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Current Hom-Lie algebras

Torkia Ben Jmaa, Abdenacer Makhlouf, and Nejib Saadaoui

Abstract. In this paper, we study Hom-Lie structures on tensor prod-
ucts. In particular, we consider current Hom-Lie algebras and discuss
their representations. We determine faithful representations of minimal
dimension of current Heisenberg Hom-Lie algebras. Moreover deriva-
tions, including generalized derivations and centroids, are studied. Fur-
thermore, cohomology and extensions of current Hom-Lie algebras are
also considered.

Introduction

Current algebra or Current Lie algebras were introduced first in Physics
by Murray Gell-Mann to describe weak and electromagnetic currents of the
strongly interacting particles, hadrons, leading to the Adler–Weisberger for-
mula and other important physical results. Important examples include
Affine Lie algebra, Chiral model, Virasoro algebra, Vertex operator algebra
and Kac–Moody algebra. The concept of a Hom-Lie algebra was initially
introduced by Hartwig, Larsson, and Silvestrov in [7]. It was motivated
by quantum deformations of algebras of vector fields like Witt and Vira-
soro algebras. Hom-Lie structures were discussed in [4, 9], their deriva-
tions, representations, cohomology and deformations were studied first in
[13, 2, 20]. In this paper we extend current Lie algebras theory introduced
in [24, 25, 26] to Hom-Lie context, see also [1, 19]. A current Lie algebra is
a Lie algebra of the form L ⊗ A, where L is a Lie algebra, A is a commu-
tative associative algebra, and the multiplication in L⊗A being defined by
the formula [x ⊗ a, y ⊗ b] = [x, y] ⊗ (ab), for any x, y ∈ L, a, b ∈ A. More
generally, Lie structures on tensor products were studied by Zusmanovich in
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[24], while Hom-Lie structures on a current Lie algebra L⊗ A were consid-
ered by Makhlouf and Zusmanovich in [15]. The second aim of this paper
is to discuss Hom-Lie structures on tensor products L ⊗ A, where L and A
are vector spaces such that either L or A is finite dimensional and endowed
respectively with bilinear maps [·, ·] : L× L→ L and µ : A×A→ A.

The paper is organized as follows. In Section 1, we review definitions and
properties of Hom-Lie algebras and Hom-associative algebras. Moreover var-
ious relevant examples and low dimensional classification are given. In Sec-
tion 2, we characterize Hom-Lie structures on tensor products L⊗A, where
either vector space L or vector space A is finite dimensional. We consider
current Hom-Lie algebras (L⊗A, [·, ·]L⊗A, γ), where [·, ·]L⊗A : L⊗A×L⊗A→
L⊗A is a bilinear map and γ : L⊗A→ L⊗A is a linear map, for which we
provide a classification of 4-dimensional current Hom-Lie structure algebras
L ⊗ A. Section 3 is dedicated to representation theory of current Hom-Lie
algebras, and semidirect products and faithful representations of minimal
dimension for current Heisenberg Hom-Lie algebras are considered there.
In Section 4, we discuss derivations, including generalized derivations, and
centroids of current Hom-Lie algebras. Moreover, explicit computations are
provided. In Section 5, we study the second cohomology group of current
Hom-Lie algebras with respect to trivial representation and determine ex-
plicitly the second cohomology group H2(L̃(G)) of Hom-Loop algebra and

H2(L̂(h1)p) of Hom-truncated Heisenberg algebra. Finally, we study central
extensions of current Hom-Lie algebras and establish their classification for
Hom-Loop algebra and Hom-truncated Heisenberg algebra.

Throughout this paper, all the vector spaces are over the complex field
C and all vector spaces are at least one-dimensional. Many of the results
included in this paper are still valid if one considers any field.

1. Hom-Lie and Hom-associative algebras

In this section we summarize the relevant definitions and provide some
examples of Hom-Lie and Hom-associative algebras.

1.1. Hom-Lie algebras.

Definition 1 ([2, 12, 7]). A Hom-Lie algebra is a triple (G, [·, ·], α)
consisting of a vector space G, a bilinear map [·, ·] : G×G → G and a linear
map α : G → G satisfying

[x, y] = − [y, x] , (skew-symmetry)

[α(x), [y, z]] + [α(z), [x, y]] + [α(y), [z, x]] = 0, (Hom-Jacobi identity)

for all elements x, y, z in G. A Hom-Lie algebra is called multiplicative if α is
an algebra morphism, i.e. for any x, y ∈ G we have α ([x, y]) = [α(x), α(y)],
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and it is called regular if α is an algebra automorphism. We recover Lie
algebras when the linear map is the identity map.

Example 1 (Jackson sl2(C), [3]). Let {x1, x2, x3} be a basis of a 3-
dimensional vector space sl2(C) over C. The following bracket [·, ·] and
linear map α on sl2(C) define a Hom-Lie algebra over C:
[x1, x2] = −2ax2, [x1, x3] = 2x3, [x2, x3] = −1+a

2 x1,

α(x1) = ax1, α(x2) = a2x2, α(x3) = ax3, where a is a parameter in C .

Example 2 ([2, 12, 4]). Any non-abelian 2-dimensional complex multi-
plicative Hom-Lie algebra is isomorphic to one of the following isomorphism
classes defined with respect to a basis {e1, e2} by the bracket and a linear
map represented by a matrix with respect to the basis:

(a) L1: [e1, e2] = −[e2, e1] = e1 and α1 is represented by the matrix

(
0 λ
0 µ

)
.

(b) L2 : [e1, e2] = −[e2, e1] = e1 and α2 is represented by the matrix

(
γ η
0 1

)
,

with γ ̸= 0.

Proposition 1 ([5],[22]). Let (G, [·, ·]′) be a Lie algebra and α be a Lie
algebra endomorphism. Then (G, α ◦ [·, ·], α) is a Hom-Lie algebra.
Moreover, let (G, [·, ·], α) be a regular multiplicative Hom-Lie algebra. Then
(G, α−1 ◦ [·, ·]) is a Lie algebra.

Example 3 (Heisenberg Hom-Lie algebras, [16]). Let (hm, [·, ·]) be a
(2m+1)-dimensional Heisenberg Lie algebra and {x1, · · · , xm, y1, · · · , ym, z}
be a basis. The bracket is defined by [xi, yj ] = δijz for i, j = 1, · · · ,m, where
δij is the Kronecker symbol, other brackets are either zero or given by skew-
symmetry.

Let α be a Lie algebra morphism with respect to the previous bracket. The
morphisms are defined with respect to the basis {x1, · · · , xm, y1, · · · , ym, z}
by the following matrix :Xmm Tmm 0m1

Zmm Ymm 0m1

Lm1 Mm1 λ

, where

(
Xmm Tmm

Zmm Ymm

)
is λ-symplectic.

Acccording to the previous proposition, the bracket [xi, yj ]α = δijα(z), de-
fines a Hom-Lie algebra. .

Definition 2 ([3]). Let (G, [·, ·], α) be a Hom-Lie algebra. Let V be an
arbitrary vector space, β ∈ Gl(V ) be an arbitrary linear self-map on V and
[·, ·]V : G × V → V, (g, v) 7→ [g, v]V be a bilinear map.

The triple (V, [·, ·]V , ρ) is called a representation of the Hom-Lie algebra G
or a G-module V if the bilinear map [·, ·]V satisfies, for x, y ∈ G and v ∈ V ,

[[x, y], ρ(v)]V = [α(x), [y, v]V ]V − [α(y), [x, v]V ]V . (1)

When [·, ·]V is the zero-map, we say that the G-module V is trivial.
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Example 4. We construct a representation of the Hom-Lie algebra L1

defined in Example 2. Let V1 be a 2-dimensional vector space and let {v1, v2}
be its basis. Define ρ ∈ End(V1) by ρ(v1) = 0 and ρ(v2) = η v2, and a bilinear
map [·, ·]V1 : L1 × V1 → V1 by

[e1, v1]V1 = tv1, [e1, v2]V1 = 0, [e2, v1]V1 = −λ
η
t v1, [e2, v2]V1 = 0.

Then (V1, [·, ·]V1 , ρ) is a representation of L1.

1.2. Hom-associative algebras. In this section, we summarize some ba-
sics about Hom-associative algebras. For more details, see [12, 13, 11, 2].

Definition 3. A Hom-associative algebra is a triple (A, µ, β), in which
A is a vector space, β : A → A a linear map and µ : A × A → A a
bilinear map, with notation µ(a, a′) = aa′, satisfying, for all a, a′, a′′ ∈ A:
β(a)(a′ a′′) = (a a′) β(a′′), called the Hom-associativity condition.
A Hom-associative algebra is called multiplicative if for all a, b ∈ A β(ab) =
β(a)β(b). A Hom-associative algebra is said to be unital if there exists a unit
element 1 such that β(1) = 1 satisfying β(a) = 1 a = a 1.

Example 5 (Laurent polynomials Hom-associative algebra). Consider
the Laurent polynomials algebra A = K[t, t−1]. Let βi be an algebra endo-
morphism of A which is uniquely determined by the polynomial βi(f)(t) =
f((qt)i). Define µ by µ(f, g)(t) = f(βi(t))g(βi(t)) for any f , g in A. Then
Ai = (A,µ, βi) is a unital commutative Hom-associative algebra.

Proposition 2 ([14]). Any 2-dimensional complex commutative multi-
plicative Hom-associative algebra with basis {f1, f2} is isomorphic to one of
the following isomorphism classes, where the linear map β is given by its
matrix with respect to the basis:

Ai µi βi

A1 f1f1 = −f1, f1f2 = f2 , f2f2 = f1.

(
1 0
0 −1

)
.

A2 f1f1 = f1, f1f2 = 0 , f2f2 = f2.

(
1 0
0 0

)
.

A3 f1f1 = f1, f1f2 = 0 , f2f2 = 0.

(
1 0
0 0

)
.

A4 f1f1 = f1, f1f2 = f2 , f2f2 = 0.

(
1 0
0 1

)
.

A5 f1f1 = f1, f1f2 = 0 , f2f2 = 0.

(
0 0
0 k

)
.

A6 f1f1 = f2, f1f2 = 0 , f2f2 = 0.

(
1 0
0 1

)
.

A7 f1f1 = 0, f1f2 = a f1 , f2f2 = b f1.

(
0 1
0 0

)
.
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Definition 4. Let (A,µ, β) be a Hom-associative algebra, M be a vector
space and φ :M →M be a linear map.

(i) A left A-module structure on (M,φ) consists of a bilinear map
µM : A×M →M ; (a,m) 7→ a •m satisfying the conditions:

φ(a •m) = β(a) • φ(m), β(a) • (a′ •m) = (a a′) • φ(m), (2)

for all a, a′ ∈ A and m ∈M .
(ii) A right A-module structure on (M,φ) consists of a bilinear map

µM : M ×A→M ; (m, a) 7→ m • a satisfying the conditions:

φ(m • a) = φ(m) • β(a), φ(m) • (aa′) = (m • a) • β(a′), (3)

for all a, a′ ∈ A and m ∈M .
(iii) A two sided A-module structure on (M,φ) or an A-bimodule consists

on a left A-module structure and a right A-module structure on (M,φ)
satisfying the compatibility condition: β(a) • (m • a′) = (a •m) • β(a′),
for all a, a′ ∈ A and m ∈M .

If A is unital we assume that 1 •m = m • 1 = φ(m) for all m ∈M.

Throughout the article, we mean by a representation (M,µM , φ) of a
Hom-associative algebra (A,µ, β) an A-bimodule structure on (M,φ).

Now, we construct left modules and representations of the Hom-associative
algebra A1 defined in Example 2.

Example 6. Let W1 be a 2-dimensional vector space and {w1, w2} be its
basis. Define φ1 ∈ End(W1) by φ1(w1) = −w1 and φ1(w2) = w2. Define
a bilinear map [·, ·]W1 : A1 ×W1 → W1 by [f1, w1]W1 = w1, [f1, w2]W1 =
−w2, [f2, w1]W1 = sw2, [f2, w2]W1 = −1

s w1, where s is a parameter. Then
(W1, [·, ·]W1 , φ1) is a left A1-module.

Example 7. Let W ′
1 be a 2-dimensional vector space and {w1, w2} be its

basis. Define φ1 ∈ End(W ′
1) by φ1(w1) = −w1 and φ1(w2) = w2. Define a

bilinear map [·, ·]W ′
1
: A1 ×W ′

1 →W ′
1 by

[f1, w1]W ′
1
= dw1, [f1, w2]W ′

1
= w2, [f2, w1]W ′

1
= sw2, [f2, w2]W ′

1
= 1

s w1, and

a bilinear map [·, ·]W ′
1
: W ′

1 ×A1 →W ′
1 by

[w1, f1]W ′
1
= 1

d w1, [w1, f2]W ′
1
= −w1, [w2, f1]W ′

1
= −1

d w2, [w2, f2]W ′
1
= w2,

where d, s are parameters.
Then (W ′

1, φ1) is a two-sided A1-module or a representation of A1.

2. Hom-Lie structures on tensor products G ⊗ A

In this section, we aim to characterize tensor products that provide a
Hom-Lie algebra structure and discuss current Hom-Lie algebras. Moreover,
we give some examples of current Hom-Lie algebras and a classification of
four dimensional current Hom-Lie algebras, where the Hom-Lie algebra and
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the Hom-associative algebra are 2-dimensional. First, we recall the following
relevant result of linear algebra.

Proposition 3 ([25], Lemma 1.1). Let U , W be two vector spaces where
either U and W or both U and W are finite-dimensional. Let S, S′ ∈
Hom(U, ·), T, T ′ ∈ Hom(W, ·). Then

Ker(S ⊗ T ) ∩Ker(S′ ⊗ T ′) ≃ (KerS ∩KerS′)⊗W +KerS ⊗ kerT ′

+KerS′ ∩ kerT + U ⊗ (KerT ∩KerT ′).

One has the following corollary, see [25].

Corollary 1. Let G and A be two vector spaces such that at least one of
G and A is finite-dimensional. Let S, S′ and T, T ′ be linear operators de-
fined on the spaces of n-linear maps Gn → G and An → A, respectively. Let
αi : Gn → G and βi : A

n → A be n-linear maps.

If
∑
i∈I

S(αi) ⊗ T (βi) = 0 and
∑
i∈I

S′(αi) ⊗ T ′(βi) = 0, then the indexing set

is partitioned into the four subsets I = I1 ∪ I2 ∪ I3 ∪ I4 such that:

(i) S(αi) = 0 and S′(αi) = 0 for any i ∈ I1;

(ii) S(αi) = 0 and T ′(βi) = 0 for any i ∈ I2;

(iii) S′(αi) = 0 and T (βi) = 0 for any i ∈ I3;

(iv) T (βi) = 0 and T ′(βi) = 0 for any i ∈ I4.

Let G and A be two vector spaces such that at least one of G and A is finite-
dimensional. Let [·, ·]G : G×G → G and µ : A×A→ A be bilinear maps such
that [·, ·]G is not symmetric. Define a bilinear map [·, ·] : G⊗A×G⊗A→ G⊗A
by [x⊗a, y⊗b] = [x, y]G⊗µ(a, b). An arbitrary linear map ψ : G⊗A→ G⊗A
can be written in the form ψ =

∑
i∈I

αi ⊗ βi, where αi : G → G, βi : A → A

are (finite) families of linearly independent linear maps indexed by a set I.

Theorem 1. With the above notations, (G ⊗ A, [·, ·], ψ) is a Hom-Lie
algebra if and only if [·, ·]G is skew-symmetric, µ is symmetric and there
exists a decomposition of the set of indices I = I1∪ I2∪ I3∪ I4 such that one
of the following condition is satisfied:

(i) [[x, z]G , αi(x)]G = 0, for any i ∈ I1;
(ii) βi(a)(bc) = 0, for any i ∈ I2;
(iii) (G, [·, ·]G , αi) is a Hom-Lie algebra and (A,µ, βi) is a Hom-associative

algebra, for any i ∈ I3;
(iv) [αi(x), [y, z]G ]G = [αi(y), [x, z]G ]G and

βi(a)(bc) + βi(b)(ac) + βi(c)(ab) = 0 for any i ∈ I4.
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Proof. For any x ⊗ a, y ⊗ b ∈ G ⊗ A, we should have [x ⊗ a, y ⊗ b] =
−[y ⊗ b, x ⊗ a], that is [x, y]G ⊗ ab = −[y, x]G ⊗ ba. This implies [x, y]G =
−λ[y, x]G and ba = λab. Then −[y, x]G⊗ba = λ[x, y]G⊗λab = λ2[x, y]G⊗ab.
Hence λ2 = 1. Since [·, ·]G is not symmetric, we have λ = 1. Therefore, [·, ·]G
is skew-symmetric and µ is symmetric.

The Hom-Jacobi identity with respect to ψ may be written∑
i∈I

[αi(x), [y, z]G ]G ⊗ βi(a)(bc) + [αi(y), [x, z]G ]G ⊗ βi(b)(ca)

+ [αi(z), [x, y]G ]G ⊗ βi(c)(ab) = 0. (4)

Cyclically permuting x, y, z, in the last equality and summing up the ob-
tained 3 equalities, we get∑

i∈I

(
[αi(x), [y, z]G ]G + [αi(y), [z, x]G ]G + [αi(z), [x, y]G ]G

)
⊗(

βi(a)(bc) + βi(b)(ac) + βi(c)(ba)
)
= 0.

Skew-symmetrizing the equality (4) with respect to x, y, leads to∑
i∈I

(
[αi(x), [y, z]G ]G + [αi(y), [z, x]G ]G

)
⊗
(
βi(a)(bc)− βi(b)(ac)

)
= 0. (5)

By applying Corollary 1 derived from Proposition 3 (see [25, Lemma 1.1])
to the last two equalities, we complete the proof. □

Now, we consider the subclass of Hom-Lie algebras provided by Type (iii)
of Theorem 1, which corresponds to so called current Hom-Lie algebras.

Definition 5. A current Hom-Lie algebra is a tensor product of the
form (G ⊗A, [·, ·]G ⊗ µ, α⊗ β), where (G, [·, ·]G , α) is a Hom-Lie algebra and
(A,µ, β) is a Hom-associative commutative algebra. The current Hom-Lie
algebra is denoted by (G ⊗A, [·, ·]G⊗A, γ) instead of (G ⊗A, [·, ·]G ⊗ µ, α⊗ β).

Example 8 (Loop Hom-Lie algebras). For any Hom-Lie algebra

(G, [·, ·]G , α), set G̃ = G ⊗C[t, t−1], where C[t, t−1] denote Laurent polynomi-

als. We define a bracket [·, ·] on G̃ by

[x⊗ tn, y ⊗ tm] = [x, y]G ⊗ (qt)n+m, ∀x, y ∈ G, ∀n,m ∈ Z,

and an endomorphism γ : G̃ → G̃ by γ = α⊗β where β = β1 (see Example 2).

Then (G̃, [·, ·], γ) is a multiplicative Hom-Lie algebra, which we call a Loop
Hom-Lie algebra.

Example 9 (Truncated current Hom-Lie algebras). Let (G, [·, ·]G , α) be a
Hom-Lie algebra over the complex field C, and fix a positive integer p. Define
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an endomorphism β : C[t]/tp+1C[t] → C[t]/tp+1C[t] by β(f)(t) = f(qt). The

tensor product Ĝp = G ⊗ C[t]/tp+1C[t] with the bracket

[x⊗ f, y ⊗ g] = [x, y]G ⊗ f(qt)g(qt),∀x, y ∈ G, ∀f, g ∈ C[t]/tp+1C[t]
and the linear map γ = α⊗β is a Hom-Lie algebra, which we call Truncated
current Hom-Lie algebra.

We end this section by a remark about the classification of 4-dimensional
current Hom-Lie algebras.

Remark 1. Every current Hom-Lie algebra where both the Hom-Lie al-
gebra and the Hom-associative algebra are 2-dimensional is isomorphic to
one of the following non-isomorphic current Hom-Lie algebras G ⊗ A =
(Gp⊗Aq, [·, ·]Gp⊗µq, αp⊗βq), where

(
Gp, [·, ·]Gp , αp

)
, p = 1, 2, is a Hom-Lie al-

gebra given in Example 2 and (Aq, µq, βq), q = 1, · · · , 7, is a Hom-associative
algebra given in Example 2.

3. Representations of current Hom-Lie algebras

Let (G ⊗ A, [·, ·]G⊗A, α ⊗ β) be a current Hom-Lie algebra, V and W be
two vector spaces, [·, ·]V : G × V → V and • : A ×W → W be two bilinear
maps. Define a bilinear map [·, ·]V⊗W : G ⊗A× V ⊗W → V ⊗W by

[x⊗ a, v ⊗ w]V⊗W = [x, v]V ⊗ a • w,
for all x ∈ G, a ∈ A, v ∈ V,w ∈W.

Let ψ =
∑
i∈I

αiV ⊗ βiW be an endomorphism of V ⊗W. Assume that (V ⊗

W, [·, ·]V⊗W , ψ) is a representation of the current Hom-Lie algebra (G ⊗
A, [·, ·]G⊗A, α⊗ β). That is, we have∑

i∈I
[[x, y], αiV (v)]V ⊗ (ab) • βiW (w) (6)

= [α(x), [y, v]]⊗ β(a) • (b • w)− [α(y), [x, v]]⊗ β(b) • (a • w).
Skew-symmetrizing the previous equality with respect to x, y leads to(
[α(x),

[
y, v]] + [α(y), [x, v]]

)
⊗ (β(a) • (b • w)− β(b) • (a • w)) = 0. (7)

We have the following result.

Theorem 2. The triple (V ⊗W, [·, ·]V⊗W , ψV⊗W ) is a representation of
a current Hom-Lie algebra (G ⊗ A, [·, ·]G⊗A, α ⊗ β) if and only if one of the
following cases holds.

(1) There is a subset J of I and a sequence of complex numbers (λj)j∈J such
that

β(a) • (b • w) = β(b) • (a • w) =
∑
j∈J

λj (ab) • βjW (w)
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for all a, b ∈ A,w ∈W and

[[x, y], αjV (v)]V = λj ([α(x), [y, v]V ]V − [α(y), [x, v]V ]V )

for all j ∈ J, x, y ∈ G, v ∈ V . Hence (W, •,
∑
i∈J

λiβiW ) is a representation

of (A,µ, β) and (V, [·, ·]V , 1
λj
αjV ) is a representation of G.

(2) There is a subset J of I and a complex sequence (λj)j∈J such that

[α(x), [y, v]V ]V = − [α(y), [x, v]V ]V =
∑
i∈J

λi [[x, y], αiV (v)]V

and (ab) • βjW (w) = λj (β(a) • (b • w) + β(b) • (a • w))
for all j ∈ J, x, y ∈ G, v ∈ V,w ∈W .

Proof. One uses [25, Lemma 1.1], the proof is similar to Theorem 1. □

Corollary 2. Let (V, [·, ·]V , αV ) be a representation of the Hom-Lie alge-
bra (G, [·, ·]G , α) and (W, •, βW ) be a representation of the Hom-associative
algebra (A,µ, β). Then (V ⊗W, [·, ·]V⊗W , αV ⊗βW ) is a representation of the
current Hom-Lie algebra (G ⊗A, [·, ·]G⊗A, α⊗ β).

Example 10. Let L1 be the Hom-Lie algebra defined in Example 2 and
A1 be the Hom-associative algebra defined in Example 2. Let V1 be the
representation of L1 given in Example 4 and let W1 be the representation of
A1 defined in Example 6.

Define a bilinear map [·, ·]V1⊗W1 : (L1 ⊗A1)× (V1 ⊗W1) → V1 ⊗W1 by

[e1 ⊗ f1, v1 ⊗ w1]V1⊗W1 = t v1 ⊗ w1, [e1 ⊗ f1, v1 ⊗ w2]V1⊗W1 = −t v1 ⊗ w2,

[e1 ⊗ f1, v2 ⊗ w1]V1⊗W1
= 0, [e1 ⊗ f1, v2 ⊗ w2]V1⊗W1

= 0,

[e1 ⊗ f2, v1 ⊗ w1]V1⊗W1 = t s v1 ⊗ w2, [e1 ⊗ f2, v1 ⊗ w2]V1⊗W1 =
t

s
v1 ⊗ w1,

[e1 ⊗ f2, v2 ⊗ w1]V1⊗W1 = 0, [e1 ⊗ f2, v2 ⊗ w2]V1⊗W1 = 0,

[e2 ⊗ f1, v1 ⊗ w1]V1⊗W1 = −λ
η
t v1 ⊗ w1, [e2 ⊗ f1, v1 ⊗ w2]V1⊗W1 =

λ

η
t v1 ⊗ w2,

[e2 ⊗ f1, v2 ⊗ w1]V1⊗W1 = 0, [e2 ⊗ f1, v2 ⊗ w2]V1⊗W1 = 0,

[e2 ⊗ f2, v1 ⊗ w1]V1⊗W1 = −λ
η
t s v1 ⊗ w2, [e2 ⊗ f2, v1 ⊗ w2]V1⊗W1

=
λ

η

t

s
v1 ⊗ w1,

[e2 ⊗ f2, v2 ⊗ w1]V1⊗W1
= 0, [e2 ⊗ f2, v2 ⊗ w2]V1⊗W1

= 0,

and define a bilinear map [·, ·]V1⊗W1 : (V1 ⊗W1)× (L1 ⊗A1) → V1 ⊗W1 by

[v1 ⊗ w1, e1 ⊗ f1]V1⊗W1
=

1

d
t v1 ⊗ w1, [v1 ⊗ w2, e1 ⊗ f1]V1⊗W1

= −1

d
t v1 ⊗ w2,

[v2 ⊗ w1, e1 ⊗ f1]V1⊗W1
= 0, [v2 ⊗ w2, e1 ⊗ f1]V1⊗W1

= 0,

[v1 ⊗ w1, e1 ⊗ f2]V1⊗W1
= −t v1 ⊗ w1, [v1 ⊗ w2, e1 ⊗ f2]V1⊗W1

= t v1 ⊗ w1,

[v2 ⊗ w1, e1 ⊗ f2]V1⊗W1 = 0, [v2 ⊗ w2, e1 ⊗ f2]V1⊗W1 = 0,
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[v1 ⊗ w1, e2 ⊗ f1]V1⊗W1
= −λ

η
t v1 ⊗ w1, [v1 ⊗ w2, e2 ⊗ f1]V1⊗W1

=
λ

η
t v1 ⊗ w2,

[v2 ⊗ w1, e2 ⊗ f1]V1⊗W1
= 0, [v2 ⊗ w2, e2 ⊗ f1]V1⊗W1

= 0,

[v1 ⊗ w1, e2 ⊗ f2]V1⊗W1
=
λ

η
t , v1 ⊗ w1, [v1 ⊗ w2, e2 ⊗ f2]V1⊗W1

= −λ
η
t v1 ⊗ w2,

[v2 ⊗ w1, e2 ⊗ f2]V1⊗W1
= 0, [v2 ⊗ w2, e2 ⊗ f2]V1⊗W1

= 0.

Define αV1 ⊗ βW1 = ρ⊗ φ1 ∈ End(V1 ⊗W1) by

αV1
⊗ βW1

(v1 ⊗ w1) = 0, αV1
⊗ βW1

(v1 ⊗ w2) = 0,

αV1 ⊗ βW1(v2 ⊗ w1) = −η v2 ⊗ w1, αV1 ⊗ βW1(v2 ⊗ w2) = η v2 ⊗ w2.

Then, using Corollary 2, (V1 ⊗W1, [·, ·]V1⊗W1 , αV1 ⊗ βW1) is a representation
of L1 ⊗A1.

3.1. Semidirect Product. Given a representation (V, [·, ·]V , β) of a Hom-
Lie algebra (G, [·, ·], α). Define a skew-symmetric bilinear bracket
[·, ·]G×V : (G⊕V )2 → G⊕V by [(x, v), (y, w)] = ([x, y], [x, v]V − [y, w]V ) , and
a linear map α+ β : G ⊕ V → G ⊕ V by (α+ β) (x, v) = (α(x), β(v)).

Proposition 4 ([20]). With the above notations, (G ⊕ V, [·, ·]G×V , α+ β)
is a Hom-Lie algebra, which we call the semidirect product of the Hom-Lie
algebra G and V .

One may use Example 10 to construct a semidirect product on the Hom-
Lie algebra L1 defined in Example 4 and A1 the Hom-associative algebra
defined in Example 2.

3.2. Faithful representations of current Heisenberg Hom-Lie al-
gebras. The faithful representations of Lie algebras and superalgebras are
studied in [8, 21]. In this section we extend the study of faithful representa-
tions of minimal dimension of current Heisenberg Lie algebras, see [10], to
current Heisenberg Hom-Lie algebras.

Definition 6. A representation (V, [·, ·]V , β) of a multiplicative Hom-Lie
algebra (G, [·, ·], α) is said to be faithful if β is a bijective map satisfying
β ([x, v]V ) = [α(x), β(v)]V for all x ∈ G, v ∈ V and the map ρ : G → End(V ),
defined as ρ(x)(v) = [x, v]V , is injective.

Let G be a Hom-Lie algebra and set

µ(G) = min{dim V | V is a faithful G-module}.
Let hm be the (2m + 1)-dimensional Heisenberg Lie algebra defined in Ex-
ample 3 with respect to a basis {x1, · · · , xm, y1, · · · , ym, z} such that the
only non-zero brackets are [xi, yi]

′ = z for all i ∈ {1, · · · ,m} and let C[t]

be the polynomials algebra in one variable. Let p =
d−1∑
k=0

akt
k + td be a
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nonzero monic polynomial and let (p) be the principal ideal generated by
p. Let hm,p = hm ⊗ C[t]/(p) be the current Lie algebra associated to hm
and C[t]/(p). Let α be an algebra isomorphism of the Heisenberg Lie alge-
bra (hm, [·, ·]′), defined in Example 3 and let β : C[t]/(p) → C[t]/(p) be an
isomorphism defined by β(tk) = (qt)k for all k ∈ {0, · · · , d − 1}. Define a
bracket [·, ·] on hm by

[xi ⊗ tk, yj ⊗ tl] = δijq
k+lα(z)⊗ tk+l,

[xi ⊗ tk, xj ⊗ tl] = [yi ⊗ tk, yj ⊗ tl] = [xi ⊗ tk, z ⊗ tl] = [yj ⊗ tk, z ⊗ tl] = 0,

for all i, j ∈ {1, · · · ,m}; k, l ∈ {0, 1 · · · , d − 1}. With the above notations,
(hm,p, [·, ·], α⊗ β) is a Hom-Lie algebra, which we call the current Heisenberg
Hom-Lie algebra.

Proposition 5. Let (G, [·, ·], α) be a regular multiplicative Hom-Lie alge-
bra. Define the bilinear bracket [·, ·]′ : G×G → G by [x, y]′ = [α−1(x), α−1(y)]
for all x, y ∈ G. Let (V, [·, ·]V , β) be a representation of the Hom-Lie al-
gebra (G, [·, ·], α). We assume that β is bijective and satisfies β ([x, v]V ) =
[α(x), β(v)]V for all x ∈ G, v ∈ V . Define the bilinear bracket [·, ·]′V : G×V →
V by [x, v]′V = [α−1(x), β−1(v)]V for all x ∈ G, v ∈ V. Then (V, [·, ·]′V ) is a
representation of the Lie algebra (G, [·, ·]′) .

Proof. By Proposition 1, (G, [·, ·]′) is a Lie algebra. Set x = α(a) and
v = β(u). Then

β−1([x, v]V ) = β−1([α(a), β(u)]V ) = β−1β([a, u]V ) = [α−1(x), β−1(v)]V .

Hence

[[x, y]′, v]′V = [[α−1(x), α−1(y)], v]′V

= [[α−2(x), α−2(y)], β−1(v)]V

= [[α(α−2(x)), [α−2(y), β−2(v)]]V −[[α(α−2(y)), [α−2(x), β−2(v)]]V

= [α−1(x), β−1[α−1(y), β−1(v)]]V −[α−1(y), β−1[α−1(x), β−1(v)]]V

= [α−1(x), β−1[y, v]′V ]V − [α−1(y), β−1[x, v]′V ]V

= [x, [y, v]′V ]
′
V − [y, [x, v]′V ]

′
V .

Thus, (V, [., .]′V ) is a representation of the Lie algebra (G, [., .]′). □

Let (V, [·, ·]V , β) be a faithful representation of the current Heisenberg
Hom-Lie algebra hm,p. Then (V, [·, ·]′V ) is a representation of Heisenberg Lie
algebra (hm,p, [·, ·]′) (Proposition 5). So, by [10],

dimV ≥ m deg p+ [2
√
deg p]. (8)

Proposition 6. Let (V, [·, ·]′V ) be a representation of a Lie algebra (G, [·, ·]′).
Let α be a Lie algebra isomorphism on G and αV be an endomorphism of
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V satisfying αV ([x, v]′V ) = [α(x), αV (v)]
′
V for all x ∈ G, v ∈ V . Then

(V, αV ◦ [·, ·]′V , αV ) is a representation of the Hom-Lie algebra (G, [·, ·], α).

Proof. By Proposition 1, (G, [·, ·], α) is a Hom-Lie algebra.
Set [·, ·]V = αV ◦ [·, ·]′V . Then we have

αV ([x, v]) = αV ◦ αV ([x, v]
′
V ) = αV ([α(x), αV (v)]

′
V ) = [α(x), αV (v)]V

and

[[x, y], αV (v)] = [[α(x), α(y)]′, αV (v)] = [α([x, y]′), αV (v)]

= αV ◦ [α([x, y]′), αV (v)]
′
V = αV ◦ αV ([[x, y]

′, v]′V )

= αV ◦ αV ([x, [y, v]
′
V ]

′
V − [y, [x, v]′V ]

′
V )

= αV ([α(x), αV ([y, v]
′)]′V − [α(y), αV ([x, v]

′)]′V )

= [α(x), αV ([y, v]
′)]V − [α(y), αV ([x, v]

′)]V

= [α(x), [y, v]]V − [α(y), [x, v]]V .

Hence (V, αV ◦[., .]′V , αV ) is a representation ofthe Hom-Liealgebra (G, [., .], α).
□

Proposition 7 ([10]). Let a, b two integers such that ab ≥ d and a+ b =

⌈2
√
d⌉. Here ⌈2

√
d⌉ is the closest integer that is greater than or equal to

2
√
d. Consider matrices P ∈ Md,d, A ∈ Ma,d and B ∈ Md,b, where

P =


0 0 . . . 0 −a0

1
. . . 0 −a1
. . . 0

...
1 −ad−1

 ;

Aij =

{
1 if j = d− (a− i)b;
0 otherwise ;

Bij =

{
1 if i = j;
0 otherwise .

Define a map ρA,B : hm,p → End(Cmd+⌈2
√
d⌉) by

ρA,B

(
m∑
i=1

xi ⊗ q1i(t) +

m∑
i=1

yi ⊗ q2i(t) + z ⊗ q3(t)

)

=


0aa Aq11(P ) . . . Aq1m(P ) Aq3(P )B

q21(P )B

0
...

q2m(P )B
0b,b

 .

With the above notations, (ρA,B,Cmd+⌈2
√
d⌉) is a faithful representation of

the current Heisenberg Lie algebra (hm,p, [·, ·]′).

By Proposition 6 and Proposition 7, we obtain the following result.
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Proposition 8. Let V = Cmd+⌈2
√
d⌉ and αV be an endomorphism of V

satisfying αV ◦ ρA,B(u⊗ f) = ρA,B (α⊗ β(u⊗ f)) ◦ αV .
Then, (V, αV ◦ [·, ·]′V , αV ) is a faithful representation of the current Heisen-
berg Hom-Lie algebra (hm,p, [·, ·], α⊗ β) .

Let (V, [·, ·]V , β) be a faithful representation of the current Heisenberg
Hom-Lie algebra hm,p. Then, by the previous proposition,

µ(hm,p) ≤ mdeg p+ ⌈2
√
deg p⌉. (9)

By (8) and (9) we obtain the following result.

Theorem 3. The equality

µ(hm,p) = mdeg p+ ⌈2
√
deg p⌉

holds, where ⌈2
√
deg p⌉ is the closest integer that is greater than or equal to

2
√
deg p.

Example 11. Let m = 1 and p = 1 + 2t+ 3t2 + 4t3 + 5t4 + t5. Then

P =


0 0 0 0 −1
1 0 0 0 −2
0 1 0 0 −3
0 0 1 0 −4
0 0 0 1 −5

, A =

(
0 0 1 0 0
0 0 0 0 1

)
, B =


1 0
0 1
0 0
0 0
0 0

.

Let α =

ν 0 0

0 λ
ν 0

0 0 λ

, V = C9 and αV be an endomorphism of V satisfying

αV ◦ ρA,B(x1 ⊗ tk) = ρA,B

(
α⊗ β(x1 ⊗ tk)

)
= νqkρA,B(x1 ⊗ tk) ◦ αV ;

αV ◦ ρA,B(y1 ⊗ tk) =
λ

ν
qkρA,B(y1 ⊗ tk) ◦ αV ;

αV ◦ ρA,B(z ⊗ tk) = λqkρA,B(z ⊗ tk) ◦ αV .

Using a computer algebra system, we obtain αV =


0 · · · 0 x1,8 x1,9
0 · · · 0 x2,8 x2,9
0 · · · 0 0 0
... · · ·

...
...

...
0 · · · 0 0 0

 .

4. Derivations and centroids of current Hom-Lie algebras

The purpose of this section is to study γr-derivations and the γr-centroid
of current Hom-Lie algebras viewed as a (1, 1, 0)-derivation and a (1, 1, 1)-
derivation of current Hom-Lie algebras.
Let (G ⊗A, [·, ·]G⊗A, γ) be a current Hom-Lie algebra and V be a G-module.
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4.1. (λ′, µ′, γ′)-derivations of Hom-Lie algebras. In this subsection we
extend (λ′, µ′, γ′)-derivation theory of Lie algebras introduced in [17] to Hom-
Lie context.

Definition 7. Let λ′, µ′, γ′ be elements of K (for example K = C). A
linear map d : G → V is a (λ′, µ′, γ′)-αk-derivation of G on V if for all x, y ∈ G
we have

λ′ d([x, y]) = −µ′ [αk(y), d(x)]V + γ′[αk(x), d(y)]V .

We denote the set of all (λ′, µ′, γ′)-αk-derivations by

Der
(λ′,µ′,γ′)
αk (G, V ) =

⊕
k≥0

Der
(λ′,µ′,γ′)
αk,

(G, V ).

In particular, with the adjoint representation (V = G), we set

Der(λ
′,µ′,γ′)(G) =

⊕
k≥0

Der
(λ′,µ′,γ′)
αk (G).

Proposition 9. For any λ′, µ′, γ′ ∈ K, there exists δ ∈ K such that the
subspace Der(λ

′,µ′,γ′)(G) is equal to one of the following subspaces:

(a) Der
(δ,0,0)

αk (G), (b) Der(δ,1,−1)

αk (G), (c) Der(δ,1,0)
αk (G), (d) Der(δ,1,1)

αk (G).

Definition 8. The set Γ(G) =
⊕
k≥0

Der
(1,1,0)

αk (G) is the centroid of G.

Definition 9. An element d ∈ Der
(0,1,0)

αk (G) ∩ Der(1,0,0)
αk (G) is called an

αk-central derivation. We denote the set of all αk-central derivations by

C(G) =
⊕
k≥0

Cαk(G) =
⊕
k≥0

Der
(0,1,0)

αk (G) ∩Der(1,0,0)
αk (G).

4.2. (λ′, µ′, γ′)-derivations of Hom-associative algebras. In this sub-
section, we extend to Hom-associative algebras the concept of (λ′, µ′, γ′)-
derivation of associative algebras introduced in [18]. Let (A,µ, β) be a Hom-
associative algebra. We denote by S1(A) the set of all linear maps g : A→ A
which are symmetric in the sense that g(ab) = g(ba) for all a, b ∈ A.

Definition 10. Let λ′, µ′, γ′ be elements of K. A linear map g ∈ S1(A)
is a (λ′, µ′, γ′)-βk-derivation of A if, for all a, b ∈ A, we have

λ′g(ab) = µ′g(a)βr(b) + γ′βr(a)g(b).

We denote the set of all (λ′, µ′, γ′)-βk-derivations of A by

Der(λ
′,µ′,γ′)(A) =

⊕
k≥0

Der
(λ′,µ′,γ′)
βk (A).

If β is an isomorphism, we have

Der
(λ′,1,0)
βr (A) = {g ∈ End(A) | ∃u ∈ A; g(a) = uβr−1(a)}.
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Proposition 10. We have the isomorphism

Derλ
′,1,0

βr (A) ∼= A.

In the sequel we will consider multiplicative Hom-associative algebras
(A, µ, β) which are finite dimensional, unital and are the direct sum of gen-
eralized eigenspaces of β: A = kerβ ⊕ E(1, β) ⊕ E(λ2, β) ⊕ · · · ⊕ E(λs, β),
where E(λ, β) is the eigenspace associated to an eigenvalue λ of the linear
map β.

4.3. (λ′, µ′, γ′)-derivation of current-Hom-Lie algebras. Let Φ : G ⊗
A −→ G⊗A be a (λ′, µ′, γ′)-γr-derivation of the current multiplicative Hom-
Lie algebra (G ⊗ A, [·, ·], γ). Then
λ′Φ ([x⊗ a, y ⊗ b]) = µ′

[
Φ(x⊗ a), γr(y ⊗ b)

]
+ γ′

[
γr(x⊗ a), Φ(y ⊗ b)

]
, (10)

and Φ can be written in the form Φ =
∑
i∈I

fi⊗gi and γr = αr⊗βr, where I is

a finite set of indices, and fi and gi are linear maps fi : G → G, gi : A → A,
respectively. From this and (10) we obtain∑

i∈I
λ′fi([x, y]G)⊗ gi(ab)− (µ′[fi(x), α

r(y)]G ⊗ gi(a)β
r(b) (11)

+γ′[αr(x), fi(y)]G ⊗ βr(a)gi(b)) = 0.

Proposition 11. We have

Derδ
′,1,0

γr (G ⊗ A)=Cαr(G)⊗ End(A)+
s∑

i=1

s∑
j=1

Der
δ′

λi
λj

,1,0

αr (G)⊗Der

λj
λi

,1,0

βr (A)

+Der0,1,0αr (G)⊗Der1,0,0βr (A) +Der1,0,0αr (G)⊗Der0,1,0βr (A).

Proof. We have (λ′, µ′, γ′) = (δ′, 1, 0). Let (ek1, · · · , eksk) be an ordered

basis of E(λk, β). Taking a = ekq and b = 1 in (11), then using a1 = β(a)
and gi(a)1 = β(gi(a)), we obtain δ′λqfi ([x, y]G) = λk[fi(x), α

r(y)]G .

Replacing [fi(x), α
r(y)]G by

δ′λq

λk
fi ([x, y]G) in (11), we obtain∑

i∈I
fi ([x, y]G)⊗

(
gi(ab)−

λq
λk
gi(a)β

r(b)

)
= 0.

Hence, there is a partition I = I1 ∪ I2 ∪ I3 ∪ I4 such that

(a) fi ([x, y]G) = [fi(x), α
r(y)]G = 0 for any i ∈ I1,

(b) δ′
λq

λk
fi ([x, y]G) = [fi(x), α

r(y)]G and λk
λq
gi(ab) = gi(a)β

r(b) for any i ∈ I2,

(c) fi ([x, y]G) = 0 and gi(a)β
r(b) = 0 for any i ∈ I3,

(d) [fi(x), α
r(y)]G = 0 and gi(ab) = 0 for any i ∈ I4.

□
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Proposition 12. If β is invertible, then

Derδ
′,1,1

γr (G ⊗ A)=Cαr (G)⊗ End(A)+
(
Der1,0,0αr (G) ∩Der0,1,1αr (G)

)
⊗Der0,1,−1

βr (A)

+

s∑
i=1

Der
δ′
2λi

,1,0

αr (G)⊗Der2λi,1,1
βr (A) +

∑
1≤i,j≤s

Der
δ′

λi
λj

,1,1

αr (G)⊗Der
λj
λi

,1,0

βr (A)

+
∑

1≤i,j≤s

Der
δ′

λi
λj

,1,0

αr (G)⊗Der
λj
λi

,1,1

βr (A).

Proof. Suppose (λ′, µ′, γ′) = (δ′, 1, 1). Skew-symmetrizing the equality
(11) with respect to x, y, we get∑

i∈I
([fi(x), α

r(y)]G − [αr(x), fi(y)]G)⊗ (gi(a)β
r(b)− βr(a)gi(b)) = 0.

Hence, the index set can be partitioned as I = I1 ∪ I2 in such a way that
[fi(x), α

r(y)]G = [αr(x), fi(y)]G for any i ∈ I1, and gi(a)β
r(b)−βr(a)gi(b) = 0

for any i ∈ I2. Then (11) can be rewritten as∑
i∈I1

δ′fi ([x, y]G)⊗ gi(ab)− [fi(x), α
r(y)]G ⊗ (gi(a)β

r(b) + βr(a)gi(b)) = 0

(12)

and∑
i∈I1

δ′fi ([x, y]G)⊗ gi(ab)−([fi(x), α
r(y)]G + [αr(x), fi(y)]G)⊗ gi(a)β

r(b)=0.

(13)

Let {ek1, · · · , eksk} be an ordered basis of E(λk, β) and β(gi(1)) = λkgi(1).
Denote by I11 = {i ∈ I1 | gi(1) ̸= 0} and I12 = {i ∈ I1 | gi(1) = 0}.

Taking a = b = 1 in (12), then using β(1) = 1 and 1gi(1) = β(gi(1)) =
λkgi(1), we obtain δ′fi ([x, y]G) = 2λk[fi(x), α

r(y)]G . Plugging this in (12),
we get

∑
i∈I11 [fi(x), α

r(y)]G ⊗ (2λkgi(ab)− gi(a)β
r(b)− βr(a)gi(b)) = 0.

Hence, there is a partition I11 = J11 ∪ J12 such that

fi ([x, y]G) = [fi(x), α
r(y)]G = 0 for any i ∈ J11,

and

δ′fi ([x, y]G)=2λk[fi(x), α
r(y)]G , 2λkgi(ab)=gi(a)β

r(b)+βr(a)gi(b) ∀i ∈ J12.

Taking a = ekj and b = 1 in (12), then using β(1) = 1 and 1gi(a) =

β(gi(a)) = λjgi(a), we obtain δ′λkfi ([x, y]G) = λj [fi(x), α
r(y)]G . Plugging

this in (12), we get∑
i∈I12

[fi(x), α
r(y)]G ⊗

(
λj
λk
gi(ab)− gi(a)β

r(b)− βr(a)gi(b)

)
= 0.
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Hence, there is a partition I12 = J21 ∪ J22 such that

fi ([x, y]G) = [fi(x), α
r(y)]G = 0 for any i ∈ J21,

and

δ′λkfi ([x, y]G)=λj [fi(x), α
r(y)]G ,

λj
λk
gi(ab)=gi(a)β

r(b)+βr(a)gi(b) ∀i ∈J22.

Taking a = ekj and b = 1 in (13), we obtain

δ′λkfi ([x, y]G) = λj ([fi(x), α
r(y)]G + [αr(x), fi(y)]G). Plugging this in (13),

we get
∑

i∈I2 fi ([x, y]G)⊗
(

λj

λk
gi(ab)− gi(a)β

r(b)
)
= 0. Hence we may assume

that the indexing set is partitioned into two subsets I2 = I21 ∪ I22 such that
fi ([x, y]G) = [fi(x), α

r(y)]G + [αr(x), fi(y)]G = 0, for all i ∈ I21, and for all

i ∈ I22 we have δ′ λk
λj
fi ([x, y]G) = [fi(x), α

r(y)]G + [αr(x), fi(y)]G = 0, and
λj

λk
gi(ab) = gi(a)β

r(b).
□

4.4. Centroids of current Hom-Lie algebras. Using Proposition 11 and
the fact that β is an isomorphism, we get the following result.

Proposition 13. One has

Γγr(G ⊗ A) = Cαr(G)⊗ End(A) +
s∑

i=1

s∑
j=1

Der

λi
λj

,1,0

αr (G)⊗Der

λj
λi

,1,0

βr (A).

Corollary 3. Suppose G is finite dimensional, simple and β = idA. Then

Γγ0(G ⊗ A) ∩ C1
γ(G ⊗ A) ∼= A.

Theorem 4. If G is a perfect Hom-Lie algebra, then

Γγr(G ⊗ A) =

s∑
i=1

s∑
j=1

Der

λi
λj

,1,0

αr (G)⊗Der

λj
λi

,1,0

βr (A).

Theorem 5. Suppose G is finite dimensional and perfect. Then

Γγr(G ⊗ C[t]) ∼= Γαr(G)⊗ C[t].

4.5. Derivations of current Hom-Lie algebras. Letting δ′ = 1 in Propo-
sition 12, we obtain the following result.

Theorem 6. Any derivation in Derγr(G ⊗A) is a linear combination of
γr-derivations f ⊗ g of the five following types:

(i) f([x, y]G) = [f(x), αr(y)]G = 0 ;
(ii) f([x, y]G) =

1
2λi

[f(x), αr(y)]G, 2λig(ab) = g(a)βr(b) + βr(a)g(b);

(iii) f([x, y]G)=0, [f(x), αr(y)]G+[αr(x), f(y)]G=0, g(a)βr(b)=βr(a)g(b);

(iv) λi
λj
f([x, y]G) = [f(x), αr(y)]G + [αr(x), f(y)]G,

λj

λi
g(ab) = g(a)βr(b),

∀i, j ∈ {1, · · · , s} ;
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(v)
λj

λi
f([x, y]G) = [f(x), αr(y)]G,

λi
λj
g(ab) = g(a)βr(b) + βr(a)g(b) ∀i, j ∈

{1, · · · , s} ;

for all x, y ∈ G, a, b ∈ A.

4.6. Derivations of current Hom-Lie algebras of small dimensions.
In the following, we describe the γr-derivations of four-dimensional com-
plex current Hom-Lie algebras corresponding to the classification provided
in Remark 1. Let {e1, e2} be a basis of Li and {f1, f2} be a basis of Aj , for
i ∈ {1, 2} and j ∈ {1, . . . , 7}. We consider the following basis for Li ⊗ Aj ,
with i ∈ {1, 2} and j ∈ {1, . . . , 7}, {u1 = e1 ⊗ f1, u2 = e1 ⊗ f2, u3 = e2 ⊗ f1,
u4 = e2 ⊗ f2}. In the following table, we set Di,j := dim(Derγr

ij
(Li ⊗Aj)).

L1 ⊗Aj Derγr
ij
(Li ⊗Aj) Di,j

L1 ⊗A1 d(u1) = d(u2) = 0, d(u3) = d44(−1)r+1
(

λ
µu1 + u3

)
1

d(u4) = d44

(
λ
µu2 + u4

)
L1 ⊗A2 d(u1) = d(u2) = 0, d(u3) = d13

(
u1 +

µ
λu3

)
, d(u4) = d24u2 2

d(u1) = d11 (u1 − (1− µr)u2) , d(u2) = 0
L1 ⊗A3 d(u3) = d13u1 +

λ
µ (1− µr)d11u2 + (d11 +

µ
λd13)u3 3

d(u4) = d24u2
L1 ⊗A4 d(u1) = d(u2) = 0, d(u3) = d13u1 + d23u2 + d13

µ
λu3 + d23

µ
λu4 4

d(u4) = d14u1 + d24u2 + d14
µ
λu3 + d24

µ
λu4

d(u1) = d11u1 + d21u2 − (d11 + d21)u3
L1 ⊗A5 d(u2) = d12u1 + d22u2 + d32u3

d(u3) = d13u1 + d23u2 + d33u3 9
d(u4) = −λ

µd12u1 + d24u2 − λ
µd32u3 +

(
d22 +

µ
λd24

)
u4

d(u1) = d11u1 + d21u2, d(u2) = µrd11u2
L1 ⊗A6 d(u3) = d13u1 + d23u2 +

(
d11 +

µ
λd13

)
u3 ++

(
d21 +

µ
λd23

)
u4 6

d(u4) = d14u1 + d24u2 +
µ
λd14u3 +

(
µrd11 +

µ
λd24

)
u4

r ∈ {0, 1} d(u1) = d11 (u1 − u3) , d(u2) = d12u1 + d32u3

L1 ⊗A7 d(u3) =
λ
µ (d44 − d11)u1 +

(
λ
µd11 + d44

)
u3 8

d(u4) = d14u1 + d24u2 + d34u3 + d44u4
L2 ⊗A1 d(u1) = d(u2) = 0, d(u3) = (−1)rd24u1 1
(λ = 1) d(u4) = d24u2
L2 ⊗A2 d(u1) = d(u2) = 0
(λ = 1) d(u3) = d13u1, d(u4) = d24u2 2

L2 ⊗A3 d(u1) =
λ−1
µ d13u1, d(u2) = 0, d(u3) = d13u1, d(u4) = d24u2 2

L2 ⊗A4 d(u1) =
λ−1
µ d13u1, d(u2) =

λ−1
λr−1

1
µ (λrd24 − d13)u2

d(u3) = d13u1, d(u4) = d24u2 +
λ−1
λr−1

1
µ (d24 − d13)u4 4

L2 ⊗A5 d(u1) = d11u1, d(u2) = d22u2, d(u3) = d33u3 4

d(u4) = d24u2 +
(
d22 − λ−1

µ d24

)
u4
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d(u1) = d11u1 + d21u2

L2 ⊗A6 d(u2) =
(
(λr + 1)d11 − λr(λ−1

µ )d13

)
u2

d(u3) = d13u1 + d23u2 +
(
d11 +

1−λ
µ d13

)
u3 +

(
d21 +

1−λ
µ d23

)
u4 5

d(u4) = d24u2 +
(
(λr + 1)d11 +

1−λ
µ λrd13 +

1−λ
µ λrd24

)
u4

d(u1) = d11 (u1 − u3)
L2 ⊗A7 d(u2) = d12u1 + (1 + µ)d11u2 + d32u3 − λd11u4

d(u3) = d13u1 − 1+µ
λ d11u3 6

d(u4) = d14u1 +
(

(1+λ)(1+µ)µ
λ2 d11 +

d13

λ

)
u2 + d34u3 − 1+µ+µλ

λ d11u4

4.7. Extensions by derivations. Let (G, [·, ·], α) be a Hom-Lie algebra and d be
a derivation of this Hom-Lie algebra. Define a skew-symmetric bilinear map [·, ·]d
on the direct sum G ⊕ Cd by [x+ λ′d, y + µ′d] = [x, y]G + λ′d(y)− µ′d(x).
Define αd ∈ End(G ⊕ Cd) by αd(x+ λ′d) = α(x) + λ′d.

Theorem 7 ([20]). With the above notations, (G ⊕ Cd, [·, ·]d, αd) is a Hom-Lie
algebra.

Example 12. Define a linear map d : L(G) → L(G) by d(x ⊗ tn) = nx ⊗ tn.
Then

( (
G ⊗ C[t, t−1]

)
⊕ (Cα⊗ t d

dt ·), [·, ·]d, γd
)
is a Hom-Lie algebra.

5. Scalar second cohomology group

The general Chevalley–Eilenberg cohomology theory of Hom-Lie algebras was
initiated in [13] and established in [2, 20]. We deal here only with scalar cohomology.
A scalar k-cochain is an alternating k-linear map from (G ⊗ A)k to C. The vector
space of scalar k-cochains is denoted by Ck(G ⊗ A,C) and by definition C0(G ⊗
A,C) = C. In this section, we study the second cohomology group of current Hom-
Lie algebras with coefficients in a trivial representation.
The coboundary operator δk : Ck(G ⊗A,C) → Ck+1(G ⊗A,C) is given by

δk(f ⊗ g)(x0 ⊗ a0, . . . , xk ⊗ ak)

=
∑

0≤s<t≤k

(−1)t × f (α(x0), · · · , α(xs−1), [xs, xt], α(xs+1), · · · , x̂t, · · · , α(xk))

⊗ g (β(a0), · · · , β(as−1), asat, β(as+1), · · · , ât, · · · , β(ak)) .

Denote by Zk(G ⊗ A) and Bk(G ⊗ A) the corresponding space of k-cocycles and
k-coboundaries, respectively. We denote the resulting cohomology by Hk(G ⊗A).

In the following, we give a result similar to [26, Theorem 1.1], in the case of
current Hom-Lie algebras.

Theorem 8. Let G ⊗A be a current Hom-Lie algebra such that either G or A is
finite dimensional. We denote by S2(A) the set of all bilinear maps g : A×A→ A
which are symmetric in the sense that g(a, b) = g(b, a) for all a, b ∈ A and C2(A)
the set of all bilinear maps g : A × A → A which are skew-symmetric in the sense
that g(a, b) = −g(b, a) for all a, b ∈ A.
Then each cocycle in Z2(G⊗A) is a linear combination of cocycles of the 8 following
types:
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(1) f ([x, z], α(y)) = 0, f ∈ C2(G) and g ∈ S2(A);
(2) f ∈ Z2(G,C), g(ac, β(b)) = g(bc, β(a)) and g ∈ S2(A);
(3) f ([x, z], α(y)) = f (α(x), [y, z]), g(ab, β(c)) + g(ac, β(b)) + g(β(a), bc) = 0 and

f ⊗ g ∈ C2(G)⊗ S2(A);
(4) g(ab, β(c)) = 0 and f ⊗ g ∈ C2(G)⊗ S2(A);
(5) f ([x, z], α(y)) = 0 and f ⊗ g ∈ S2(G)⊗ C2(A);
(6) −f ([x, y], α(z)) + f ([x, z], α(y))− f (α(x), [y, z]) = 0 , g(ab, β(c)) = g(bc, β(a))

and f ⊗ g ∈ S2(G)⊗ C2(A);
(7) f ([x, z], α(y)) + f (α(x), [y, z]) = 0 , g(ab, β(c)) + g(ac, β(b)) + g(bc, β(a)) = 0

and f ⊗ g ∈ S2(G)⊗ C2(A);
(8) g(ab, β(c)) = 0 and f ⊗ g ∈ S2(G)⊗ C2(A).

Now, we will describe the second cohomology group of Loop Hom-Lie algebra
L̃(G), where the Hom-Lie algebra G is multiplicative simple (for the definition of
Loop Hom-Lie algebra, see Example 8).
First we give a relationship between simple multiplicative Hom-Lie algebras and Lie
algebras, as well as some relevant properties.

Lemma 1 ([5]). Define the bracket [·, ·]′ : G×G → G by [x, y]′ = [α−1(x), α−1(y)]
for all x, y ∈ G. The induced Lie algebra (G, [x, y]′) of the multiplicative simple
Hom-Lie algebra (G, [·, ·], α) is semisimple and can be decomposed into a direct sum
of isomorphic simple ideals: G = G1 ⊕ α(G1)⊕ · · · ⊕ αr(G1).

Lemma 2. For all i, j ∈ {0, · · · , r}, the ideals αi(G1) and αj(G1) of the Lie
algebra (G, [·, ·]′) are isomorphic.

The previous lemmas lead us to see the Lie case.

Lemma 3 ([6]). A finite-dimensional simple Lie algebra G has only trivial 2-
cocycle.

Lemma 4 ([6]). Every symmetric associative bilinear form on a simple Lie
algebra is proportional to the Cartan-Killing form: K(x, y) = tr (adx ◦ ady) , for
all x, y ∈ G.

Lemma 5. Every 2-cocycle on the induced Lie algebra (G, [·, ·]′) is a linear com-

bination of the 2-cocycles Φi given by Φi(x, y) =

{
Φ(x, y), if x, y ∈ αi(G1)
0, otherwise.

Lemma 6. A skew-symmetric bilinear map Φ is a 2-cocycle on the multiplicative
simple Hom-Lie algebra (G, [·, ·], α) if and only if it is a 2-cocycle on the induced Lie
algebra (G, [·, ·]′) .

Now, we state the main result of this section.

Theorem 9. Let (G, [·, ·], α) be a finite-dimensional simple Hom-Lie algebra.

Then the space H2(L̃(G)) is generated by the maps Φi : L̃(G) × L̃(G) → C defined
by:

Φi(x⊗ tn, y ⊗ tm) =

{
n δn+m,0 K(x, y), if x, y ∈ αi(G1)
0, otherwise.

Hence, dimH2(L̃(G)) = r + 1.
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Proof. Let Φ = f ⊗ g be a 2-cocycle on the simple Hom-Lie algebra (G, [·, ·], α).
Φ is a 2-cocycle of type 1: Let x, y ∈ G. Since G is simple and α is an isomor-
phisme, we can write x = [a, b] and y = α(c). Then f(x, y) = f([a, b], α(c)) = 0.
Φ is a 2-cocycle of type 2: By Lemma 3, Lemma 2 and Lemma 5, we obtain that
the 2-cocycle f is trivial.
Taking a = tn, b = tm, c = ts, we get

g(ab, β(c)) = g(bc, β(a)) =⇒ g((qt)n(qt)m, (qt)s) = g((qt)m(qt)s, (qt)n)

=⇒ g(tn+m, ts) = g(tm+s, tn). (14)

Taking m+ s = 0 in (14), we get g(tn+m, t−m) = g(1, tn). Let h(tn) = q−ng(1, tn).
Then, g(tn, tm) = g(1, tn+m) = ϱh(tn+m), ϱ = q−(n+m). Thus g is trivial.
Since f and g are trivial, one can deduce that Φ = f ⊗ g is trivial.
Φ is a 2-cocycle of type 3: We have g(ab, β(c))+ g(ac, β(b))+ g(β(a), bc) = 0. Then

g(tn+m, ts) + g(tn+s, tm) + g(tn, tm+s) = 0. (15)

Taking s = 0 in (15), we obtain g(tn, tm) = 1
2g (t

n+m, 1). Then, using (15) and that
g is symmetric, one can deduce g (tn+m+s, 1) = 0. Thus g = 0.
Φ is a 2-cocycle of type 4: By g(ab, β(c)) = 0, we obtain g = 0.
Φ is a 2-cocycle of type 5: Similarly to type 1, we obtain f = 0.
Φ is a 2-cocycle of type 6: We have g(ab, β(c)) = g(bc, β(a)). Then

g(tn+m, ts) = g(tm+s, tn). (16)

Taking m = 0 in (16), we obtain g(tn, ts) = g(ts, tn). Since g is skew-symmetric,
one can deduce g = 0.
Φ is a 2-cocycle of type 7: Let x′ = α(x), y′ = α(y) and z′ = α(z). We have

f (x′, [y′, z′]′) = f
(
α(x), [α−1(y′), α−1(z′)]

)
= f

(
α(x), [α−1(y′), α−1(z′)]

)
= f

(
[x, α−1(y′)], z′

)
= f

(
[α−1(x′), α−1(y′)], z′

)
= f ([x′, y′]′, z′) .

Then the symmetric bilinear form f is associative in the induced Lie algebra (G, [·, ·]′).
Define a symmetric associative bilinear form fi by

fi(x, y) =

{
f(x, y), if x, y ∈ αi(G1)
0, otherwise.

Since αi(G1) is a simple ideal of the Lie algebra (G, [·, ·]′), by Lemma 4, one can

deduce fi(x, y) = λiK(x, y) for all x, y ∈ αi(G1) and f(x, y) =

m∑
i=0

λifi(x, y).

By g(ab, β(c)) + g(ac, β(b)) + g(bc, β(a)) = 0, we obtain

g(tn+m, ts) + g(tn+s, tm) + g(tm+s, tn) = 0. (17)

Take s = 0 in (17). Since g is skew-symmetric, we obtain g(tn+m, 1) = 0.
Take n+ s = 0 in (17). Using g(tm, 1) = 0 and that g is skew-symmetric, we obtain
g(tn+m, t−n) = g(tn, tm−n). Fix k ∈ Z and let n+m+ s = k. Then

g(tn+m, tk−n−m) + g(tk−m, tm) + g(tk−n, tn) = 0.
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Therefore, g(tn+m+k, t−n−m) = g(tm+k, t−m) + g(tn+k, t−n).
Let Un = g(tn+k, t−n). Then Un+m = Un + Um. Hence, Um = m U1. There-

fore, g(tm+k, t−m) = m U1. Thus g(t
m, tn) = δn+m,k m U

(k)
1 and g(tn, tm) =

δn+m,k n U
(k)
1 = −δn+m,k (m− k) U

(k)
1 . Since g is skew-symmetric, one can deduce

k = 0 or U
(k)
1 = 0, which gives g(tn, tm) = δn+m,0 n U

(0)
1 .

Φ is a 2-cocycle of type 8: By g(ab, β(c)) = 0, one can deduce g = 0. □

Example 13. The induced Lie algebra of (sl2(C), [·, ·], α) (see Example 1) is
given by [x1, x2]

′ = − 2
a2x2, [x1, x3]

′ = [α−1(x1), α
−1(x3)] =

2
a2x3, [x2, x3]

′ = − 1+a
2a3 x1.

By dim (sl2(C)) = (r+1) dim (G1) and [αi(G1), α
j(G1)]

′ = δi,j [α
i(G1), α

i(G1)], we ob-

tain r = 0. Hence dimH2(L̃(sl2(C))) = 1 and each non trivial 2-cocycle of L̃(sl2(C))
(a /∈ {−1, 0}) is proportional to the linear map Φ : L̃(sl2(C)) × L̃(sl2(C)) → C de-
fined by Φ (x⊗ tn, y ⊗ tm) = δm+n,0 n K(x, y). Furthermore,

Φ (x1 ⊗ tn, x1 ⊗ tm) = δm+n,0 n K(x1, x1) = δm+n,0 n tr (ad(x1) ◦ ad(x1))

= δm+n,0 n
8

a4
;

Φ (x1 ⊗ tn, x2 ⊗ tm) = δm+n,0 n K(x1, x2) = δm+n,0 n tr (ad(x1) ◦ ad(x2)) = 0;

Φ (x1 ⊗ tn, x3 ⊗ tm) = δm+n,0 n K(x1, x3) = δm+n,0 n tr (ad(x1) ◦ ad(x3)) = 0;

Φ (x2 ⊗ tn, x2 ⊗ tm) = δm+n,0 n K(x2, x2) = δm+n,0 n tr (ad(x2) ◦ ad(x2)) = 0;

Φ (x2 ⊗ tn, x3 ⊗ tm) = δm+n,0 n K(x2, x3) = δm+n,0 n tr (ad(x2) ◦ ad(x3))

= δm+n,0 n 2
1 + a

a5
;

Φ (x3 ⊗ tn, x3 ⊗ tm) = δm+n,0 n K(x3, x3) = δm+n,0 n tr (ad(x3) ◦ ad(x3))

= δm+n,0 n(−2)
1 + a

a5
.

Using Theorem 8, one obtains the second cohomology group of the truncated

Hom-Lie algebra L̂p (see Example 9 for the definition of L̂p):

Theorem 10. Each non-trivial cocycle in Z2(L̂p) can be represented as the
sum of decomposable cocycles f ⊗ g where f : L × L → C and g : C[t]/tp+1C[t] ×
C[t]/tp+1C[t] → C are of one of the following 3 types:

(1) f(x1, z) = f(x2, z) = f(z, z) = 0, f ∈ S2(h1), g ∈ C2(C[t]/tp+1C[t]);
(2) f(z, z) = 0, f ∈ S2(h1), g ∈ C2(C[t]/tp+1C[t]) , g(tn, tm) = g(1, 1);
(3) f(x1, z) = f(x2, z) = f(z, z) = 0, f ∈ C2(h1), g ∈ S2(C[t]/tp+1C[t]).

6. Extensions of current Hom-Lie algebras

The aim of this section is to provide a method to construct Hom-Lie algebras by
extensions of current Hom-Lie algebras.

Definition 11 ([23]). An extension of a Hom-Lie algebra (G, [·, ·], α) by a rep-
resentation (V, [·, ·]V , β) is an exact sequence

0 −→ (V, β)
i−→ (K, γ)

π−→ (G, α) −→ 0
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satisfying γ o i = i o β and α o π = π o γ. This extension is said to be central
if [K, i(V )]K = 0. In particular, if K = G × V , i(v) = v, for all v ∈ V and
π(x) = x, for all x ∈ G, then we have γ(x, v) = (α(x), β(v)) and we denote

0 −→ (V, β) −→ (K, γ) −→ (G, α) −→ 0.

For convenience, we denote K = G×V = G⊕V and Ck,l = Hom(GkV l, V ) where
GkV l is the subspace of Ck+l(K,K) consisting of products of k elements from G and
l elements from V . Let d = µ+ λ+ f where µ ∈ C2(G,G), λ ∈ C1,1 and f ∈ C2,0.
Let γ′ = (α′, β′) ∈ End(G⊕V ). Now we shall determine the 2-cochains d satisfying
(K, d, γ′) is a Hom-Lie algebra. Let d = µ + λ + f , where µ ∈ C2(G,G), λ ∈ C1,1

and f ∈ C2,0. We have

⟲x,y,z d(γ(x+ a), d(y + b, z + c))

=

(
⟲x,y,z µ(α

′(x), µ(y, z)), λ
(
α′(x), λ(y, c)

)
−λ
(
α′(y), λ(x, c)

)
−λ
(
µ(x, y), β′(c)

)
+λ
(
α′(z), λ(x, b)

)
− λ (α′(x), λ(z, b))− λ

(
µ(z, x), β′(b)

)
+ δ2(f)(x, y, z)

)
where

δ2(f)(x, y, z) =
(
λ (α′(x), f(y, z)) + λ (α′(y), f(z, x)) + λ (α′(z), f(x, y))

+f (α′(x), µ(y, z)) + f (α′(y), µ(z, x)) + f (α′(z), µ(x, y))
)
.

Then ⟲x,y,z d(γ(x+ a), d(y + b, z + c) = 0 =⇒ ⟲x,y,z µ(α
′(x), µ(y, z)) = 0.

Hence (G, µ, α′) is a Hom-Lie algebra. We assume that (V, λ, β′) is a representation
of (G, µ, α′).

Theorem 11. If (V, λ, β) is a representation of (G, µ, α). Then (K, d, γ) is a
Hom-Lie algebra if and only if f is a 2-cocycle on V .

Theorem 12. A cohomology class [f ] ∈ H2(G, V ) defines an extension of the
Hom-Lie algebra G which is unique up to equivalence.

6.1. Classification of central extensions of Hom-Loop algebras. By Theo-
rem 8, Theorem 9 and Theorem 12, we obtain the following result.

Proposition 14. Any central extension of a Hom-Loop algebra is equivalent to
the extension defined by the skew-symmetric map d : L̃(G)× L̃(G) → L̃(G) given by
d(x ⊗ tn, y ⊗ tm) = qn+m[x, y] ⊗ tn+m + δn+m,0 n K(x, y) and the endomorphism

γ : L̃(G) → L̃(G) given by γ (x⊗ tn) = qnα(x)⊗ tn.

Example 14. Any central extension of a Hom-Loop algebra L̃(sl2(C)) is equiv-
alent to the extension given by

d(x1 ⊗ tn, x1 ⊗ tm) = δm+n,0 n c; d(x1 ⊗ tn, x2 ⊗ tm) = −2aqn+mx2 ⊗ tn+m;

d(x1 ⊗ tn, x3 ⊗ tm) = 2qn+mx3 ⊗ tn+m; d(x2 ⊗ tn, x2 ⊗ tm) = 0;

d(x2 ⊗ tn, x3 ⊗ tm) = −1 + a

2
qn+mx1 ⊗ tn+m +

1 + a

4a
δm+n,0 n c;
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d(x3 ⊗ tn, x3 ⊗ tm) = −1 + a

4a
δm+n,0 n c;

γ(x1 ⊗ tn) = aqnx1 ⊗ tn, γ(x2 ⊗ tn) = a2qnx2 ⊗ tn, γ(x3 ⊗ tn) = aqnx3 ⊗ tn;

and c =
8

a4
.

6.2. Classification of central extensions of Hom-truncated Heisenberg
algebras. In Theorem 10, we denote f(x, x) = f11, f(y, x) = f(x, y) = f12,
f(x, z) = f(z, x) = f13, f(y, y) = f22, f(z, y) = f(y, z) = f23, f(z, z) = f23
and g(tm, tn) = g(tn, tm) = γnm for all n,m ∈ {0, · · · , p}.

Theorem 13. Any central extension of a Hom-truncated Heisenberg algebra

L̂(h1)p is equivalent to one of following extensions:

(1) [x⊗ tn, x⊗ tm] = f11 γnm c1; [x⊗ tn, y ⊗ tm] = qn+mz ⊗ tn+m + f12 γnmc1;
[y ⊗ tn, y ⊗ tm] = f22γnm c1;

(2) [x⊗ tn, x⊗ tm] = f11 γnm c1; [x⊗ tn, y ⊗ tm] = qn+mz ⊗ tn+m + f12 γnm c1;
[x⊗ tn, z ⊗ tm] = f13 γnm c1; [y ⊗ tn, y ⊗ tm] = f22 γnm c1;
[y ⊗ tn, z ⊗ tm] = f23 γnm c1;

(3) [x⊗ tn, x⊗ tm] = f11 γnm c1; [x⊗ tn, y ⊗ tm] = qn+mz ⊗ tn+m + f12 γnm c1;
[y ⊗ tn, y ⊗ tm] = f22 γnm c1;

and γ(x⊗ tn) = λ1q
nx⊗ tn, γ(y ⊗ tn) = λ

λ1
qny ⊗ tn, γ(z ⊗ tn) = λqnz ⊗ tn.
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