket. The
morphisms are defined with respect to the basis {x1, -, Zm, Y1, ", Ym, 2}
by the following matrix :

Xomm  Tomm  Om1

(me Yom Oml) , where <)Z(mm 5"””) is A-symplectic.
Ly My A mm mm

Acccording to the previous proposition, the bracket [z;,y;]loa = dij(z), de-

fines a Hom-Lie algebra. .

Definition 2 ([3]). Let (G,[-,-],«) be a Hom-Lie algebra. Let V' be an
arbitrary vector space, 8 € GI(V) be an arbitrary linear self-map on V' and
[, v :GxV =V, (g,v) = [g,v]y be a bilinear map.

The triple (V, [, ]v, p) is called a representation of the Hom-Lie algebra G
or a G-module V' if the bilinear map [-, -]y satisfies, for z,y € G and v € V,

[z y],p()]y, = [alz), [y, vlv]y — le(y), [z, vlv]y - (1)
When [, -]y is the zero-map, we say that the G-module V' is trivial.
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Example 4. We construct a representation of the Hom-Lie algebra L
defined in Example 2. Let V; be a 2-dimensional vector space and let {vy, va}
be its basis. Define p € End(V1) by p(v1) = 0 and p(v2) = nve, and a bilinear
map [, ]y, : L1 x Vi — Vi by

le1,vi]yy, = tvr,  [er,v2lyy =0, [e2,vi]y, = 0 tvi, [e2,v2]y, = 0.

Then (V4, [, ]v;, p) is a representation of L.

1.2. Hom-associative algebras. In this section, we summarize some ba-
sics about Hom-associative algebras. For more details, see [12, 13, 11, 2].

Definition 3. A Hom-associative algebra is a triple (A, u, 8), in which
A is a vector space,  : A — A a linear map and 4 : A x A — A a
bilinear map, with notation u(a,a’) = ad’, satisfying, for all a,d’,a” € A:
Bla)(a'a") = (ad’) B(a”), called the Hom-associativity condition.
A Hom-associative algebra is called multiplicative if for all a,b € A f(ab) =
B(a)B(b). A Hom-associative algebra is said to be unital if there exists a unit
element 1 such that 5(1) = 1 satisfying f(a) = la=al.

Example 5 (Laurent polynomials Hom-associative algebra). Consider
the Laurent polynomials algebra A = K[t,t7!]. Let 3; be an algebra endo-
morphism of A which is uniquely determined by the polynomial 5;(f)(t) =

f((qt)"). Define p by u(f,9)(t) = f(Bi(t))g(Bi(t)) for any f, g in A. Then
A; = (A, pu, B;) is a unital commutative Hom-associative algebra.

Proposition 2 ([14]). Any 2-dimensional complex commutative multi-
plicative Hom-associative algebra with basis {f1, fo} is isomorphic to one of
the following isomorphism classes, where the linear map B is given by its
matriz with respect to the basis:

=

A | fifi=—fi, ife=fe, fofo=f1-
Ay | fifi=f, fifa=0, fafa = fo.

b N
S =
=

Az | fifi=fi, fife=0, fafo=0.
Ay | [fi=hf, Aife=f2, fofo=0.
As | fifi=fi1, fife =0, fafs =0.

As | fifi=fa fifao=0, fafa=0.

A7 | ifi =0, fifo=af1, faf2 =5 f1.

O RFR O O~ OO oo o
\_/\_/\_/vv\_/b

S R S 2 2
O OO RO OO RO RO
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Definition 4. Let (A, u, ) be a Hom-associative algebra, M be a vector
space and ¢ : M — M be a linear map.

(i) A left A-module structure on (M, ¢) consists of a bilinear map
punr: AX M — M; (a,m) — a em satisfying the conditions:

p(aem)=p(a)ep(m), B(a)e(a’em)=(ad)ep(m), (2)

for all a,a’ € A and m € M.
(ii) A right A-module structure on (M, ¢) consists of a bilinear map
pun: M x A — M; (m,a) — m e a satisfying the conditions:

p(mea)=p(m)efa), ¢(m)e(ad)=(mea)ep(d), 3)

for all a,a’ € A and m € M.

(iii) A two sided A-module structure on (M, ¢) or an A-bimodule consists
on a left A-module structure and a right A-module structure on (M, ¢)
satisfying the compatibility condition: 5(a)e (mead’) = (aem)e (a),
for all a,a’ € A and m € M.

If A is unital we assume that 1 em =me1 = p(m) for all m € M.

Throughout the article, we mean by a representation (M, unr, @) of a
Hom-associative algebra (A, u, ) an A-bimodule structure on (M, ¢).

Now, we construct left modules and representations of the Hom-associative
algebra A; defined in Example 2.

Example 6. Let W be a 2-dimensional vector space and {wq,ws} be its
basis. Define ¢; € End(W1) by ¢1(w1) = —w; and ¢1(we) = wy. Define
a bilinear map [, Jw,: A1 x Wi — Wy by [fi,wi]lw, = w1, [fi,w2]w, =
—wa, [fo,wilw, = swa, [f2,walw, = —% w1, where s is a parameter. Then
(Wi, [y Jwy, ¢1) is a left Aj-module.

Example 7. Let W] be a 2-dimensional vector space and {w1,wa} be its
basis. Define ¢1 € End(W7) by ¢1(w1) = —w; and ¢1(w2) = wy. Define a
bilinear map [+, -7 : A1 x Wi — W] by
[f1,wilwy = dwi, [fi,walwy = wa, [fo, wilw = swa, [fa, walyy = Lwi, and
a bilinear map [, -Jyyr: Wi x A1 — W] by
[wi, filwy = gwr, [wr, folwr = —wi, [wa, filwr = —j w2, [wa, folwr = wa,
where d, s are parameters.

Then (W7, 1) is a two-sided Aj-module or a representation of Aj.

2. Hom-Lie structures on tensor products G ® A

In this section, we aim to characterize tensor products that provide a
Hom-Lie algebra structure and discuss current Hom-Lie algebras. Moreover,
we give some examples of current Hom-Lie algebras and a classification of
four dimensional current Hom-Lie algebras, where the Hom-Lie algebra and
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the Hom-associative algebra are 2-dimensional. First, we recall the following
relevant result of linear algebra.

Proposition 3 ([25], Lemma 1.1). Let U, W be two vector spaces where
either U and W or both U and W are finite-dimensional. Let S,S €
Hom(U,-), T,T" € Hom(W,-). Then

Ker(S@T)NKer(S'®@T') ~ (KerSN KerS")@ W + KerS @ kerT’
+ KerS' NkerT +U @ (KerT N KerT’).
One has the following corollary, see [25].

Corollary 1. Let G and A be two vector spaces such that at least one of
G and A is finite-dimensional. Let S,S" and T,T" be linear operators de-
fined on the spaces of n-linear maps G"™ — G and A™ — A, respectively. Let
;: G" — G and B; : A" — A be n-linear maps.
If ZS(OQ;) ®T(B;) =0 and ZS’(O@) ® T'(B;) = 0, then the indexing set
icl il
is partitioned into the four subsets I = 11 U Is U I3 U 14 such that:

(i) S(a;) =0 and S"(a;) =0 for any i € Ir;
(#1) S(a;) =0 and T'(B;) =0 for any i € Iy;
(#31) S'(c;) = 0 and T(B;) =0 for any i € I3;

(iv) T(B;) =0 and T'(B;) =0 for any i € I4.

Let G and A be two vector spaces such that at least one of G and A is finite-
dimensional. Let [-,-]g: G xG — G and pu: Ax A — A be bilinear maps such
that |-, -]g is not symmetric. Define a bilinear map [, -] : GRAXGRA — GRA
by [x®a,y®b] = [z, y]g ®u(a,b). An arbitrary linear map ¢): GRA - G® A
can be written in the form ¢ = Zai ® B, where a;: G — G, B;: A — A

el
are (finite) families of linearly independent linear maps indexed by a set I.

Theorem 1. With the above notations, (G ® A,[-,-],v) is a Hom-Lie
algebra if and only if [-,-]g is skew-symmetric, p is symmetric and there
exists a decomposition of the set of indices I = Iy UIs U I3U Iy such that one
of the following condition is satisfied:

(Z) [[xvz]gaai(x)]g =0, for any i € Iy;
(id) Bi(a)(be) = 0, for any i € I;
(#i7) (G, [, |g, ) is a Hom-Lie algebra and (A, p, ;) is a Hom-associative
algebra, for any i € Is;
() [oal@), o, 2lglg = [a:(y), [, Iglg and
Bi(a)(be) + Bi(b)(ac) + Bi(c) (ab) = 0 for any i € Iy,
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Proof. For any z ® a,y ® b € G ® A, we should have [z ® a,y ® b] =
—[y ® b,z ® al, that is [z,y]g ® ab = —[y,x]g ® ba. This implies [z,y]g =
— Ay, 7]g and ba = Aab. Then —[y, x]g ®ba = Az, y]g @ Aab = N[z, y]g @ ab.
Hence A\? = 1. Since [-,]g is not symmetric, we have A = 1. Therefore, [-,-]g
is skew-symmetric and p is symmetric.

The Hom-Jacobi identity with respect to ¥ may be written

> lai(@), [y, £lglg ® Bila) (be) + [ai(y), [z, 2lglg © Bi(b)(ca)
iel
+[ai(2), [z, ylglg ® Bi(c)(ab) = 0. (4)

Cyclically permuting x,y, z, in the last equality and summing up the ob-
tained 3 equalities, we get

> (laal@), [y 2lglg + laalw), [2,2lglg + ea(2), e, vlglg ) @

il
(Bi(a)(be) + Bi(b)(ac) + Bi(c)(ba) ) = 0.

Skew-symmetrizing the equality (4) with respect to z,y, leads to

> (lai@), Iy, 2lglg + [ei(w), [22lglg ) @ (Bi() (be) — Bilb)(ac)) = 0. (5)
el
By applying Corollary 1 derived from Proposition 3 (see [25, Lemma 1.1])
to the last two equalities, we complete the proof. ]

Now, we consider the subclass of Hom-Lie algebras provided by Type (i)
of Theorem 1, which corresponds to so called current Hom-Lie algebras.

Definition 5. A current Hom-Lie algebra is a tensor product of the
form (G® A, [, ]¢g ® p,a ® B), where (G, [, |g, @) is a Hom-Lie algebra and
(A, u, B) is a Hom-associative commutative algebra. The current Hom-Lie
algebra is denoted by (G ® A, [+, ]gga, ) instead of (G ® A, [-,-]g @ p,a ® B).

Example 8 (Loop Hom-Lie algebras). For any Hom-Lie algebra
(G,[,]g, ), set G = G ® C[t,t~1], where C[t,t!] denote Laurent polynomi-

als. We define a bracket [-, -] on G by
[z @t",y @t = [z,y]g @ (¢t)"T™, Yo,y € G, Yn,m € Z,

and an endomorphism ~: G — gby v = a® where f = (1 (see Example 2).
Then (G, [-,],7) is a multiplicative Hom-Lie algebra, which we call a Loop
Hom-Lie algebra.

Example 9 (Truncated current Hom-Lie algebras). Let (G, [, ]g, @) be a
Hom-Lie algebra over the complex field C, and fix a positive integer p. Define
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an endomorphism 3: C[t]/tPT1C[t] — C[t]/tPTIC[t] by B(f)(t) = f(qt). The
tensor product ép = G ® C[t]/tPT1C[t] with the bracket

[z ® fy®g] = [z,9lg ® f(qt)g(qt),Ya,y € G, Vf,g € C[t]/tPT'C[t]

and the linear map v = a®  is a Hom-Lie algebra, which we call Truncated
current Hom-Lie algebra.

We end this section by a remark about the classification of 4-dimensional
current Hom-Lie algebras.

Remark 1. Every current Hom-Lie algebra where both the Hom-Lie al-
gebra and the Hom-associative algebra are 2-dimensional is isomorphic to
one of the following non-isomorphic current Hom-Lie algebras § ® A =
(Gp®Aqg, [+ -], @1q, p® By), where (gp, 16, ap), p=1,2, is a Hom-Lie al-
gebra given in Example 2 and (Ag, fq, 84), ¢ = 1,- -+, 7, is a Hom-associative
algebra given in Example 2.

3. Representations of current Hom-Lie algebras

Let (G ® A, [, "]gea, @ ® B) be a current Hom-Lie algebra, V and W be
two vector spaces, [,-]y: G XV — V and e: A x W — W be two bilinear
maps. Define a bilinear map [, lygw: R AXV QW — V @ W by

[z ®a,v@wlvew = [z,v]vy ® aew,

forallz € Giac A,ve V,we W.

Let ¢ = Z a;y @ Biw be an endomorphism of V' ® W. Assume that (V ®
1€l

W, [, lvew,®) is a representation of the current Hom-Lie algebra (G ®

A, [, -]gea, @ ® ). That is, we have

> llz,y) i (v)]y ® (ab) @ Baw (w) (6)
i€l
= [a(x), [y, v]] @ Bla) o (bew) = [a(y), [z, v]] @ 5(b) @ (a e w).

Skew-symmetrizing the previous equality with respect to x, y leads to

([o(@), [y, v]] + (), [z, v]]) @ (B(a) @ (b e w) — B(b) ® (a e w)) =0. (7)
We have the following result.
Theorem 2. The triple (V @ W, [, lvew, Yvew) is a representation of

a current Hom-Lie algebra (G ® A, |-, |gea, @ ® B) if and only if one of the
following cases holds.

(1) There is a subset J of I and a sequence of complex numbers (\;)jes such
that

Bla)e (bow) = B(b) e (asw) =S A, (ab) o B (w)

jedJ
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foralla,be A,w e W and
Hxvy]v Oéjv(’l))]v = )‘j ([OJ(CC), [y7U]V]V - [a(y)7 [:C, U]V]V)

forallj e J x,y € G,v e V. Hence (W, e, Z NiBiw) is a representation
i€J
of (A, i, B) and (V, [, ]v, /\ijajv) is a representation of G.
(2) There is a subset J of I and a complex sequence (\;)jes such that

[Oé(CC), [y,v]V]V = [Oé(y), [CC,’U]V]V = Z)‘l [[Cﬂ,y],aiv(v)]v
iceJ
and (ab) @ Bjw (w) = A; (B(a) e (bew)+ B(b) e (aew))
forallje J x,yeGoveV,weW.

Proof. One uses [25, Lemma 1.1], the proof is similar to Theorem 1. O

Corollary 2. Let (V, [, ]y, ay) be a representation of the Hom-Lie alge-
bra (G, [, -]g,a) and (W, e, Bw) be a representation of the Hom-associative
algebra (A, p, 8). Then (VQW, [, lvew, ay ® Bw) is a representation of the
current Hom-Lie algebra (G ® A, [, |gga, @ ® ).

Example 10. Let Ly be the Hom-Lie algebra defined in Example 2 and
A; be the Hom-associative algebra defined in Example 2. Let V; be the
representation of L given in Example 4 and let Wi be the representation of
A1 defined in Example 6.

Define a bilinear map [, -Jv,ow, : (L1 ® A1) x (Vi @ W) — Vi @ Wy by

[e1 ® f1,v1 @ uilv,ew, =ty ® wa, [e1 ® f1,v1 @ walvygw, = —tv1 ® wa,
[e1 ® f1,v2 @ wilv,ew, =0, le1 ® f1,v2 @ walv,ew, =0,

t
[61 Y f2,'U1 ®w1]V1®W1 =tsv ® we, [61 ® f2aU1 b w2]V1®W1 = ; U1 ® Wi,
le1 @ fa,v2 @ wilvygw, =0, le1 ® fa,v2 @ walv,ew, =0,

A A

le2 ® f1,v1 @ wrlv,ew, = *Etvl ® wr, le2 ® f1,v1 @ walvy@w, = 5“}1 ® wa,
[62®f1,1}2 ®w1]V1®W1 =0, [62®f1av2®w2]V1®W1 =0,

At
le2 ® f2,v1 @ wilv,ew, = _Ets'vl & wa, [e2 @ f2,v1 @ walv,@w, = 5; v1 @ wr,
[e2 ® fa,v2 @ wilv,ew, =0, [e2 ® fa,v2 @ walv,ew, =0,

and define a bilinear map [, |v,ew, : (Vi@ W1) X (L1 ® A1) — Vi ® Wi by

1
v1 Q@wi,e1 ® filvew, = Stv1 @ wy,

[ ] p [v1 ® w2, e1 @ filview, = dtvl ® wa,
[va @ wi,e1 @ fily,ew, =0, [va ® wa,e1 @ filv,ew, =0,

[v1 @ wi,e1 @ falyyew, = —tvr ® wy, [v1 ® wa,e1 ® falv,ew, = tv1 ® wi,

[ ] [ ]

v2 @ w1, e1 @ folview, =0, vy ® W, e1 @ folyigw, =0,
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[v1 @ wi,e2 ® filview, = _Etvl & wy, [v1 ® wa,e2 ® filview, = Etvl & wa,
[v2 ® wi,e2 @ filv,ew, = 0, [v2 ® w2, €2 @ filview, =0,
A A

[v1 ® wi,e2 ® falvew, = Etﬂn ® wi, [v1 ® wa, €2 @ falv,ew, = —5t®1 ® wa,
[v2®w1762®f2]V1®W1 :07 [U2®w27€2®f2}V1®W1 :O
Define ay; ® fw, = p ® p1 € End(Vi @ Wi) by

ay, ® Pw, (v1 ®wy) =0, ay, @ B, (v1 ® wy) =0,

ay, ® Pw, (v2 @ wy) = —Nv2 @ wy, ay, @ B, (v2 ® wa) = Ny @ ws.
Then, using Corollary 2, (Vi ® W1, [, ‘|view,, @y, ® Bw, ) is a representation
of L1 ® Aj.

3.1. Semidirect Product. Given a representation (V, [, ]y, 8) of a Hom-
Lie algebra (G, [, -], @). Define a skew-symmetric bilinear bracket

['7 ‘]QXV: (g@v)2 —geV by [(13,'1)), (yaw)] = ([xvyL [JZ,'U]V - [y7w]v) ’ and
a linear map a+ : GOV - GV by (a+ B) (z,v) = (a(x), B(v)).

Proposition 4 ([20]). With the above notations, (G &V, [, |lgxv,a + B)
1s a Hom-Lie algebra, which we call the semidirect product of the Hom-Lie

algebra G and V.

One may use Example 10 to construct a semidirect product on the Hom-
Lie algebra L; defined in Example 4 and A; the Hom-associative algebra
defined in Example 2.

3.2. Faithful representations of current Heisenberg Hom-Lie al-
gebras. The faithful representations of Lie algebras and superalgebras are
studied in [8, 21]. In this section we extend the study of faithful representa-
tions of minimal dimension of current Heisenberg Lie algebras, see [10], to
current Heisenberg Hom-Lie algebras.

Definition 6. A representation (V, [, ]y, 3) of a multiplicative Hom-Lie
algebra (G, [-,],«) is said to be faithful if 8 is a bijective map satisfying
B ([z,vly) = [a(x), B(v)]y, forall z € G, v € V and the map p: G — End(V),
defined as p(z)(v) = [z,v]y, is injective.

Let G be a Hom-Lie algebra and set

1(G) = min{dim V' | V is a faithful G-module}.

Let b, be the (2m + 1)-dimensional Heisenberg Lie algebra defined in Ex-

ample 3 with respect to a basis {x1, -+, Zm, Y1, " ,Ym, 2} such that the
only non-zero brackets are [z;,y;]' = z for all i € {1,---,m} and let C[t]
d—1

be the polynomials algebra in one variable. Let p = Zaktk +t? be a
k=0
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nonzero monic polynomial and let (p) be the principal ideal generated by
p. Let bmp = b ® C[t]/(p) be the current Lie algebra associated to b,
and C[t]/(p). Let o be an algebra isomorphism of the Heisenberg Lie alge-
bra (b, [-,-]'), defined in Example 3 and let 8: C[t]/(p) — C[t]/(p) be an
isomorphism defined by B(t¥) = (qt)* for all k € {0,--- ,d — 1}. Define a
bracket [-, -] on b, by

[z @ t*,y; @ t'] = 65" a(z) @ tFF,
2@ %, 25 @ 1] = [y @ 1,5 0 1] = [ @ 5,208 = [y @ 5, 20 4] =,
for all 4,5 € {1,--- ,m}; k,l € {0,1--- ,d— 1}. With the above notations,

(Bmps [+ -], & @ B) is a Hom-Lie algebra, which we call the current Heisenberg
Hom-Lie algebra.

Proposition 5. Let (G, [, ], ) be a reqular multiplicative Hom-Lie alge-
bra. Define the bilinear bracket [-,-]': GxG — G by [z,y] = [a" (z),a " (y)]
for all xz,y € G. Let (V,[-,-]v,B) be a representation of the Hom-Lie al-
gebra (G, [, -], ). We assume that 3 is bijective and satisfies  ([z,v]y) =
[a(z), B(v)]y, forallx € G, v € V. Define the bilinear bracket [-,-]},: GxV —
V by [z,0)}, = [a Y x), 87 ()]v for allz € G, v € V. Then (V,[,-]},) is a
representation of the Lie algebra (G, [,-]').

Proof. By Proposition 1, (G, [,-]") is a Lie algebra. Set z = «(a) and
v = f(u). Then

B[z, vlv) = 7 ([ala), Bw)]v) = 87 B([a, ulv) = [a™(2), 7 (v)]v-

!/

[z, ) o]y = [[07 (@), a7 (W), vl
= [[a™*(),a™*(y)], 67 (0)lv
= [[a(a™*(2)), [0 7*(y), 72 ()]lv ~[[a(a™2(y), [a~* (=), 7 (v)]]v
=[a7 (2), 87 o™ (), B )]lv —la " (y), B a7 (@), B ()]]v
=7 (@), 7 [y, vlv]v = [ (), 87 [, ]y lv
[

Thus, (V,[.,.]},) is a representation of the Lie algebra (G, [.,.]). O

Let (V,[-,‘]v,3) be a faithful representation of the current Heisenberg
Hom-Lie algebra b, ,. Then (V,[-,-]},) is a representation of Heisenberg Lie
algebra (b, p, [-,-]") (Proposition 5). So, by [10],

dim V' > mdegp + [2+/degp]. (8)

Proposition 6. Let (V,[-,-]},) be a representation of a Lie algebra (G, [-,-]').
Let a be a Lie algebra isomorphism on G and oy be an endomorphism of
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V satisfying ay ([z,v]},) = [a(z),av ()]}, for all z € G,v € V. Then
(V,av o[-}y, av) is a representation of the Hom-Lie algebra (G, [-, ], o).

Proof. By Proposition 1, (G, [, ], «) is a Hom-Lie algebra.
Set [+, Jy= ay o [-,-]{,. Then we have

ay([z,0]) = av o ay([z,v]y) = av([a(z), av (V)ly) = [a(z), av (v)]v

and

[z, y], av (v)] = [[a(=), a(y)], av (v)] = [e([, y]"), v (v)]

= ay o o[z, y]"), av (v)]y = av o av ([[z,y]', v]y)
=avoay([z,ly.vlvly — [y, [z, v]v]y)
= av([a(z), av([y, vy = [a(), av(fz,v])ly)
= [a(z), av [y, v])lv = la(y), av [z, v])]v
= [a(@), [y, vllv = [a(y), [z, v]lv.
Hence (V, avol., ]}, ) is a representation ofthe Hom-Liealgebra (G, [., .|, ).

O

Proposition 7 ([10]). Let a,b two integers such that ab > d and a +b =
[2v/d]. Here [2V/d] is the closest integer that is greater than or equal to
2v/d. Consider matrices P € Maa, A€ Mgq and B € Mgy, where

0 0 ... 0 —ap
po|t R
0o
1 —ag—1
a1 ifi=d—(a—i); g1l =g
1 0 otherwise ; Y1 0 otherwise .
Define a map pa.B: bmp — End(CdeQ\/m) by
PAB (sz@qh +Zyl®qm ) + 2 @ g3t ))
i=1
Oaa Aqll(P) e Aqlm(P) A(J3(P)B
q21(P)B
= 0 :
q2m(P)B
0p,1

With the above notations, (pA7B,(Cde2‘/31) is a faithful representation of
the current Heisenberg Lie algebra (b p, [-,]').

By Proposition 6 and Proposition 7, we obtain the following result.
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Proposition 8. Let V = Cmd+2vdl gpg ay be an endomorphism of V

satisfying ay 0 pap(u® f) = pap (@ ®B(u® f))oay.
Then, (V,ay o[-, -]y,,av) is a faithful representation of the current Heisen-
berg Hom-Lie algebra (Do p, [, ], ® ).

Let (V,[-, ]v,3) be a faithful representation of the current Heisenberg
Hom-Lie algebra b, ,. Then, by the previous proposition,

1(Bmp) < mdegp + [2¢/degp]. (9)
By (8) and (9) we obtain the following result.
Theorem 3. The equality

1(bm.p) = mdegp + [2+/degp]
holds, where [2+/degp| is the closest integer that is greater than or equal to

24/degp.

Example 11. Let m =1 and p = 1 + 2t + 3t> + 4¢3 4 5t* 4+ ¢5. Then

0 00 0 —1 1 0
1 0 0 0 -2 0 1
P:0100—3,A:(88(1)8(1)>,B=00
0010 —4 0 0
00 0 1 =5 0 0
v 0 0
Let a= 10 % 0|, V=C? and oy be an endomorphism of V satisfying
0 0 A

ay o pap(r1@th) =pap (Oz ® B(r1 ® tk)) =vd*pap(r1 @t*) oay;

A
av e papy ©t°) = d*pap(n @17 0 av;

ay o pap(z® tk) = )\qk,oA,B(z ® tk) oay.

0o --- 0 r1,8 T1,9

0 e 0 .(1)218 (EQ_]Q
Using a computer algebra system, we obtain ay = |0 - 0 0 0

o --- 0 0 0

4. Derivations and centroids of current Hom-Lie algebras

The purpose of this section is to study ~"-derivations and the 4"-centroid
of current Hom-Lie algebras viewed as a (1,1, 0)-derivation and a (1,1,1)-
derivation of current Hom-Lie algebras.

Let (G® A, [, ]gea,7) be a current Hom-Lie algebra and V' be a G-module.



116 TORKIA BEN JMAA, ABDENACER MAKHLOUF, AND NEJIB SAADAOUI

4.1. (N, u/,7')-derivations of Hom-Lie algebras. In this subsection we
extend (X, i/, v)-derivation theory of Lie algebras introduced in [17] to Hom-
Lie context.

Definition 7. Let X, u/,7" be elements of K (for example K = C). A
linear map d: G — Vis a (XN, ', y')-a*-derivation of G on V if for all 2,y € G
we have

N d([z,y]) = —p' [*(y), d(@)]y +7'[a"(2),d(y)]v.

We denote the set of all (X, i/, y')-a*-derivations by

Derl (G, v) = @ Derl (G, V),
k>0

In particular, with the adjoint representation (V = G), we set

/ N
Der 7’Y) @ Der( ) ().
k>0

Proposition 9. For any N, i,y € K, there exists 6 € K such that the
subspace Der l’“lﬁl)(g) s equal to one of the following subspaces:

(a) Der'52(G), (b) DerG1(G), (¢) Der'GMY(G), (d) Der' V().

Definition 8. The set I'(G) = @ Deralk’l’o (G) is the centroid of G.
k>0

Definition 9. An element d € Der (0’1’0) G)n DerS,;O’O)(g) is called an

o-central derivation. We denote the set of all a*-central derivations by

= @ C.x(G @ Der 0’1’0 )N Der(1 0:0) (9).
k>0 k>0

4.2. (N, u',7')-derivations of Hom-associative algebras. In this sub-
section, we extend to Hom-associative algebras the concept of (N, pu',~/)-
derivation of associative algebras introduced in [18]. Let (A, y, 8) be a Hom-
associative algebra. We denote by S'(A) the set of all linear maps g : A — A
which are symmetric in the sense that g(ab) = g(ba) for all a,b € A.

Definition 10. Let X, 1/, be elements of K. A linear map g € S*(A)
a (N, i, ~")-B*-derivation of A if, for all a,b € A, we have

Ng(ab) = p'g(a)B"(b) ++'B"(a)g(b).
We denote the set of all (X, 1/, ’y’ )—Bk—derivations of A by
Der! /\/’“/’7 @ Derﬁk ) (A).
k>0

If 8 is an isomorphism, we have

Der§"(4) = {g € Bnd(A) | Fu € 4; g(a) = uf" " (a)}.
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Proposition 10. We have the isomorphism

Der’ﬁ\;’l’o (A) = A

In the sequel we will consider multiplicative Hom-associative algebras
(A, i, 8) which are finite dimensional, unital and are the direct sum of gen-
eralized eigenspaces of 3: A =kerf® E(1,8) ® E(A\2,8) @ --- ® E(Xs, B),
where E(), 3) is the eigenspace associated to an eigenvalue A of the linear
map .

4.3. (N, u',7')-derivation of current-Hom-Lie algebras. Let & : G ®
A— GoAbea (N, u,v)-y"-derivation of the current multiplicative Hom-
Lie algebra (G ® A, [-,],7). Then

N ([z2®a,y®0b])=p[P(x®a),7y (y@b)] +7' [ (z®a), By @b)], (10)

and @ can be written in the form @ = Z fi®g; and v" = " ® 8", where [ is
i€l

a finite set of indices, and f; and g; are linear maps f; : G — G, g; : A — A,

respectively. From this and (10) we obtain

Z Nfi([z,ylg) ® gi(ab) — (1 [fi(x), o" (y)lg ® gi(a)B" (D) (11)
- +7'[e (@), fi(y)lg ® B"(a)gi(b)) = 0.
Proposition 11. We have
Derf (G & A)=Car (G) © End(A +Z S pern 0y Derﬁiﬁ’l’o(A)
+Dergi*(G) @ Dery*(A) + 1;;110 %(G) ® Der Y A).

Proof. We have (X, u/,7') = (6,1,0). Let (ek,--- e Sk) be an ordered
basis of E(Ay, 8). Taking a = ef and b = 1 in (11), then using al = S(a)
and gi(a)l = B(gi(a)), we obtain &'A¢f; ([z,ylg) = Ae[fi(x), " (y)]g-
Replacing [fi(z),a"(y)]g by %fi ([x,y]g) in (11), we obtain

S i) © (sah) - a5 ) =

i€l
Hence, there is a partition I = I; U I, U I3 U I4 such that
(a) fz([w ylg) = [fi(z),a"(y)]g = 0 for any iely,
(b) 832 fi ([2,9]g) = [fi(x), 0" (y)]g and 3 Segi(ab) = gi(a)B"(b) for any i € I,

) z,
(c) f ([ ylg) = 0 and g;(a)8"(b) = 0 for any i € I,
(d) [f () "(y)]g = 0 and g;(ab) = 0 for any i € Iy.
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Proposition 12. If 5 is invertible, then
Der‘s;’l’l(g ® A) =Cor(G) ® End(A)+ (Deri’?’o(g) N Derd:t 1(g)) ®Derg;1’71(,4)

&5t L.1,0
+ Z Der )® Der?} BLA) + Z Der,.’ " (G)® Dergﬁ (A)
1<i,j<s
534,10 2
+ Z Der,"" (G) @ Dergl (A)

Proof. Suppose (X, p',7') = (6',1,1). Skew-symmetrizing the equality
(11) with respect to z, y, we get
> i), o" g = [a (2), fi(y)lg) @ (gi(a) 5" (b) = 5" (a)gi(B)) = 0.
i€l
Hence, the index set can be partitioned as I = I; U I in such a way that

[fi(x),a"(y)lg = [a"(x), fi(y)]g for any i € I1, and gi(a)B"(b)—p"(a)gi(b) = O

for any i € Is. Then (11) can be rewritten as

>0 fi ([, 9lg) @ gi(ab) — [fi(x), a" (y)]g © (g:(a) 8" (b) + B (a)gs(b)) = O
i€l
(12)

and
> 8 fi ([, 9)g) ® giab)—([fi(@), " ()]g + [ (x), fi(y)lg) © gi(a) 8" (b) =0.

i€ly

Let {e}, - ,ef } be an ordered basis of E(Ag, 8) and 8(gi(1)) = Aegi(1).
Denote by 117 = {Z el ’ gi(l) + 0} and [ = {Z el ‘ gi(l) = 0}

Taking a = b = 1 in (12), then using (1) = 1 and 1g;(1) =
Agi(1), we obtain &' f; ([x,y]lg) = 2 k[ fi(2), " (y)]g. Plugging th1

we get > ey, [fi(@), 0" (y )]g®(2)\k9i(ab) 9i(a)B"(b) — B"(a)g ()
Hence, there is a partition I;1 = Ji1 U Jio such that

fi([z,9]g) = [fi(x),a"(y)lg =0 for any i € Ju,

\—/U)/-\
=
.A\_/

I—‘\/

and

0'fi ([z,ylg) =2\l fi(x), a" (y)]g, 2Akgi(ab)=gi(a)B"(b)+B"(a)gi(b) Vi € Jra.
Taking a = e? and b = 1 in (12), then using (1) = 1 and 1lg;(a) =

B(gi(a)) = Ajgi(a), we obtain &'\t fi ([z,ylg) = \j[fi(z),a"(y)lg. Plugging
this in (12), we get

r A a _ a T _ Ta ) —
Z[fxx),a(y)]g@(higl( b) - g:(a) " (b) ﬁ()gz(b)> 0.

€19
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Hence, there is a partition I;o = Jo1 U Joo such that
fi ([, ylg) = [fi(x), a"(y)]g = 0 for any i € Ja1,

and
O M. fi ([, ylg) = Al fi(x), " (y)]g, :\\igi(ab)zgi(a)ﬁ”( )+8"(a)gi(b) Vi € Jzo.

Taking a = e;? and b =1 in (13), we obtain
&' fi ([2,9lg) = A; ([fi(@), " (y)]g + [a" (@), fi(y)]g). Plugging this in (13),
we get > icp, fi([z, y]g)@(i—igi(ab) - gi(a)ﬁr(b)> = 0. Hence we may assume
that the indexing set is partitioned into two subsets Is = I51 U Iso such that
fi([z.ylg) = [fi(z),a"(y)]g + [a"(2), fi(y)]lg = 0, for all i € Iz, and for all
i € Ipz we have §'3: f; ([2.y]g) = [fi(z), 0" (9)lg + [o" (2), fi(y)]g = 0, and

%gi(ab) = gi(a)B"(b).
O

4.4. Centroids of current Hom-Lie algebras. Using Proposition 11 and
the fact that £ is an isomorphism, we get the following result.

Proposition 13. One has
L1, £.1,0
Dy (G® A) = Cor(G) ® End(A)+ > > Deryl (G)® Derji’ ™ (A).

Corollary 3. Suppose G is finite dimensional, simple and B = id4. Then
Io(GRA)NCHGRA) = A
Theorem 4. If G is a perfect Hom—Lie algebra, then

A
21,0

(G A) = ZZDGTQT ’0 ®Der$ﬁ7 T (A).

i=1 j=1
Theorem 5. Suppose G is finite dimensional and perfect. Then
[y (G @ Clt]) = Tar (G) ® C[t].

4.5. Derivations of current Hom-Lie algebras. Letting ¢’ = 1 in Propo-
sition 12, we obtain the following result.

Theorem 6. Any derivation in Der,r(G ® A) is a linear combination of
~"-derivations f ® g of the five following types:

(@) f(l2.vlg) = [f(2),a"(y)]g =0 ;

(i) f(lz,9lg) = x[f(@), 0" (W)]g,  2Xig(ab) = g(a)B"(b) + 7 (a)g(b);

(i1) f([z,ylg)= [f(ﬂ?) o (y)]g+e"(z), f(y)lg =0, g(a)ﬂT(b):ﬂr( a)g(b);

(iv) %f([ ]g) = [f(z),a"(W)]g + [&" (), f(W)lg, Ftg(ab) = g(a)B"(b),
V yJef{l, - s}
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(v) Ff([z,9)g) = [f (@), 0" (v)]g, g(ab) = g(a)B7(b) + 57 (a)g(b) Vi, j €
{17 ce ’5} ;

forallz,y € G, a,b € A.

4.6. Derivations of current Hom-Lie algebras of small dimensions.
In the following, we describe the ~"-derivations of four-dimensional com-
plex current Hom-Lie algebras corresponding to the classification provided
in Remark 1. Let {e1,ea2} be a basis of L; and { f1, f2} be a basis of A;, for
i€ {1,2} and j € {1,...,7}. We consider the following basis for L; ® A;,
with 7 € {1,2} and j € {1,...,7}, {u1 =e1® f1, us = €1 ® fa, ug = ea ® f1,
ug = €2 ® fa}. In the following table, we set D; j := dim(Deryr (Li @ Aj)).

L1 ® Aj De’l"%rj (Ll (24 A]) Di,j

Li® A, | d(uy) = d(us) = 0, d(uz) = daa(—1)" (Hul n ug) 1
d(ug) = dyg %Uz + uq

Ly ® Ay [ d(ur) =d(ug) =0, d(ug) = dis (u1 + Fus) , d(us) = dogus 2
d(uy) = di1 (uq — (1 — p")uz), d(uz) =0

Li® As d(’u,g) = dizuy + %(1 — U )d11u2 + (d11 + £ d13) 3
d(’LL4) = d24’LL2

Ll ® A4 d(ul) d(UQ) = 0 d(U3) = d13u1 =+ ng’LLQ =+ d13 )\Ug =+ d23 AU4 4
d(ug) = drgur + daguz + dig§us + daa§uy
d(uy) = di1ur + darug — (di1 + da1) us

Li® As | d(ug) = diouy + dagug + dsaus
d(uz) = dizuy + dazug + dzzus 9
d(ug) = —2diguy + doguy — 2dsouz + (daz + Sdas)
d(u1) = diiur + dorug, d(ug) = p"diius

L1 ® Ag d(U3) = di3uy + dozus + (dll + %dlg) us + + (d21 + %dgg) Uy 6
d(uy) = diguy + doguy + §dygug + (p"diy + Gdas) ug

r€{0,1} | d(u1) = di1 (w1 —ug), d(uz) = diaus + dsaus

Li®A7 | d(ug) = % (dag — dr1) ur + (%du + d44) ug 3
d(uyg) = diguy + dogug + dzgus + daguy

L2 ® A1 d(ul) d(UQ) = 0 d(U3) ( 1)”d24u1 ].

()\ = 1) d(U4) d24'LL2

L2 X Ag d(ul) d( )

()\ = 1) d(U3) d 13U1, d(U4) = d24’UQ 2

LQ X A3 d(ul) >‘M1d13u1, d( ) = O d( ) = dlgul, d(U4) = dg4U2 2

Ly ® Ay | d(ur) = %dwuh d(uz) = ,\>‘f (/\rd24 — di3) us
d(us) = dizur, d(us) = dogus + =% p (d2g — d13) ug 4

LQ (2] A5 d(ul) = dnul, d(UQ) = dQQUQ, d(U3) = d33U3 4
d(ug) = dagug + (daz — %d% Uy
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d(uy) = diyuy + darug

Lo ® AG d(UQ) = (()\T + l)dn — )\r(%)dng) U9
d(u3) = dizuy + dazuz + (dn + %dlg) us + (d21 + %d%) Ug 5
d(uyg) = dagus + (()\T + 1)di + %)\legg + %)\Tdm) Uy
d(u) = di1 (u1 — u3)

Ly ® A7 | d(ug) = diout + (1 + p)dirug + dsauz — Adyjuy
d(U3) = d13U1 — H'T“duu;), 6
d(ug) = drguy + (W%de + %) ug + dzquz — Wdum

4.7. Extensions by derivations. Let (G, [, ],«) be a Hom-Lie algebra and d be
a derivation of this Hom-Lie algebra. Define a skew-symmetric bilinear map [-, ]q
on the direct sum G @ Cd by [z + Nd,y + p/d] = [z,y]g + Nd(y) — p/'d(z).

Define ag € End(G @ Cd) by ag(z + Nd) = a(x) + Nd.

Theorem 7 ([20]). With the above notations, (G & Cd, |-, |4, @q) is a Hom-Lie
algebra.

Example 12. Define a linear map d: L(G) — L(G) by d(z ® t") = nz ® t".
Then ((G®C[t,t7]) & (Ca®tl-), [, ]4,74) is a Hom-Lie algebra.

5. Scalar second cohomology group

The general Chevalley—Eilenberg cohomology theory of Hom-Lie algebras was
initiated in [13] and established in [2, 20]. We deal here only with scalar cohomology.
A scalar k-cochain is an alternating k-linear map from (G ® A)* to C. The vector
space of scalar k-cochains is denoted by C*(G ® A,C) and by definition C°(G ®
A,C) = C. In this section, we study the second cohomology group of current Hom-
Lie algebras with coefficients in a trivial representation.

The coboundary operator 6*: C*(G ® A,C) — C*+1(G ® A, C) is given by

§*(f © g)(wo @ ag, ...,z @ ag)
= Z (_1)t X f (O‘(xO)v T 701(-1'571)7 [xsth]’ O‘('rSJrl)v T "i'\ta T va(xk»

0<s<t<k
& g (ﬁ(ao)a e 75(04371)’ asat7ﬁ(as+1)7 e 764\157 e 7B(ak)) .

Denote by Z¥(G ® A) and B*¥(G ® A) the corresponding space of k-cocycles and
k-coboundaries, respectively. We denote the resulting cohomology by H*(G ® A).

In the following, we give a result similar to [26, Theorem 1.1], in the case of
current Hom-Lie algebras.

Theorem 8. Let G® A be a current Hom-Lie algebra such that either G or A is
finite dimensional. We denote by S?(A) the set of all bilinear maps g : A x A — A
which are symmetric in the sense that g(a,b) = g(b,a) for all a,b € A and C*(A)
the set of all bilinear maps g : A x A — A which are skew-symmetric in the sense
that g(a,b) = —g(b,a) for all a,b € A.

Then each cocycle in Z2(G®R A) is a linear combination of cocycles of the 8 following
types:
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(1) f([z,2],a(y) =0, f € C*(G) and g € S*(A);

(2) f e Z%G,C), glac, B(b)) = g(be, B(a)) and g € S*(A);

(3) f([z, 2], ly)) = f(a(2),[y,2]), glab, B(c)) + g(ac, B(b)) + g(B(a),bc) = 0 and
f®geC?*(G)® S (A);

(4) g(ab, B(c)) =0 and f ® g € C*(G) ® S?(A);

(5) f([z,z],a(y)) =0 and f@ g € 52( ) ® C*(A);

(6) —f ([z, 9], a(2)) + f ([z, 2], a(y)) = f (a(x), [y, 2]) = 0, g(ab, B(c)) = g(be, B(a))

and f @ g € S*(G) ® C*(A);

(1) f([2, 2], ay)) + f (a(2),[y,2]) = 0, g(ab, B(c)) + glac, B(b)) + g(be, B(a)) =0
and f ® g € S?(G) ® C%(A )

(8) g(ab,B(c)) =0 and f ® g € S?(G) @ C%(A).

Now, we will describe the second cohomology group of Loop Hom-Lie algebra
L(G), where the Hom-Lie algebra G is multiplicative simple (for the definition of
Loop Hom-Lie algebra, see Example 8).

First we give a relationship between simple multiplicative Hom-Lie algebras and Lie
algebras, as well as some relevant properties.

Lemma 1 ([5]). Define the bracket [-,-]': GxG — G by [z,y] = [a" 1 (x),a 1 (y)]
for all x,y € G. The induced Lie algebra (G, [x,y]’) of the multiplicative simple

Hom-Lie algebra (G, [, -], @) is semisimple and can be decomposed into a direct sum
of isomorphic simple ideals: G = G1 ® a(G1) ®--- D a"(Gy).

Lemma 2. For all i,j € {0,---,r}, the ideals a*(G1) and o’ (Gy) of the Lie
algebra (G, [-,-]') are isomorphic.

The previous lemmas lead us to see the Lie case.

Lemma 3 ([6]). A finite-dimensional simple Lie algebra G has only trivial 2-
cocycle.

Lemma 4 ([6]). Every symmetric associative bilinear form on a simple Lie
algebra is proportional to the Cartan-Killing form: K(z,y) = tr (ady o ady), for
all x, y € G.

Lemma 5. Every 2-cocycle on the induced Lie algebra (G, [-,+]') is a linear com-
i : _ [ P(x,y), i,y €al(Gr)
bination of the 2-cocycles @; given by ®;(x,y) = { 0, therwise.

Lemma 6. A skew-symmetric bilinear map @ is a 2-cocycle on the multiplicative
simple Hom-Lie algebra (G, [-, ], @) if and only if it is a 2-cocycle on the induced Lie
algebm (ga ['7 ],) .

Now, we state the main result of this section.

Theorem 9. Let (G,[,],@) be a finite-dimensional simple Hom-Lie algebra.
Then the space H*(L(G)) is generated by the maps ®;: L(G) x L(G) — C defined
by:

) n my _ n 5n+m,0 K(.’L‘,y), if v,y € ai(gl)
Pi(z @ty @t") = { 0, otherwise.

Hence, dim H?(L(G)) = r + 1.
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Proof. Let ® = f ® g be a 2-cocycle on the simple Hom-Lie algebra (G, [-, ], «).
® is a 2-cocycle of type 1: Let z,y € G. Since G is simple and « is an isomor-
phisme, we can write z = [a,b] and y = a(c). Then f(z,y) = f([a,b],a(c)) = 0.
® is a 2-cocycle of type 2: By Lemma 3, Lemma 2 and Lemma 5, we obtain that
the 2-cocycle f is trivial.

Taking a =t", b =1t", ¢ = t°, we get

g(ab, B(c)) = g(be, B(a)) = g((qt)"(qt
— g(tn+m7ts

)™ (at)*) = g((qt)™ (qt)*, (qt)")

) = gt tn). (14)
Taking m + s = 0 in (14), we get g(t"*™,t~™) = g(1,t"). Let h(t") = ¢ "g(1,t").
Then, g(t",t™) = g(1,t"t™) = ph(t"*t™), 0 = ¢~ ™*™) . Thus g is trivial.

Since f and g are trivial, one can deduce that ¢ = f ® ¢ is trivial.

& is a 2-cocycle of type 3: We have g(ab, 5(c)) + g(ac, B(b)) + g(B(a), bc) = 0. Then

g™t ) + g(t" T ™) + g (£, ) = 0. (15)
1

Taking s = 0 in (15), we obtain g(t",t™) = 5 (t"*™,1). Then, using (15) and that
g is symmetric, one can deduce g (t"T™%$ 1) = 0. Thus g = 0.

& is a 2-cocycle of type 4: By g(ab, 5(c)) = 0, we obtain g = 0.

@ is a 2-cocycle of type 5: Similarly to type 1, we obtain f = 0.

& is a 2-cocycle of type 6: We have g(ab, 8(c)) = g(be, 8(a)). Then

g™t ) = g(t™ e ). (16)

Taking m = 0 in (16), we obtain g(t",t*) = g(t°,t™). Since g is skew-symmetric,
one can deduce g = 0.
& is a 2-cocycle of type 7: Let o' = a(z), v’ = a(y) and 2’ = a(z). We have
F@ 2T = f(al@), a7 (), a7 (2)]) = £ (a(z), [07 (y), a7 (2)])
= f ([wva_l(yl)}’zl) = f ([a_l(x/)’ a_l(y/)],zl) = f ([xlvy/]/7 Z/) .

Then the symmetric bilinear form f is associative in the induced Lie algebra (G, [, -]’).
Define a symmetric associative bilinear form f; by

ooy @), iy € al(Gr)
filw,y) = { 0, otherwise.
Since a'(G;) is a simple ideal of the Lie algebra (G,[-,-]'), by Lemma 4, one can

deduce f;(z,y) = N\iK (z,y) for all 2,y € o’(G1) and f(x,y) = Z)\lfl(%y)
By g(ab, B(c)) + glac, B(b)) + g(be, B(a)) = 0, we obtain -
G ) 4 g (£ 4 g (£ 47 = 0, (17)

Take s = 0 in (17). Since g is skew-symmetric, we obtain g(t"*™,1) = 0.
Take n+s = 0in (17). Using g(t"™,1) = 0 and that g is skew-symmetric, we obtain
g(tntm ) = g(¢™,t™ ™). Fix k € Z and let n +m + s = k. Then

G g (i ) g1 ) = 0.
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Therefore, g(¢"+mtk t—n=—m) = g(gm+k t=m) 4 g(gntk ¢=n),

Let U, = g(t"**,t=™). Then U,y = U, + U,. Hence, U,, = m U;. There-
fore, g(t™** t—™) = m U;. Thus g(tm ") = Spimnr m UF and g(tn,tm) =
Optm,k Ul(k) = —Optmi (Mm—F) U1 . Since g is skew-symmetric, one can deduce
k=0or Ul(k) = 0, which gives g(t", ™) = 6pym,0 0 Ul(o).

& is a 2-cocycle of type 8: By g(ab, 5(c)) = 0, one can deduce g = 0. O

Example 13. The induced Lie algebra of (slz(C), [, ],a) (see Example 1) is
given by [z, 5] = —%T/za [z1,23) = [a™(21),a7 (23)] = a%x& [22, 23] = 122;?%1
By dim (sl2(C)) = (r+1) dim (G1) and [a?(G1), 0/ (G1)]' = 8 ;[a*(G1), *(G1)], we ob-
tain 7 = 0. Hence dim H?(L(sl5(C))) = 1 and each non trivial 2-cocycle of L(sl2(C))
(a ¢ {—1,0}) is proportional to the linear map @: L(sly(C)) x L(slz(C)) — C de-
fined by @ (z @ t",y @ t"™) = dpmtn,0 7 K(z,y). Furthermore,

P (r1@t", 21 @t™) = dppano n K(x1,21) = Ipman,o n tr (ad(xy) o ad(zy))

- 6m+n,0 n gv

D (x1 @™, 22 ™) = dppgn,o 1 K(21,22) = dppgn,0 1 tr (ad(z1) o ad(z2)) = 0;
D (x1 @1, 23 ™) = dpptn,o N K(21,23) = dpptn,0 1 tr (ad(z1) 0 ad(zs)) = 0;
D (22 @1, 22 ™) = Sppgn,0 N K(x2,22) = dppgn,0 1 tr (ad(z2) 0 ad(z2)) = 0;
P (2@t 23t™) = Ipano n K(x2,23) = Ipman,o n tr (ad(xz2) o ad(zs))
1+a
- 6’m+n,0 n 2 a5 )
D (23 1", 23 ™) = dpgn,0 1 K(x3,23) = dpptn,0 1 tr (ad(zs) o ad(zs))
1+a
= 5m+n70 n(72)7

Using Theorem 8, one obtains the second cohomology group of the truncated
Hom-Lie algebra L (see Example 9 for the definition of L )

Theorem 10. Each non-trivial cocycle in Zg(fp) can be represented as the
sum of decomposable cocycles f @ g where f: L x L — C and g: C[t]/tPTIC[t] x
C[t]/tPT1C[t] — C are of one of the following 3 types:

(1) f(@r,2) = flz2,2) = f(2,2) =0, [ € S%(h1), g € C*(C[t]/tP*Ct]);

(2) f(z,2) =0, f € 8%(b1), g € C*(C[t]/t"*'Ct]) , g(t",t™) = g(1,1);

(3) f(z1,2) = f(2,2) = f(2,2) =0, f € C*(h1), g € S*(C[t]/t*T'C[t]).
6. Extensions of current Hom-Lie algebras

The aim of this section is to provide a method to construct Hom-Lie algebras by
extensions of current Hom-Lie algebras.

Definition 11 ([23]). An extension of a Hom-Lie algebra (G, [, ],«) by a rep-
resentation (V,[-, -]y, 8) is an exact sequence

0— (V,8) == (K,7) == (G,a) — 0
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satisfying v 0 i =i 0o f and o o m = w 0 7. This extension is said to be central
if [K,i(V)]xk = 0. In particular, if K = G x V, i(v) = v, forallv € V and
m(x) =z, for all z € G, then we have v(z,v) = (a(z), 5(v)) and we denote

0— (V,8) — (K,7) — (G,) — 0.

For convenience, we denote K = GxV = G®V and C*! = Hom(G*V!, V') where
G*V'!is the subspace of C*T!(K, K) consisting of products of k elements from G and
[ elements from V. Let d = p+ X\ + f where u € C%(G,G), A € CH! and f € C?P.
Let v = (o, f') € End(G® V). Now we shall determine the 2-cochains d satisfying
(K,d,~") is a Hom-Lie algebra. Let d =+ A + f, where p € C?(G,G), A € O}
and f € C%°. We have

Oaz,y,z d(W(LB + a), d(y + b, z+ C))

- <o e @), uly: 2)). A (@), My, ) =A@/ (1), Aw ) =A(wl,9), 8'(0))

(0 (2) A@,5)) = A (@ (@), Az 0) = A(pl=,2), 8'(0) ) + (£ (@, z>>
where

3*(f)(x,y.2) = <>\ (@ (@), f(y,2)) + A (& (y), f(z,2)) + A/ (2), f(z,y))

+f (@ (2), uly, 2)) + f (@' (), p(z,2)) + [ (o' (2), i, )))-

Then Oy . d(y(z +a),dly+b,z+¢) =0 = Ogy,. pld/(z), u(y,z)) = 0.
Hence (G, u, ') is a Hom-Lie algebra. We assume that (V; A\, 5’) is a representation
of (G, u, ).

Theorem 11. If (V,\, ) is a representation of (G, u,«). Then (K,d,v) is a
Hom-Lie algebra if and only if [ is a 2-cocycle on V.

Theorem 12. A cohomology class [f] € H*(G,V) defines an extension of the
Hom-Lie algebra G which is unique up to equivalence.

6.1. Classification of central extensions of Hom-Loop algebras. By Theo-
rem 8, Theorem 9 and Theorem 12, we obtain the following result.

Proposition 14. Any central extension of a Hom-Loop algebra is_equivalent to
the extension defined by the skew-symmetric map d: L(G) x L(G) — L(G) given by
dz @t",y@t™) = ¢" ™2, y] @ "™ + 6ptmo n K(z,y) and the endomorphism
v: L(G) — L(G) given by v(z ®@t") = ¢"a(z) @ ™.

Example 14. Any central extension of a Hom-Loop algebra L(sly(C)) is equiv-
alent to the extension given by

d(z1 @™, 21 @t™) = Opmno n ¢ d(zg @ ", 22 ™) = —2a¢" "z @ "

d(z1 @ 1", 23 @ ™) = 2¢" T ws @ " d(wy @ 1", w0 @) = 0;

1 1
dxa @t", z3 Q™) = — ;L aq"erzl ® ™ 4 + a§m+n70 n ¢
a
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1+a
dzz @t", 3 t") = — 1 Om+n,0 M G

Y(z1 @) = aq"z1 @7, Y(zy @ t7) = a®¢"xy @7, Y(z3 @ ") = aq w3 @

and ¢ = —.
at

6.2. Classification of central extensions of Hom-truncated Heisenberg
algebras. In Theorem 10, we denote f(z,z) = f11, f(y,x) = f(z,y) = fi2,
f(x,z) = f(zax) = f137 f(yvy) = f227 f(zvy) = f(yvz) = f237 f(Z,Z) = f23
and g(t™,t") = g(t",t"™) = ypm for all n,m € {0,--- , p}.

Theorem 13. Any central extension of a Hom-truncated Heisenberg algebra

z(hl)p is equivalent to one of following extensions:

(1) [.73 ", T ® tm} = fll Tnm C15 [x @ty tm} = qn+mz Q™ 4 f12 YnmC1;

n m| .
- ’
[y®t",y @] = farynm 1

(2) [l’ (29 tnwr & tm] = fll Ynm C1; [.’IJ & t"7y & tm] = qn-i-mz & tn+m + f12 Ynm C1;

[m®tnvz®tm] = f137nm C1; [y®t"7y®tm] = f22'ynm C1;
[y @t", 2 @t™] = faz Yom 15

(3) [.’ﬂ ® tn,l' ® tm} = f11 Ynm C15 [ZL’ ® t",y ® tm] = q"*mz (24 thrm + flg Ynm C15

an

1
2
3
4
5
6
7
8
9

10

[11

[y®tn7y®tm] = f22’ynmclf
dy(x@t") = Mg"z @t", (Y @1") = 2q"y @ 1", Y(z @ ") = A"z D ™.
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