Current Hom-Lie algebras

Torkia Ben Jmaa, Abdenacer Makhlouf, and Nejib Saadaoui

Abstract

In this paper, we study Hom-Lie structures on tensor products. In particular, we consider current Hom-Lie algebras and discuss their representations. We determine faithful representations of minimal dimension of current Heisenberg Hom-Lie algebras. Moreover derivations, including generalized derivations and centroids, are studied. Furthermore, cohomology and extensions of current Hom-Lie algebras are also considered.

Introduction

Current algebra or Current Lie algebras were introduced first in Physics by Murray Gell-Mann to describe weak and electromagnetic currents of the strongly interacting particles, hadrons, leading to the Adler-Weisberger formula and other important physical results. Important examples include Affine Lie algebra, Chiral model, Virasoro algebra, Vertex operator algebra and Kac-Moody algebra. The concept of a Hom-Lie algebra was initially introduced by Hartwig, Larsson, and Silvestrov in [7]. It was motivated by quantum deformations of algebras of vector fields like Witt and Virasoro algebras. Hom-Lie structures were discussed in [4, 9], their derivations, representations, cohomology and deformations were studied first in $[13,2,20]$. In this paper we extend current Lie algebras theory introduced in $[24,25,26]$ to Hom-Lie context, see also $[1,19]$. A current Lie algebra is a Lie algebra of the form $L \otimes A$, where L is a Lie algebra, A is a commutative associative algebra, and the multiplication in $L \otimes A$ being defined by the formula $[x \otimes a, y \otimes b]=[x, y] \otimes(a b)$, for any $x, y \in L, a, b \in A$. More generally, Lie structures on tensor products were studied by Zusmanovich in

[^0][24], while Hom-Lie structures on a current Lie algebra $L \otimes A$ were considered by Makhlouf and Zusmanovich in [15]. The second aim of this paper is to discuss Hom-Lie structures on tensor products $L \otimes A$, where L and A are vector spaces such that either L or A is finite dimensional and endowed respectively with bilinear maps $[\cdot, \cdot]: L \times L \rightarrow L$ and $\mu: A \times A \rightarrow A$.

The paper is organized as follows. In Section 1, we review definitions and properties of Hom-Lie algebras and Hom-associative algebras. Moreover various relevant examples and low dimensional classification are given. In Section 2, we characterize Hom-Lie structures on tensor products $L \otimes A$, where either vector space L or vector space A is finite dimensional. We consider current Hom-Lie algebras ($L \otimes A,[\cdot, \cdot]_{L \otimes A}, \gamma$), where $[\cdot, \cdot]_{L \otimes A}: L \otimes A \times L \otimes A \rightarrow$ $L \otimes A$ is a bilinear map and $\gamma: L \otimes A \rightarrow L \otimes A$ is a linear map, for which we provide a classification of 4-dimensional current Hom-Lie structure algebras $L \otimes A$. Section 3 is dedicated to representation theory of current Hom-Lie algebras, and semidirect products and faithful representations of minimal dimension for current Heisenberg Hom-Lie algebras are considered there. In Section 4, we discuss derivations, including generalized derivations, and centroids of current Hom-Lie algebras. Moreover, explicit computations are provided. In Section 5, we study the second cohomology group of current Hom-Lie algebras with respect to trivial representation and determine explicitly the second cohomology group $H^{2}(\tilde{L}(\mathcal{G}))$ of Hom-Loop algebra and $H^{2}\left(\widehat{L}\left(\mathfrak{h}_{1}\right)_{p}\right)$ of Hom-truncated Heisenberg algebra. Finally, we study central extensions of current Hom-Lie algebras and establish their classification for Hom-Loop algebra and Hom-truncated Heisenberg algebra.

Throughout this paper, all the vector spaces are over the complex field \mathbb{C} and all vector spaces are at least one-dimensional. Many of the results included in this paper are still valid if one considers any field.

1. Hom-Lie and Hom-associative algebras

In this section we summarize the relevant definitions and provide some examples of Hom-Lie and Hom-associative algebras.

1.1. Hom-Lie algebras.

Definition 1 ([2, 12, 7]). A Hom-Lie algebra is a triple ($\mathcal{G},[\cdot, \cdot], \alpha)$ consisting of a vector space \mathcal{G}, a bilinear map $[\cdot, \cdot]: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ and a linear map $\alpha: \mathcal{G} \rightarrow \mathcal{G}$ satisfying

$$
\begin{aligned}
& {[x, y]=-[y, x], \text { (skew-symmetry) }} \\
& {[\alpha(x),[y, z]]+[\alpha(z),[x, y]]+[\alpha(y),[z, x]]=0, \text { (Hom-Jacobi identity) }}
\end{aligned}
$$

for all elements x, y, z in \mathcal{G}. A Hom-Lie algebra is called multiplicative if α is an algebra morphism, i.e. for any $x, y \in \mathcal{G}$ we have $\alpha([x, y])=[\alpha(x), \alpha(y)]$,
and it is called regular if α is an algebra automorphism. We recover Lie algebras when the linear map is the identity map.

Example 1 (Jackson $\left.\boldsymbol{s l}_{\mathbf{2}}(\mathbb{C}),[3]\right)$. Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be a basis of a 3dimensional vector space $s l_{2}(\mathbb{C})$ over \mathbb{C}. The following bracket $[\cdot, \cdot]$ and linear map α on $s l_{2}(\mathbb{C})$ define a Hom-Lie algebra over \mathbb{C} :
$\left[x_{1}, x_{2}\right]=-2 a x_{2},\left[x_{1}, x_{3}\right]=2 x_{3},\left[x_{2}, x_{3}\right]=-\frac{1+a}{2} x_{1}$, $\alpha\left(x_{1}\right)=a x_{1}, \alpha\left(x_{2}\right)=a^{2} x_{2}, \alpha\left(x_{3}\right)=a x_{3}$, where a is a parameter in \mathbb{C}.

Example 2 ([2, 12, 4]). Any non-abelian 2-dimensional complex multiplicative Hom-Lie algebra is isomorphic to one of the following isomorphism classes defined with respect to a basis $\left\{e_{1}, e_{2}\right\}$ by the bracket and a linear map represented by a matrix with respect to the basis:
(a) $L_{1}:\left[e_{1}, e_{2}\right]=-\left[e_{2}, e_{1}\right]=e_{1}$ and α_{1} is represented by the matrix $\left(\begin{array}{ll}0 & \lambda \\ 0 & \mu\end{array}\right)$.
(b) $L_{2}:\left[e_{1}, e_{2}\right]=-\left[e_{2}, e_{1}\right]=e_{1}$ and α_{2} is represented by the matrix $\left(\begin{array}{ll}\gamma & \eta \\ 0 & 1\end{array}\right)$, with $\gamma \neq 0$.
Proposition $1([5],[22])$. Let $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$ be a Lie algebra and α be a Lie algebra endomorphism. Then $(\mathcal{G}, \alpha \circ[\cdot, \cdot], \alpha)$ is a Hom-Lie algebra.
Moreover, let $(\mathcal{G},[\cdot, \cdot], \alpha)$ be a regular multiplicative Hom-Lie algebra. Then $\left(\mathcal{G}, \alpha^{-1} \circ[\cdot, \cdot]\right)$ is a Lie algebra.

Example 3 (Heisenberg Hom-Lie algebras, [16]). Let ($\mathfrak{h}_{m},[\cdot, \cdot]$) be a $(2 m+1)$-dimensional Heisenberg Lie algebra and $\left\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}, z\right\}$ be a basis. The bracket is defined by $\left[x_{i}, y_{j}\right]=\delta_{i j} z$ for $i, j=1, \cdots, m$, where $\delta_{i j}$ is the Kronecker symbol, other brackets are either zero or given by skewsymmetry.

Let α be a Lie algebra morphism with respect to the previous bracket. The morphisms are defined with respect to the basis $\left\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}, z\right\}$ by the following matrix :

$$
\left(\begin{array}{ccc}
X_{m m} & T_{m m} & 0_{m 1} \\
Z_{m m} & Y_{m m} & 0_{m 1} \\
L_{m 1} & M_{m 1} & \lambda
\end{array}\right) \text {, where }\left(\begin{array}{cc}
X_{m m} & T_{m m} \\
Z_{m m} & Y_{m m}
\end{array}\right) \text { is } \lambda \text {-symplectic. }
$$

Acccording to the previous proposition, the bracket $\left[x_{i}, y_{j}\right]_{\alpha}=\delta_{i j} \alpha(z)$, defines a Hom-Lie algebra. .

Definition $2([3])$. Let $(\mathcal{G},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra. Let V be an arbitrary vector space, $\beta \in \mathcal{G l}(V)$ be an arbitrary linear self-map on V and $[\cdot, \cdot]_{V}: \mathcal{G} \times V \rightarrow V,(g, v) \mapsto[g, v]_{V}$ be a bilinear map.

The triple $\left(V,[\cdot, \cdot]_{V}, \rho\right)$ is called a representation of the Hom-Lie algebra \mathcal{G} or a \mathcal{G}-module V if the bilinear map $[\cdot, \cdot]_{V}$ satisfies, for $x, y \in \mathcal{G}$ and $v \in V$,

$$
\begin{equation*}
[[x, y], \rho(v)]_{V}=\left[\alpha(x),[y, v]_{V}\right]_{V}-\left[\alpha(y),[x, v]_{V}\right]_{V} \tag{1}
\end{equation*}
$$

When $[\cdot, \cdot]_{V}$ is the zero-map, we say that the \mathcal{G}-module V is trivial.

Example 4. We construct a representation of the Hom-Lie algebra L_{1} defined in Example 2. Let V_{1} be a 2 -dimensional vector space and let $\left\{v_{1}, v_{2}\right\}$ be its basis. Define $\rho \in \operatorname{End}\left(V_{1}\right)$ by $\rho\left(v_{1}\right)=0$ and $\rho\left(v_{2}\right)=\eta v_{2}$, and a bilinear map $[\cdot, \cdot]_{V_{1}}: L_{1} \times V_{1} \rightarrow V_{1}$ by

$$
\left[e_{1}, v_{1}\right]_{V_{1}}=t v_{1}, \quad\left[e_{1}, v_{2}\right]_{V_{1}}=0, \quad\left[e_{2}, v_{1}\right]_{V_{1}}=-\frac{\lambda}{\eta} t v_{1}, \quad\left[e_{2}, v_{2}\right]_{V_{1}}=0
$$

Then $\left(V_{1},[\cdot, \cdot]_{V_{1}}, \rho\right)$ is a representation of L_{1}.
1.2. Hom-associative algebras. In this section, we summarize some basics about Hom-associative algebras. For more details, see [12, 13, 11, 2].

Definition 3. A Hom-associative algebra is a triple (A, μ, β), in which A is a vector space, $\beta: A \rightarrow A$ a linear map and $\mu: A \times A \rightarrow A$ a bilinear map, with notation $\mu\left(a, a^{\prime}\right)=a a^{\prime}$, satisfying, for all $a, a^{\prime}, a^{\prime \prime} \in A$: $\beta(a)\left(a^{\prime} a^{\prime \prime}\right)=\left(a a^{\prime}\right) \beta\left(a^{\prime \prime}\right)$, called the Hom-associativity condition.
A Hom-associative algebra is called multiplicative if for all $a, b \in A \beta(a b)=$ $\beta(a) \beta(b)$. A Hom-associative algebra is said to be unital if there exists a unit element 1 such that $\beta(1)=1$ satisfying $\beta(a)=1 a=a 1$.

Example 5 (Laurent polynomials Hom-associative algebra). Consider the Laurent polynomials algebra $A=\mathbb{K}\left[t, t^{-1}\right]$. Let β_{i} be an algebra endomorphism of A which is uniquely determined by the polynomial $\beta_{i}(f)(t)=$ $f\left((q t)^{i}\right)$. Define μ by $\mu(f, g)(t)=f\left(\beta_{i}(t)\right) g\left(\beta_{i}(t)\right)$ for any f, g in A. Then $A_{i}=\left(A, \mu, \beta_{i}\right)$ is a unital commutative Hom-associative algebra.

Proposition 2 ([14]). Any 2-dimensional complex commutative multiplicative Hom-associative algebra with basis $\left\{f_{1}, f_{2}\right\}$ is isomorphic to one of the following isomorphism classes, where the linear map β is given by its matrix with respect to the basis:

A_{i}	μ_{i}	β_{i}
A_{1}	$f_{1} f_{1}=-f_{1}, f_{1} f_{2}=f_{2}, f_{2} f_{2}=f_{1} \cdot$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
A_{2}	$f_{1} f_{1}=f_{1}, f_{1} f_{2}=0, f_{2} f_{2}=f_{2}$.	$\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$.
A_{3}	$f_{1} f_{1}=f_{1}, f_{1} f_{2}=0, f_{2} f_{2}=0$.	$\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$.
A_{4}	$f_{1} f_{1}=f_{1}, f_{1} f_{2}=f_{2}, f_{2} f_{2}=0$.	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
A_{5}	$f_{1} f_{1}=f_{1}, f_{1} f_{2}=0, f_{2} f_{2}=0$.	$\left(\begin{array}{ll}0 & 0 \\ 0 & k\end{array}\right)$.
A_{6}	$f_{1} f_{1}=f_{2}, f_{1} f_{2}=0, f_{2} f_{2}=0$.	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
A_{7}	$f_{1} f_{1}=0, f_{1} f_{2}=a f_{1}, f_{2} f_{2}=b f_{1}$.	$\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.

Definition 4. Let (A, μ, β) be a Hom-associative algebra, M be a vector space and $\varphi: M \rightarrow M$ be a linear map.
(i) A left A-module structure on (M, φ) consists of a bilinear map $\mu_{M}: A \times M \rightarrow M ;(a, m) \mapsto a \bullet m$ satisfying the conditions:

$$
\begin{equation*}
\varphi(a \bullet m)=\beta(a) \bullet \varphi(m), \quad \beta(a) \bullet\left(a^{\prime} \bullet m\right)=\left(a a^{\prime}\right) \bullet \varphi(m) \tag{2}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $m \in M$.
(ii) A right A-module structure on (M, φ) consists of a bilinear map $\mu_{M}: M \times A \rightarrow M ;(m, a) \mapsto m \bullet a$ satisfying the conditions:

$$
\begin{equation*}
\varphi(m \bullet a)=\varphi(m) \bullet \beta(a), \quad \varphi(m) \bullet\left(a a^{\prime}\right)=(m \bullet a) \bullet \beta\left(a^{\prime}\right) \tag{3}
\end{equation*}
$$

for all $a, a^{\prime} \in A$ and $m \in M$.
(iii) A two sided A-module structure on (M, φ) or an A-bimodule consists on a left A-module structure and a right A-module structure on (M, φ) satisfying the compatibility condition: $\beta(a) \bullet\left(m \bullet a^{\prime}\right)=(a \bullet m) \bullet \beta\left(a^{\prime}\right)$, for all $a, a^{\prime} \in A$ and $m \in M$.
If A is unital we assume that $1 \bullet m=m \bullet 1=\varphi(m)$ for all $m \in M$.
Throughout the article, we mean by a representation $\left(M, \mu_{M}, \varphi\right)$ of a Hom-associative algebra (A, μ, β) an A-bimodule structure on (M, φ).

Now, we construct left modules and representations of the Hom-associative algebra A_{1} defined in Example 2.

Example 6. Let W_{1} be a 2-dimensional vector space and $\left\{w_{1}, w_{2}\right\}$ be its basis. Define $\varphi_{1} \in \operatorname{End}\left(W_{1}\right)$ by $\varphi_{1}\left(w_{1}\right)=-w_{1}$ and $\varphi_{1}\left(w_{2}\right)=w_{2}$. Define a bilinear map $[\cdot, \cdot]_{W_{1}}: A_{1} \times W_{1} \rightarrow W_{1}$ by $\left[f_{1}, w_{1}\right]_{W_{1}}=w_{1}, \quad\left[f_{1}, w_{2}\right]_{W_{1}}=$ $-w_{2}, \quad\left[f_{2}, w_{1}\right]_{W_{1}}=s w_{2}, \quad\left[f_{2}, w_{2}\right]_{W_{1}}=-\frac{1}{s} w_{1}$, where s is a parameter. Then ($W_{1},[\cdot, \cdot]_{W_{1}}, \varphi_{1}$) is a left A_{1}-module.

Example 7. Let W_{1}^{\prime} be a 2 -dimensional vector space and $\left\{w_{1}, w_{2}\right\}$ be its basis. Define $\varphi_{1} \in \operatorname{End}\left(W_{1}^{\prime}\right)$ by $\varphi_{1}\left(w_{1}\right)=-w_{1}$ and $\varphi_{1}\left(w_{2}\right)=w_{2}$. Define a bilinear map $[\cdot, \cdot]_{W_{1}^{\prime}}: A_{1} \times W_{1}^{\prime} \rightarrow W_{1}^{\prime}$ by
$\left[f_{1}, w_{1}\right]_{W_{1}^{\prime}}=d w_{1},\left[f_{1}, w_{2}\right]_{W_{1}^{\prime}}=w_{2},\left[f_{2}, w_{1}\right]_{W_{1}^{\prime}}=s w_{2},\left[f_{2}, w_{2}\right]_{W_{1}^{\prime}}=\frac{1}{s} w_{1}$, and a bilinear map $[\cdot, \cdot]_{W_{1}^{\prime}}: W_{1}^{\prime} \times A_{1} \rightarrow W_{1}^{\prime} \quad$ by
$\left[w_{1}, f_{1}\right]_{W_{1}^{\prime}}=\frac{1}{d} w_{1},\left[w_{1}, f_{2}\right]_{W_{1}^{\prime}}=-w_{1},\left[w_{2}, f_{1}\right]_{W_{1}^{\prime}}=-\frac{1}{d} w_{2},\left[w_{2}, f_{2}\right]_{W_{1}^{\prime}}=w_{2}$, where d, s are parameters.
Then $\left(W_{1}^{\prime}, \varphi_{1}\right)$ is a two-sided A_{1}-module or a representation of A_{1}.

2. Hom-Lie structures on tensor products $\mathcal{G} \otimes A$

In this section, we aim to characterize tensor products that provide a Hom-Lie algebra structure and discuss current Hom-Lie algebras. Moreover, we give some examples of current Hom-Lie algebras and a classification of four dimensional current Hom-Lie algebras, where the Hom-Lie algebra and
the Hom-associative algebra are 2-dimensional. First, we recall the following relevant result of linear algebra.

Proposition 3 ([25], Lemma 1.1). Let U, W be two vector spaces where either U and W or both U and W are finite-dimensional. Let $S, S^{\prime} \in$ $\operatorname{Hom}(U, \cdot), T, T^{\prime} \in \operatorname{Hom}(W, \cdot)$. Then

$$
\begin{aligned}
\operatorname{Ker}(S \otimes T) \cap \operatorname{Ker}\left(S^{\prime} \otimes T^{\prime}\right) & \simeq\left(\operatorname{Ker} S \cap \operatorname{Ker} S^{\prime}\right) \otimes W+\operatorname{Ker} S \otimes \operatorname{ker} T^{\prime} \\
& +\operatorname{Ker} S^{\prime} \cap \operatorname{ker} T+U \otimes\left(\operatorname{Ker} T \cap \operatorname{Ker} T^{\prime}\right) .
\end{aligned}
$$

One has the following corollary, see [25].
Corollary 1. Let \mathcal{G} and A be two vector spaces such that at least one of \mathcal{G} and A is finite-dimensional. Let S, S^{\prime} and T, T^{\prime} be linear operators defined on the spaces of n-linear maps $\mathcal{G}^{n} \rightarrow \mathcal{G}$ and $A^{n} \rightarrow A$, respectively. Let $\alpha_{i}: \mathcal{G}^{n} \rightarrow \mathcal{G}$ and $\beta_{i}: A^{n} \rightarrow A$ be n-linear maps.
If $\sum_{i \in I} S\left(\alpha_{i}\right) \otimes T\left(\beta_{i}\right)=0$ and $\sum_{i \in I} S^{\prime}\left(\alpha_{i}\right) \otimes T^{\prime}\left(\beta_{i}\right)=0$, then the indexing set is partitioned into the four subsets $I=I_{1} \cup I_{2} \cup I_{3} \cup I_{4}$ such that:
(i) $S\left(\alpha_{i}\right)=0$ and $S^{\prime}\left(\alpha_{i}\right)=0$ for any $i \in I_{1}$;
(ii) $S\left(\alpha_{i}\right)=0$ and $T^{\prime}\left(\beta_{i}\right)=0$ for any $i \in I_{2}$;
(iii) $S^{\prime}\left(\alpha_{i}\right)=0$ and $T\left(\beta_{i}\right)=0$ for any $i \in I_{3}$;
(iv) $T\left(\beta_{i}\right)=0$ and $T^{\prime}\left(\beta_{i}\right)=0$ for any $i \in I_{4}$.

Let \mathcal{G} and A be two vector spaces such that at least one of \mathcal{G} and A is finitedimensional. Let $[\cdot, \cdot]_{\mathcal{G}}: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ and $\mu: A \times A \rightarrow A$ be bilinear maps such that $[\cdot, \cdot]_{\mathcal{G}}$ is not symmetric. Define a bilinear map $[\cdot, \cdot]: \mathcal{G} \otimes A \times \mathcal{G} \otimes A \rightarrow \mathcal{G} \otimes A$ by $[x \otimes a, y \otimes b]=[x, y]_{\mathcal{G}} \otimes \mu(a, b)$. An arbitrary linear map $\psi: \mathcal{G} \otimes A \rightarrow \mathcal{G} \otimes A$ can be written in the form $\psi=\sum_{i \in I} \alpha_{i} \otimes \beta_{i}$, where $\alpha_{i}: \mathcal{G} \rightarrow \mathcal{G}, \beta_{i}: A \rightarrow A$ are (finite) families of linearly independent linear maps indexed by a set I.

Theorem 1. With the above notations, $(\mathcal{G} \otimes A,[\cdot, \cdot], \psi)$ is a Hom-Lie algebra if and only if $[\cdot, \cdot]_{\mathcal{G}}$ is skew-symmetric, μ is symmetric and there exists a decomposition of the set of indices $I=I_{1} \cup I_{2} \cup I_{3} \cup I_{4}$ such that one of the following condition is satisfied:
(i) $\left[[x, z]_{\mathcal{G}}, \alpha_{i}(x)\right]_{\mathcal{G}}=0$, for any $i \in I_{1}$;
(ii) $\beta_{i}(a)(b c)=0$, for any $i \in I_{2}$;
(iii) $\left(\mathcal{G},[\cdot, \cdot]_{\mathcal{G}}, \alpha_{i}\right)$ is a Hom-Lie algebra and $\left(A, \mu, \beta_{i}\right)$ is a Hom-associative algebra, for any $i \in I_{3}$;
(iv) $\left[\alpha_{i}(x),[y, z]_{\mathcal{G}}\right]_{\mathcal{G}}=\left[\alpha_{i}(y),[x, z]_{\mathcal{G}}\right]_{\mathcal{G}}$ and $\beta_{i}(a)(b c)+\beta_{i}(b)(a c)+\beta_{i}(c)(a b)=0$ for any $i \in I_{4}$.

Proof. For any $x \otimes a, y \otimes b \in \mathcal{G} \otimes A$, we should have $[x \otimes a, y \otimes b]=$ $-[y \otimes b, x \otimes a]$, that is $[x, y]_{\mathcal{G}} \otimes a b=-[y, x]_{\mathcal{G}} \otimes b a$. This implies $[x, y]_{\mathcal{G}}=$ $-\lambda[y, x]_{\mathcal{G}}$ and $b a=\lambda a b$. Then $-[y, x]_{\mathcal{G}} \otimes b a=\lambda[x, y]_{\mathcal{G}} \otimes \lambda a b=\lambda^{2}[x, y]_{\mathcal{G}} \otimes a b$. Hence $\lambda^{2}=1$. Since $[\cdot, \cdot]_{\mathcal{G}}$ is not symmetric, we have $\lambda=1$. Therefore, $[\cdot, \cdot]_{\mathcal{G}}$ is skew-symmetric and μ is symmetric.

The Hom-Jacobi identity with respect to ψ may be written

$$
\begin{array}{r}
\sum_{i \in I}\left[\alpha_{i}(x),[y, z]_{\mathcal{G}}\right]_{\mathcal{G}} \otimes \beta_{i}(a)(b c)+\left[\alpha_{i}(y),[x, z]_{\mathcal{G}}\right]_{\mathcal{G}} \otimes \beta_{i}(b)(c a) \\
+\left[\alpha_{i}(z),[x, y]_{\mathcal{G}}\right]_{\mathcal{G}} \otimes \beta_{i}(c)(a b)=0 . \tag{4}
\end{array}
$$

Cyclically permuting x, y, z, in the last equality and summing up the obtained 3 equalities, we get

$$
\begin{aligned}
& \sum_{i \in I}\left(\left[\alpha_{i}(x),[y, z]_{\mathcal{G}}\right]_{\mathcal{G}}\right.\left.+\left[\alpha_{i}(y),[z, x]_{\mathcal{G}}\right]_{\mathcal{G}}+\left[\alpha_{i}(z),[x, y]_{\mathcal{G}}\right]_{\mathcal{G}}\right) \otimes \\
&\left(\beta_{i}(a)(b c)+\beta_{i}(b)(a c)+\beta_{i}(c)(b a)\right)=0
\end{aligned}
$$

Skew-symmetrizing the equality (4) with respect to x, y, leads to

$$
\begin{equation*}
\sum_{i \in I}\left(\left[\alpha_{i}(x),[y, z]_{\mathcal{G}}\right]_{\mathcal{G}}+\left[\alpha_{i}(y),[z, x]_{\mathcal{G}}\right]_{\mathcal{G}}\right) \otimes\left(\beta_{i}(a)(b c)-\beta_{i}(b)(a c)\right)=0 \tag{5}
\end{equation*}
$$

By applying Corollary 1 derived from Proposition 3 (see [25, Lemma 1.1]) to the last two equalities, we complete the proof.

Now, we consider the subclass of Hom-Lie algebras provided by Type (iii) of Theorem 1, which corresponds to so called current Hom-Lie algebras.

Definition 5. A current Hom-Lie algebra is a tensor product of the form $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G}} \otimes \mu, \alpha \otimes \beta\right)$, where $\left(\mathcal{G},[\cdot, \cdot]_{\mathcal{G}}, \alpha\right)$ is a Hom-Lie algebra and (A, μ, β) is a Hom-associative commutative algebra. The current Hom-Lie algebra is denoted by $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G} \otimes A}, \gamma\right)$ instead of $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G}} \otimes \mu, \alpha \otimes \beta\right)$.

Example 8 (Loop Hom-Lie algebras). For any Hom-Lie algebra $\left(\mathcal{G},[\cdot, \cdot]_{\mathcal{G}}, \alpha\right)$, set $\widetilde{\mathcal{G}}=\mathcal{G} \otimes \mathbb{C}\left[t, t^{-1}\right]$, where $\mathbb{C}\left[t, t^{-1}\right]$ denote Laurent polynomials. We define a bracket $[\cdot, \cdot]$ on $\widetilde{\mathcal{G}}$ by

$$
\left[x \otimes t^{n}, y \otimes t^{m}\right]=[x, y]_{\mathcal{G}} \otimes(q t)^{n+m}, \forall x, y \in \mathcal{G}, \forall n, m \in \mathbb{Z}
$$

and an endomorphism $\gamma: \widetilde{\mathcal{G}} \rightarrow \widetilde{\mathcal{G}}$ by $\gamma=\alpha \otimes \beta$ where $\beta=\beta_{1}$ (see Example 2). Then $(\widetilde{\mathcal{G}},[\cdot, \cdot], \gamma)$ is a multiplicative Hom-Lie algebra, which we call a Loop Hom-Lie algebra.

Example 9 (Truncated current Hom-Lie algebras). Let $\left(\mathcal{G},[\cdot, \cdot]_{\mathcal{G}}, \alpha\right)$ be a Hom-Lie algebra over the complex field \mathbb{C}, and fix a positive integer p. Define
an endomorphism $\beta: \mathbb{C}[t] / t^{p+1} \mathbb{C}[t] \rightarrow \mathbb{C}[t] / t^{p+1} \mathbb{C}[t]$ by $\beta(f)(t)=f(q t)$. The tensor product $\widehat{\mathcal{G}}_{p}=\mathcal{G} \otimes \mathbb{C}[t] / t^{p+1} \mathbb{C}[t]$ with the bracket

$$
[x \otimes f, y \otimes g]=[x, y]_{\mathcal{G}} \otimes f(q t) g(q t), \forall x, y \in \mathcal{G}, \forall f, g \in \mathbb{C}[t] / t^{p+1} \mathbb{C}[t]
$$

and the linear map $\gamma=\alpha \otimes \beta$ is a Hom-Lie algebra, which we call Truncated current Hom-Lie algebra.

We end this section by a remark about the classification of 4-dimensional current Hom-Lie algebras.

Remark 1. Every current Hom-Lie algebra where both the Hom-Lie algebra and the Hom-associative algebra are 2-dimensional is isomorphic to one of the following non-isomorphic current Hom-Lie algebras $\mathcal{G} \otimes A=$ $\left(\mathcal{G}_{p} \otimes A_{q},[\cdot, \cdot]_{\mathcal{G}_{p}} \otimes \mu_{q}, \alpha_{p} \otimes \beta_{q}\right)$, where $\left(\mathcal{G}_{p},[\cdot, \cdot]_{\mathcal{G}_{p}}, \alpha_{p}\right), p=1,2$, is a Hom-Lie algebra given in Example 2 and $\left(A_{q}, \mu_{q}, \beta_{q}\right), q=1, \cdots, 7$, is a Hom-associative algebra given in Example 2.

3. Representations of current Hom-Lie algebras

Let $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G} \otimes A}, \alpha \otimes \beta\right.$) be a current Hom-Lie algebra, V and W be two vector spaces, $[\cdot, \cdot]_{V}: \mathcal{G} \times V \rightarrow V$ and $\bullet: A \times W \rightarrow W$ be two bilinear maps. Define a bilinear map $[\cdot, \cdot]_{V \otimes W}: \mathcal{G} \otimes A \times V \otimes W \rightarrow V \otimes W$ by

$$
[x \otimes a, v \otimes w]_{V \otimes W}=[x, v]_{V} \otimes a \bullet w,
$$

for all $x \in \mathcal{G}, a \in A, v \in V, w \in W$.
Let $\psi=\sum_{i \in I} \alpha_{i V} \otimes \beta_{i W}$ be an endomorphism of $V \otimes W$. Assume that $(V \otimes$ $\left.W,[\cdot, \cdot]_{V \otimes W}, \psi\right)$ is a representation of the current Hom-Lie algebra ($\mathcal{G} \otimes$ $\left.A,[\cdot, \cdot]_{\mathcal{G} \otimes A}, \alpha \otimes \beta\right)$. That is, we have

$$
\begin{align*}
& \sum_{i \in I}\left[[x, y], \alpha_{i V}(v)\right]_{V} \otimes(a b) \bullet \beta_{i W}(w) \tag{6}\\
& =[\alpha(x),[y, v]] \otimes \beta(a) \bullet(b \bullet w)-[\alpha(y),[x, v]] \otimes \beta(b) \bullet(a \bullet w) .
\end{align*}
$$

Skew-symmetrizing the previous equality with respect to x, y leads to

$$
\begin{equation*}
([\alpha(x),[y, v]]+[\alpha(y),[x, v]]) \otimes(\beta(a) \bullet(b \bullet w)-\beta(b) \bullet(a \bullet w))=0 . \tag{7}
\end{equation*}
$$

We have the following result.
Theorem 2. The triple $\left(V \otimes W,[\cdot, \cdot]_{V \otimes W}, \psi_{V \otimes W}\right)$ is a representation of a current Hom-Lie algebra $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G} \otimes A}, \alpha \otimes \beta\right)$ if and only if one of the following cases holds.
(1) There is a subset J of I and a sequence of complex numbers $\left(\lambda_{j}\right)_{j \in J}$ such that

$$
\beta(a) \bullet(b \bullet w)=\beta(b) \bullet(a \bullet w)=\sum_{j \in J} \lambda_{j}(a b) \bullet \beta_{j W}(w)
$$

for all $a, b \in A, w \in W$ and

$$
\left[[x, y], \alpha_{j V}(v)\right]_{V}=\lambda_{j}\left(\left[\alpha(x),[y, v]_{V}\right]_{V}-\left[\alpha(y),[x, v]_{V}\right]_{V}\right)
$$

for all $j \in J, x, y \in \mathcal{G}, v \in V$. Hence $\left(W, \bullet, \sum_{i \in J} \lambda_{i} \beta_{i W}\right)$ is a representation of (A, μ, β) and $\left(V,[\cdot, \cdot]_{V}, \frac{1}{\lambda_{j}} \alpha_{j V}\right)$ is a representation of \mathcal{G}.
(2) There is a subset J of I and a complex sequence $\left(\lambda_{j}\right)_{j \in J}$ such that

$$
\begin{gathered}
{\left[\alpha(x),[y, v]_{V}\right]_{V}=-\left[\alpha(y),[x, v]_{V}\right]_{V}=\sum_{i \in J} \lambda_{i}\left[[x, y], \alpha_{i V}(v)\right]_{V}} \\
\text { and }(a b) \bullet \beta_{j W}(w)=\lambda_{j}(\beta(a) \bullet(b \bullet w)+\beta(b) \bullet(a \bullet w))
\end{gathered}
$$

for all $j \in J, x, y \in \mathcal{G}, v \in V, w \in W$.
Proof. One uses [25, Lemma 1.1], the proof is similar to Theorem 1.
Corollary 2. Let $\left(V,[\cdot, \cdot]_{V}, \alpha_{V}\right)$ be a representation of the Hom-Lie algebra $\left(\mathcal{G},[\cdot, \cdot]_{\mathcal{G}}, \alpha\right)$ and $\left(W, \bullet, \beta_{W}\right)$ be a representation of the Hom-associative algebra (A, μ, β). Then $\left(V \otimes W,[\cdot, \cdot]_{V \otimes W}, \alpha_{V} \otimes \beta_{W}\right)$ is a representation of the current Hom-Lie algebra $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G} \otimes A}, \alpha \otimes \beta\right)$.

Example 10. Let L_{1} be the Hom-Lie algebra defined in Example 2 and A_{1} be the Hom-associative algebra defined in Example 2. Let V_{1} be the representation of L_{1} given in Example 4 and let W_{1} be the representation of A_{1} defined in Example 6.

Define a bilinear map $[\cdot, \cdot]_{V_{1} \otimes W_{1}}:\left(L_{1} \otimes A_{1}\right) \times\left(V_{1} \otimes W_{1}\right) \rightarrow V_{1} \otimes W_{1}$ by $\left[e_{1} \otimes f_{1}, v_{1} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=t v_{1} \otimes w_{1}, \quad\left[e_{1} \otimes f_{1}, v_{1} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=-t v_{1} \otimes w_{2}$, $\left[e_{1} \otimes f_{1}, v_{2} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=0, \quad\left[e_{1} \otimes f_{1}, v_{2} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=0$,
$\left[e_{1} \otimes f_{2}, v_{1} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=t s v_{1} \otimes w_{2}$,
$\left[e_{1} \otimes f_{2}, v_{1} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=\frac{t}{s} v_{1} \otimes w_{1}$,
$\left[e_{1} \otimes f_{2}, v_{2} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=0$,
$\left[e_{1} \otimes f_{2}, v_{2} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=0$,
$\left[e_{2} \otimes f_{1}, v_{1} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=-\frac{\lambda}{\eta} t v_{1} \otimes w_{1}$,
$\left[e_{2} \otimes f_{1}, v_{1} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=\frac{\lambda}{\eta} t v_{1} \otimes w_{2}$,
$\left[e_{2} \otimes f_{1}, v_{2} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=0$,
$\left[e_{2} \otimes f_{1}, v_{2} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=0$,
$\left[e_{2} \otimes f_{2}, v_{1} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=-\frac{\lambda}{\eta} t s v_{1} \otimes w_{2}$,
$\left[e_{2} \otimes f_{2}, v_{1} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=\frac{\lambda}{\eta} \frac{t}{s} v_{1} \otimes w_{1}$,
$\left[e_{2} \otimes f_{2}, v_{2} \otimes w_{1}\right]_{V_{1} \otimes W_{1}}=0$, $\left[e_{2} \otimes f_{2}, v_{2} \otimes w_{2}\right]_{V_{1} \otimes W_{1}}=0$,
and define a bilinear map $[\cdot, \cdot]_{V_{1} \otimes W_{1}}:\left(V_{1} \otimes W_{1}\right) \times\left(L_{1} \otimes A_{1}\right) \rightarrow V_{1} \otimes W_{1}$ by
$\left[v_{1} \otimes w_{1}, e_{1} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=\frac{1}{d} t v_{1} \otimes w_{1}, \quad\left[v_{1} \otimes w_{2}, e_{1} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=-\frac{1}{d} t v_{1} \otimes w_{2}$,
$\left[v_{2} \otimes w_{1}, e_{1} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=0, \quad\left[v_{2} \otimes w_{2}, e_{1} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=0$,
$\left[v_{1} \otimes w_{1}, e_{1} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=-t v_{1} \otimes w_{1}, \quad\left[v_{1} \otimes w_{2}, e_{1} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=t v_{1} \otimes w_{1}$,
$\left[v_{2} \otimes w_{1}, e_{1} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=0, \quad\left[v_{2} \otimes w_{2}, e_{1} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=0$,

$$
\begin{array}{ll}
{\left[v_{1} \otimes w_{1}, e_{2} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=-\frac{\lambda}{\eta} t v_{1} \otimes w_{1},} & {\left[v_{1} \otimes w_{2}, e_{2} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=\frac{\lambda}{\eta} t v_{1} \otimes w_{2},} \\
{\left[v_{2} \otimes w_{1}, e_{2} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=0,} & {\left[v_{2} \otimes w_{2}, e_{2} \otimes f_{1}\right]_{V_{1} \otimes W_{1}}=0,} \\
{\left[v_{1} \otimes w_{1}, e_{2} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=\frac{\lambda}{\eta} t, v_{1} \otimes w_{1},} & {\left[v_{1} \otimes w_{2}, e_{2} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=-\frac{\lambda}{\eta} t v_{1} \otimes w_{2},} \\
{\left[v_{2} \otimes w_{1}, e_{2} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=0,} & {\left[v_{2} \otimes w_{2}, e_{2} \otimes f_{2}\right]_{V_{1} \otimes W_{1}}=0 .}
\end{array}
$$

Define $\alpha_{V_{1}} \otimes \beta_{W_{1}}=\rho \otimes \varphi_{1} \in \operatorname{End}\left(V_{1} \otimes W_{1}\right)$ by

$$
\begin{array}{ll}
\alpha_{V_{1}} \otimes \beta_{W_{1}}\left(v_{1} \otimes w_{1}\right)=0, & \alpha_{V_{1}} \otimes \beta_{W_{1}}\left(v_{1} \otimes w_{2}\right)=0, \\
\alpha_{V_{1}} \otimes \beta_{W_{1}}\left(v_{2} \otimes w_{1}\right)=-\eta v_{2} \otimes w_{1}, & \alpha_{V_{1}} \otimes \beta_{W_{1}}\left(v_{2} \otimes w_{2}\right)=\eta v_{2} \otimes w_{2} .
\end{array}
$$

Then, using Corollary $2,\left(V_{1} \otimes W_{1},[\cdot, \cdot]_{V_{1} \otimes W_{1}}, \alpha_{V_{1}} \otimes \beta_{W_{1}}\right)$ is a representation of $L_{1} \otimes A_{1}$.
3.1. Semidirect Product. Given a representation $\left(V,[\cdot, \cdot]_{V}, \beta\right)$ of a HomLie algebra $(\mathcal{G},[\cdot, \cdot], \alpha)$. Define a skew-symmetric bilinear bracket $[\cdot, \cdot]_{\mathcal{G} \times V}:(\mathcal{G} \oplus V)^{2} \rightarrow \mathcal{G} \oplus V$ by $[(x, v),(y, w)]=\left([x, y],[x, v]_{V}-[y, w]_{V}\right)$, and a linear map $\alpha+\beta: \mathcal{G} \oplus V \rightarrow \mathcal{G} \oplus V$ by $(\alpha+\beta)(x, v)=(\alpha(x), \beta(v))$.

Proposition 4 ([20]). With the above notations, $\left(\mathcal{G} \oplus V,[\cdot, \cdot]_{\mathcal{G} \times V}, \alpha+\beta\right)$ is a Hom-Lie algebra, which we call the semidirect product of the Hom-Lie algebra \mathcal{G} and V.

One may use Example 10 to construct a semidirect product on the HomLie algebra L_{1} defined in Example 4 and A_{1} the Hom-associative algebra defined in Example 2.
3.2. Faithful representations of current Heisenberg Hom-Lie algebras. The faithful representations of Lie algebras and superalgebras are studied in $[8,21]$. In this section we extend the study of faithful representations of minimal dimension of current Heisenberg Lie algebras, see [10], to current Heisenberg Hom-Lie algebras.

Definition 6. A representation $\left(V,[, \cdot,]_{V}, \beta\right)$ of a multiplicative Hom-Lie algebra ($\mathcal{G},[\cdot, \cdot], \alpha$) is said to be faithful if β is a bijective map satisfying $\beta\left([x, v]_{V}\right)=[\alpha(x), \beta(v)]_{V}$ for all $x \in \mathcal{G}, v \in V$ and the map $\rho: \mathcal{G} \rightarrow \operatorname{End}(V)$, defined as $\rho(x)(v)=[x, v]_{V}$, is injective.

Let \mathcal{G} be a Hom-Lie algebra and set

$$
\mu(\mathcal{G})=\min \{\operatorname{dim} V \mid V \text { is a faithful } \mathcal{G} \text {-module }\} .
$$

Let \mathfrak{h}_{m} be the $(2 m+1)$-dimensional Heisenberg Lie algebra defined in Example 3 with respect to a basis $\left\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}, z\right\}$ such that the only non-zero brackets are $\left[x_{i}, y_{i}\right]^{\prime}=z$ for all $i \in\{1, \cdots, m\}$ and let $\mathbb{C}[t]$ be the polynomials algebra in one variable. Let $p=\sum_{k=0}^{d-1} a_{k} t^{k}+t^{d}$ be a
nonzero monic polynomial and let (p) be the principal ideal generated by p. Let $\mathfrak{h}_{m, p}=\mathfrak{h}_{m} \otimes \mathbb{C}[t] /(p)$ be the current Lie algebra associated to \mathfrak{h}_{m} and $\mathbb{C}[t] /(p)$. Let α be an algebra isomorphism of the Heisenberg Lie algebra $\left(\mathfrak{h}_{m},[\cdot, \cdot]^{\prime}\right)$, defined in Example 3 and let $\beta: \mathbb{C}[t] /(p) \rightarrow \mathbb{C}[t] /(p)$ be an isomorphism defined by $\beta\left(t^{k}\right)=(q t)^{k}$ for all $k \in\{0, \cdots, d-1\}$. Define a bracket $[\cdot, \cdot]$ on \mathfrak{h}_{m} by

$$
\begin{aligned}
& {\left[x_{i} \otimes t^{k}, y_{j} \otimes t^{l}\right]=\delta_{i j} q^{k+l} \alpha(z) \otimes t^{k+l},} \\
& {\left[x_{i} \otimes t^{k}, x_{j} \otimes t^{l}\right]=\left[y_{i} \otimes t^{k}, y_{j} \otimes t^{l}\right]=\left[x_{i} \otimes t^{k}, z \otimes t^{l}\right]=\left[y_{j} \otimes t^{k}, z \otimes t^{l}\right]=0}
\end{aligned}
$$

for all $i, j \in\{1, \cdots, m\} ; k, l \in\{0,1 \cdots, d-1\}$. With the above notations, $\left(\mathfrak{h}_{m, p},[\cdot, \cdot], \alpha \otimes \beta\right)$ is a Hom-Lie algebra, which we call the current Heisenberg Hom-Lie algebra.

Proposition 5. Let $(\mathcal{G},[\cdot, \cdot], \alpha)$ be a regular multiplicative Hom-Lie algebra. Define the bilinear bracket $[\cdot, \cdot]^{\prime}: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ by $[x, y]^{\prime}=\left[\alpha^{-1}(x), \alpha^{-1}(y)\right]$ for all $x, y \in \mathcal{G}$. Let $\left(V,[\cdot, \cdot]_{V}, \beta\right)$ be a representation of the Hom-Lie algebra $(\mathcal{G},[, \cdot, \cdot], \alpha)$. We assume that β is bijective and satisfies $\beta\left([x, v]_{V}\right)=$ $[\alpha(x), \beta(v)]_{V}$ for all $x \in \mathcal{G}, v \in V$. Define the bilinear bracket $[\cdot,]_{V}^{\prime}: \mathcal{G} \times V \rightarrow$ V by $[x, v]_{V}^{V}=\left[\alpha^{-1}(x), \beta^{-1}(v)\right]_{V}$ for all $x \in \mathcal{G}, v \in V$. Then $\left(V,[\cdot, \cdot]_{V}^{\prime}\right)$ is a representation of the Lie algebra ($\mathcal{G},[\cdot, \cdot]^{\prime}$).

Proof. By Proposition 1, $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$ is a Lie algebra. Set $x=\alpha(a)$ and $v=\beta(u)$. Then

$$
\beta^{-1}\left([x, v]_{V}\right)=\beta^{-1}\left([\alpha(a), \beta(u)]_{V}\right)=\beta^{-1} \beta\left([a, u]_{V}\right)=\left[\alpha^{-1}(x), \beta^{-1}(v)\right]_{V} .
$$

Hence

$$
\begin{aligned}
{\left[[x, y]^{\prime}, v\right]_{V}^{\prime} } & =\left[\left[\alpha^{-1}(x), \alpha^{-1}(y)\right], v\right]_{V}^{\prime} \\
& =\left[\left[\alpha^{-2}(x), \alpha^{-2}(y)\right], \beta^{-1}(v)\right]_{V} \\
& =\left[\left[\alpha\left(\alpha^{-2}(x)\right),\left[\alpha^{-2}(y), \beta^{-2}(v)\right]\right]_{V}-\left[\left[\alpha\left(\alpha^{-2}(y)\right),\left[\alpha^{-2}(x), \beta^{-2}(v)\right]\right]_{V}\right.\right. \\
& =\left[\alpha^{-1}(x), \beta^{-1}\left[\alpha^{-1}(y), \beta^{-1}(v)\right]\right]_{V}-\left[\alpha^{-1}(y), \beta^{-1}\left[\alpha^{-1}(x), \beta^{-1}(v)\right]\right]_{V} \\
& =\left[\alpha^{-1}(x), \beta^{-1}[y, v]_{V}\right]_{V}-\left[\alpha^{-1}(y), \beta^{-1}[x, v]_{V}^{\prime}\right]_{V} \\
& =\left[x,[y, v]_{V}^{\prime}\right]_{V}^{\prime}-\left[y,[x, v]_{V}^{\prime}\right]_{V}^{\prime} .
\end{aligned}
$$

Thus, $\left(V,[.,]_{V}^{\prime}\right)$ is a representation of the Lie algebra $\left(G,[.,]^{\prime}\right)$.
Let $\left(V,[\cdot, \cdot]_{V}, \beta\right)$ be a faithful representation of the current Heisenberg Hom-Lie algebra $\mathfrak{h}_{m, p}$. Then $\left(V,[\cdot, \cdot]_{V}^{\prime}\right)$ is a representation of Heisenberg Lie algebra ($\mathfrak{h}_{m, p},[\cdot, \cdot]^{\prime}$) (Proposition 5). So, by [10],

$$
\begin{equation*}
\operatorname{dim} V \geq m \operatorname{deg} p+[2 \sqrt{\operatorname{deg} p}] \tag{8}
\end{equation*}
$$

Proposition 6. Let $\left(V,[\cdot, \cdot]_{V}^{\prime}\right)$ be a representation of a Lie algebra $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$. Let α be a Lie algebra isomorphism on \mathcal{G} and α_{V} be an endomorphism of
V satisfying $\alpha_{V}\left([x, v]_{V}^{\prime}\right)=\left[\alpha(x), \alpha_{V}(v)\right]_{V}^{\prime}$ for all $x \in \mathcal{G}, v \in V$. Then $\left(V, \alpha_{V} \circ[\cdot, \cdot]_{V}^{\prime}, \alpha_{V}\right)$ is a representation of the Hom-Lie algebra $(\mathcal{G},[\cdot, \cdot], \alpha)$.

Proof. By Proposition 1, ($\mathcal{G},[\cdot, \cdot], \alpha)$ is a Hom-Lie algebra.
Set $[\cdot, \cdot]_{V}=\alpha_{V} \circ[\cdot, \cdot]_{V}^{\prime}$. Then we have

$$
\alpha_{V}([x, v])=\alpha_{V} \circ \alpha_{V}\left([x, v]_{V}^{\prime}\right)=\alpha_{V}\left(\left[\alpha(x), \alpha_{V}(v)\right]_{V}^{\prime}\right)=\left[\alpha(x), \alpha_{V}(v)\right]_{V}
$$

and

$$
\begin{aligned}
& {\left[[x, y], \alpha_{V}(v)\right]=\left[[\alpha(x), \alpha(y)]^{\prime}, \alpha_{V}(v)\right]=\left[\alpha\left([x, y]^{\prime}\right), \alpha_{V}(v)\right]} \\
& =\alpha_{V} \circ\left[\alpha\left([x, y]^{\prime}\right), \alpha_{V}(v)\right]_{V}^{\prime}=\alpha_{V} \circ \alpha_{V}\left(\left[[x, y]^{\prime}, v\right]_{V}^{\prime}\right) \\
& =\alpha_{V} \circ \alpha_{V}\left(\left[x,[y, v]_{V}^{\prime}\right]_{V}^{\prime}-\left[y,[x, v]_{V}^{\prime}\right]_{V}^{\prime}\right) \\
& =\alpha_{V}\left(\left[\alpha(x), \alpha_{V}\left([y, v]^{\prime}\right)\right]_{V}^{\prime}-\left[\alpha(y), \alpha_{V}\left([x, v]^{\prime}\right)\right]_{V}^{\prime}\right) \\
& =\left[\alpha(x), \alpha_{V}\left([y, v]^{\prime}\right)\right]_{V}-\left[\alpha(y), \alpha_{V}\left([x, v]^{\prime}\right)\right]_{V} \\
& =[\alpha(x),[y, v]]_{V}-[\alpha(y),[x, v]]_{V} .
\end{aligned}
$$

Hence $\left(V, \alpha_{V} \circ[., .]_{V}^{\prime}, \alpha_{V}\right)$ is a representation ofthe Hom-Liealgebra ($\left.\mathcal{G},[.,],. \alpha\right)$.

Proposition 7 ([10]). Let a, b two integers such that $a b \geq d$ and $a+b=$ $\lceil 2 \sqrt{d}\rceil$. Here $\lceil 2 \sqrt{d}\rceil$ is the closest integer that is greater than or equal to $2 \sqrt{d}$. Consider matrices $P \in \mathcal{M}_{d, d}, A \in \mathcal{M}_{a, d}$ and $B \in \mathcal{M}_{d, b}$, where

$$
P=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & \ddots & & 0 & -a_{1} \\
& \ddots & 0 & \vdots & \\
& & & 1 & -a_{d-1}
\end{array}\right)
$$

$$
A_{i j}=\left\{\begin{array}{ll}
1 & \text { if } j=d-(a-i) b ; \\
0 & \text { otherwise } ;
\end{array} \quad B_{i j}= \begin{cases}1 & \text { if } i=j ; \\
0 & \text { otherwise } .\end{cases}\right.
$$

Define a map $\rho_{A, B}: \mathfrak{h}_{m, p} \rightarrow \operatorname{End}\left(\mathbb{C}^{m d+\lceil 2 \sqrt{d}\rceil}\right)$ by

$$
\begin{aligned}
& \rho_{A, B}\left(\sum_{i=1}^{m} x_{i} \otimes q_{1 i}(t)+\sum_{i=1}^{m} y_{i} \otimes q_{2 i}(t)+z \otimes q_{3}(t)\right) \\
&=\left(\begin{array}{ccccc}
0_{a a} & A q_{11}(P) & \ldots & A q_{1 m}(P) & A q_{3}(P) B \\
& & & & q_{21}(P) B \\
& & 0 & & \vdots \\
& & & & q_{2 m}(P) B \\
& & & & 0_{b, b}
\end{array}\right) .
\end{aligned}
$$

With the above notations, $\left(\rho_{A, B}, \mathbb{C}^{m d+\lceil[2 \sqrt{d}]}\right)$ is a faithful representation of the current Heisenberg Lie algebra $\left(\mathfrak{h}_{m, p},[\cdot, \cdot]^{\prime}\right)$.

By Proposition 6 and Proposition 7, we obtain the following result.

Proposition 8. Let $V=\mathbb{C}^{m d+\lceil 2 \sqrt{d}\rceil}$ and α_{V} be an endomorphism of V satisfying $\alpha_{V} \circ \rho_{A, B}(u \otimes f)=\rho_{A, B}(\alpha \otimes \beta(u \otimes f)) \circ \alpha_{V}$.
Then, $\left(V, \alpha_{V} \circ[\cdot, \cdot]_{V}^{\prime}, \alpha_{V}\right)$ is a faithful representation of the current Heisenberg Hom-Lie algebra $\left(\mathfrak{h}_{m, p},[\cdot, \cdot], \alpha \otimes \beta\right)$.

Let $\left(V,[\cdot, \cdot]_{V}, \beta\right)$ be a faithful representation of the current Heisenberg Hom-Lie algebra $\mathfrak{h}_{m, p}$. Then, by the previous proposition,

$$
\begin{equation*}
\mu\left(\mathfrak{h}_{m, p}\right) \leq m \operatorname{deg} p+\lceil 2 \sqrt{\operatorname{deg} p}\rceil . \tag{9}
\end{equation*}
$$

By (8) and (9) we obtain the following result.
Theorem 3. The equality

$$
\mu\left(\mathfrak{h}_{m, p}\right)=m \operatorname{deg} p+\lceil 2 \sqrt{\operatorname{deg} p}\rceil
$$

holds, where $\lceil 2 \sqrt{\operatorname{deg} p}\rceil$ is the closest integer that is greater than or equal to $2 \sqrt{\operatorname{deg} p}$.
Example 11. Let $m=1$ and $p=1+2 t+3 t^{2}+4 t^{3}+5 t^{4}+t^{5}$. Then

$$
P=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & -2 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & -5
\end{array}\right), A=\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Let $\alpha=\left(\begin{array}{ccc}\nu & 0 & 0 \\ 0 & \frac{\lambda}{\nu} & 0 \\ 0 & 0 & \lambda\end{array}\right), V=\mathbb{C}^{9}$ and α_{V} be an endomorphism of V satisfying

$$
\begin{aligned}
\alpha_{V} \circ \rho_{A, B}\left(x_{1} \otimes t^{k}\right) & =\rho_{A, B}\left(\alpha \otimes \beta\left(x_{1} \otimes t^{k}\right)\right)=\nu q^{k} \rho_{A, B}\left(x_{1} \otimes t^{k}\right) \circ \alpha_{V} ; \\
\alpha_{V} \circ \rho_{A, B}\left(y_{1} \otimes t^{k}\right) & =\frac{\lambda}{\nu} q^{k} \rho_{A, B}\left(y_{1} \otimes t^{k}\right) \circ \alpha_{V} ; \\
\alpha_{V} \circ \rho_{A, B}\left(z \otimes t^{k}\right) & =\lambda q^{k} \rho_{A, B}\left(z \otimes t^{k}\right) \circ \alpha_{V} .
\end{aligned}
$$

Using a computer algebra system, we obtain $\alpha_{V}=\left(\begin{array}{ccccc}0 & \cdots & 0 & x_{1,8} & x_{1,9} \\ 0 & \cdots & 0 & x_{2,8} & x_{2,9} \\ 0 & \cdots & 0 & 0 & 0 \\ \vdots & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & 0\end{array}\right)$.

4. Derivations and centroids of current Hom-Lie algebras

The purpose of this section is to study γ^{r}-derivations and the γ^{r}-centroid of current Hom-Lie algebras viewed as a ($1,1,0$)-derivation and a ($1,1,1$)derivation of current Hom-Lie algebras.
Let $\left(\mathcal{G} \otimes A,[\cdot, \cdot]_{\mathcal{G} \otimes A}, \gamma\right)$ be a current Hom-Lie algebra and V be a \mathcal{G}-module.
4.1. $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$-derivations of Hom-Lie algebras. In this subsection we extend $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$-derivation theory of Lie algebras introduced in [17] to HomLie context.

Definition 7. Let $\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}$ be elements of \mathbb{K} (for example $\mathbb{K}=\mathbb{C}$). A linear $\operatorname{map} d: \mathcal{G} \rightarrow V$ is a $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$ - α^{k}-derivation of \mathcal{G} on V if for all $x, y \in \mathcal{G}$ we have

$$
\lambda^{\prime} d([x, y])=-\mu^{\prime}\left[\alpha^{k}(y), d(x)\right]_{V}+\gamma^{\prime}\left[\alpha^{k}(x), d(y)\right]_{V}
$$

We denote the set of all $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$ - α^{k}-derivations by

$$
\operatorname{Der}_{\alpha^{k}}^{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}(\mathcal{G}, V)=\bigoplus_{k \geq 0} \operatorname{Der}{\alpha^{k},}_{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}^{(\mathcal{G}, V) .}
$$

In particular, with the adjoint representation $(V=\mathcal{G})$, we set

$$
\operatorname{Der} r^{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}(\mathcal{G})=\bigoplus_{k \geq 0} \operatorname{Der}_{\alpha^{k}}^{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}(\mathcal{G})
$$

Proposition 9. For any $\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime} \in \mathbb{K}$, there exists $\delta \in \mathbb{K}$ such that the subspace $\operatorname{Der} r^{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}(\mathcal{G})$ is equal to one of the following subspaces: (a) $\operatorname{Der}_{\alpha^{k}}^{(\delta, 0,0)}(\mathcal{G}),(b) \operatorname{Der}_{\alpha^{k}}^{(\delta, 1,-1)}(\mathcal{G}),(c) \operatorname{Der}_{\alpha^{k}}^{(\delta, 1,0)}(\mathcal{G}),(d) \operatorname{Der}_{\alpha^{k}}^{(\delta, 1,1)}(\mathcal{G})$.

Definition 8. The set $\Gamma(\mathcal{G})=\bigoplus_{k \geq 0} \operatorname{Der}_{\alpha^{k}}^{(1,1,0)}(\mathcal{G})$ is the centroid of \mathcal{G}.
Definition 9. An element $d \in \operatorname{Der}_{\alpha^{k}}^{(0,1,0)}(\mathcal{G}) \cap \operatorname{Der}_{\alpha^{k}}^{(1,0,0)}(\mathcal{G})$ is called an α^{k}-central derivation. We denote the set of all α^{k}-central derivations by

$$
C(\mathcal{G})=\bigoplus_{k \geq 0} C_{\alpha^{k}}(\mathcal{G})=\bigoplus_{k \geq 0} \operatorname{Der}_{\alpha^{k}}^{(0,1,0)}(\mathcal{G}) \cap \operatorname{Der}_{\alpha^{k}}^{(1,0,0)}(\mathcal{G})
$$

4.2. $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$-derivations of Hom-associative algebras. In this subsection, we extend to Hom-associative algebras the concept of $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$ derivation of associative algebras introduced in [18]. Let (A, μ, β) be a Homassociative algebra. We denote by $\mathcal{S}^{1}(A)$ the set of all linear maps $g: A \rightarrow A$ which are symmetric in the sense that $g(a b)=g(b a)$ for all $a, b \in A$.

Definition 10. Let $\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}$ be elements of \mathbb{K}. A linear map $g \in \mathcal{S}^{1}(A)$ is a $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$ - β^{k}-derivation of A if, for all $a, b \in A$, we have

$$
\lambda^{\prime} g(a b)=\mu^{\prime} g(a) \beta^{r}(b)+\gamma^{\prime} \beta^{r}(a) g(b) .
$$

We denote the set of all $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$ - β^{k}-derivations of A by

$$
\operatorname{Der}^{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}(A)=\bigoplus_{k \geq 0} \operatorname{Der}_{\beta^{k}}^{\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)}(A)
$$

If β is an isomorphism, we have

$$
\operatorname{Der}_{\beta^{r}}^{\left(\lambda^{\prime}, 1,0\right)}(A)=\left\{g \in \operatorname{End}(A) \mid \exists u \in A ; g(a)=u \beta^{r-1}(a)\right\}
$$

Proposition 10. We have the isomorphism

$$
\operatorname{Der}_{\beta^{r}}^{\lambda^{\prime}, 1,0}(A) \cong A
$$

In the sequel we will consider multiplicative Hom-associative algebras $(\mathcal{A}, \mu, \beta)$ which are finite dimensional, unital and are the direct sum of generalized eigenspaces of $\beta: \mathcal{A}=\operatorname{ker} \beta \oplus E(1, \beta) \oplus E\left(\lambda_{2}, \beta\right) \oplus \cdots \oplus E\left(\lambda_{s}, \beta\right)$, where $E(\lambda, \beta)$ is the eigenspace associated to an eigenvalue λ of the linear map β.
4.3. $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)$-derivation of current-Hom-Lie algebras. Let $\Phi: \mathcal{G} \otimes$ $\mathcal{A} \longrightarrow \mathcal{G} \otimes \mathcal{A}$ be a $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)-\gamma^{r}$-derivation of the current multiplicative HomLie algebra $(\mathcal{G} \otimes \mathcal{A},[\cdot, \cdot], \gamma)$. Then

$$
\begin{equation*}
\lambda^{\prime} \Phi([x \otimes a, y \otimes b])=\mu^{\prime}\left[\Phi(x \otimes a), \gamma^{r}(y \otimes b)\right]+\gamma^{\prime}\left[\gamma^{r}(x \otimes a), \Phi(y \otimes b)\right] \tag{10}
\end{equation*}
$$

and Φ can be written in the form $\Phi=\sum_{i \in I} f_{i} \otimes g_{i}$ and $\gamma^{r}=\alpha^{r} \otimes \beta^{r}$, where I is a finite set of indices, and f_{i} and g_{i} are linear maps $f_{i}: \mathcal{G} \rightarrow \mathcal{G}, g_{i}: \mathcal{A} \rightarrow \mathcal{A}$, respectively. From this and (10) we obtain

$$
\begin{array}{r}
\sum_{i \in I} \lambda^{\prime} f_{i}\left([x, y]_{\mathcal{G}}\right) \otimes g_{i}(a b)-\left(\mu^{\prime}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}} \otimes g_{i}(a) \beta^{r}(b)\right. \tag{11}\\
\left.+\gamma^{\prime}\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}} \otimes \beta^{r}(a) g_{i}(b)\right)=0 .
\end{array}
$$

Proposition 11. We have

$$
\begin{gathered}
\operatorname{Der}_{\gamma^{r}}^{\delta^{\prime}, 1,0}(\mathcal{G} \otimes \mathcal{A})=C_{\alpha^{r}}(\mathcal{G}) \otimes \operatorname{End}(\mathcal{A})+\sum_{i=1}^{s} \sum_{j=1}^{s} \operatorname{Der}_{\alpha^{r}}^{\delta^{\prime} \frac{\lambda_{i}}{\lambda_{j}}, 1,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{\frac{\lambda_{j}}{\lambda_{i}}, 1,0}(\mathcal{A}) \\
+\operatorname{Der}_{\alpha^{r}}^{0,1,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{1,0,0}(\mathcal{A})+\operatorname{Der}_{\alpha^{r}}^{1,0,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{0,1,0}(\mathcal{A})
\end{gathered}
$$

Proof. We have $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)=\left(\delta^{\prime}, 1,0\right)$. Let $\left(e_{1}^{k}, \cdots, e_{s_{k}}^{k}\right)$ be an ordered basis of $E\left(\lambda_{k}, \beta\right)$. Taking $a=e_{q}^{k}$ and $b=1$ in (11), then using $a 1=\beta(a)$ and $g_{i}(a) 1=\beta\left(g_{i}(a)\right)$, we obtain $\delta^{\prime} \lambda_{q} f_{i}\left([x, y]_{\mathcal{G}}\right)=\lambda_{k}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}$.
Replacing $\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}$ by $\frac{\delta^{\prime} \lambda_{q}}{\lambda_{k}} f_{i}\left([x, y]_{\mathcal{G}}\right)$ in (11), we obtain

$$
\sum_{i \in I} f_{i}\left([x, y]_{\mathcal{G}}\right) \otimes\left(g_{i}(a b)-\frac{\lambda_{q}}{\lambda_{k}} g_{i}(a) \beta^{r}(b)\right)=0
$$

Hence, there is a partition $I=I_{1} \cup I_{2} \cup I_{3} \cup I_{4}$ such that
(a) $f_{i}\left([x, y]_{\mathcal{G}}\right)=\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}=0$ for any $i \in I_{1}$,
(b) $\delta^{\prime} \frac{\lambda_{q}}{\lambda_{k}} f_{i}\left([x, y]_{\mathcal{G}}\right)=\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}$ and $\frac{\lambda_{k}}{\lambda_{q}} g_{i}(a b)=g_{i}(a) \beta^{r}(b)$ for any $i \in I_{2}$,
(c) $f_{i}\left([x, y]_{\mathcal{G}}\right)=0$ and $g_{i}(a) \beta^{r}(b)=0$ for any $i \in I_{3}$,
(d) $\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}=0$ and $g_{i}(a b)=0$ for any $i \in I_{4}$.

Proposition 12. If β is invertible, then

$$
\begin{gathered}
\operatorname{Der}_{\gamma^{r}}^{\delta^{\prime}, 1,1}(\mathcal{G} \otimes \mathcal{A})=C_{\alpha^{r}}(\mathcal{G}) \otimes \operatorname{End}(\mathcal{A})+\left(\operatorname{Der}_{\alpha^{r}}^{1,0,0}(\mathcal{G}) \cap \operatorname{Der}_{\alpha^{r}}^{0,1,1}(\mathcal{G})\right) \otimes \operatorname{Der}_{\beta^{r}}^{0,1,-1}(\mathcal{A}) \\
+\sum_{i=1}^{s} \operatorname{Der}_{\alpha^{r}}^{\frac{\delta^{\prime}}{2 \lambda_{i}}, 1,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{2 \lambda_{i}, 1,1}(\mathcal{A})+\sum_{1 \leq i, j \leq s} \operatorname{Der}_{\alpha^{r}}^{\delta^{\prime} \frac{\lambda_{i}}{\lambda_{j}}, 1,1}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{\frac{\lambda_{j}}{\lambda_{i}}, 1,0}(\mathcal{A}) \\
+\sum_{1 \leq i, j \leq s} \operatorname{Der}_{\alpha^{r}}^{\delta^{\prime} \frac{\lambda_{i}}{\lambda^{2}}, 1,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{\frac{\lambda_{j}}{\lambda_{i}}, 1,1}(\mathcal{A}) .
\end{gathered}
$$

Proof. Suppose $\left(\lambda^{\prime}, \mu^{\prime}, \gamma^{\prime}\right)=\left(\delta^{\prime}, 1,1\right)$. Skew-symmetrizing the equality (11) with respect to x, y, we get

$$
\sum_{i \in I}\left(\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}-\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}}\right) \otimes\left(g_{i}(a) \beta^{r}(b)-\beta^{r}(a) g_{i}(b)\right)=0
$$

Hence, the index set can be partitioned as $I=I_{1} \cup I_{2}$ in such a way that $\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}=\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}}$ for any $i \in I_{1}$, and $g_{i}(a) \beta^{r}(b)-\beta^{r}(a) g_{i}(b)=0$ for any $i \in I_{2}$. Then (11) can be rewritten as

$$
\begin{equation*}
\sum_{i \in I_{1}} \delta^{\prime} f_{i}\left([x, y]_{\mathcal{G}}\right) \otimes g_{i}(a b)-\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}} \otimes\left(g_{i}(a) \beta^{r}(b)+\beta^{r}(a) g_{i}(b)\right)=0 \tag{12}
\end{equation*}
$$

and
$\sum_{i \in I_{1}} \delta^{\prime} f_{i}\left([x, y]_{\mathcal{G}}\right) \otimes g_{i}(a b)-\left(\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}+\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}}\right) \otimes g_{i}(a) \beta^{r}(b)=0$.

Let $\left\{e_{1}^{k}, \cdots, e_{s_{k}}^{k}\right\}$ be an ordered basis of $E\left(\lambda_{k}, \beta\right)$ and $\beta\left(g_{i}(1)\right)=\lambda_{k} g_{i}(1)$. Denote by $I_{11}=\left\{i \in I_{1} \mid g_{i}(1) \neq 0\right\}$ and $I_{12}=\left\{i \in I_{1} \mid g_{i}(1)=0\right\}$.

Taking $a=b=1$ in (12), then using $\beta(1)=1$ and $1 g_{i}(1)=\beta\left(g_{i}(1)\right)=$ $\lambda_{k} g_{i}(1)$, we obtain $\delta^{\prime} f_{i}\left([x, y]_{\mathcal{G}}\right)=2 \lambda_{k}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}$. Plugging this in (12), we get $\sum_{i \in I_{11}}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}} \otimes\left(2 \lambda_{k} g_{i}(a b)-g_{i}(a) \beta^{r}(b)-\beta^{r}(a) g_{i}(b)\right)=0$.
Hence, there is a partition $I_{11}=J_{11} \cup J_{12}$ such that

$$
f_{i}\left([x, y]_{\mathcal{G}}\right)=\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}=0 \quad \text { for any } i \in J_{11}
$$

and
$\delta^{\prime} f_{i}\left([x, y]_{\mathcal{G}}\right)=2 \lambda_{k}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}, 2 \lambda_{k} g_{i}(a b)=g_{i}(a) \beta^{r}(b)+\beta^{r}(a) g_{i}(b) \forall i \in J_{12}$.
Taking $a=e_{j}^{k}$ and $b=1$ in (12), then using $\beta(1)=1$ and $1 g_{i}(a)=$ $\beta\left(g_{i}(a)\right)=\lambda_{j} g_{i}(a)$, we obtain $\delta^{\prime} \lambda_{k} f_{i}\left([x, y]_{\mathcal{G}}\right)=\lambda_{j}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}$. Plugging this in (12), we get

$$
\sum_{i \in I_{12}}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}} \otimes\left(\frac{\lambda_{j}}{\lambda_{k}} g_{i}(a b)-g_{i}(a) \beta^{r}(b)-\beta^{r}(a) g_{i}(b)\right)=0
$$

Hence, there is a partition $I_{12}=J_{21} \cup J_{22}$ such that

$$
f_{i}\left([x, y]_{\mathcal{G}}\right)=\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}=0 \quad \text { for any } i \in J_{21},
$$

and
$\delta^{\prime} \lambda_{k} f_{i}([x, y] \mathcal{G})=\lambda_{j}\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}, \frac{\lambda_{j}}{\lambda_{k}} g_{i}(a b)=g_{i}(a) \beta^{r}(b)+\beta^{r}(a) g_{i}(b) \forall i \in J_{22}$.
Taking $a=e_{j}^{k}$ and $b=1$ in (13), we obtain
$\delta^{\prime} \lambda_{k} f_{i}\left([x, y]_{\mathcal{G}}\right)=\lambda_{j}\left(\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}+\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}}\right)$. Plugging this in (13), we get $\sum_{i \in I_{2}} f_{i}\left([x, y]_{\mathcal{G}}\right) \otimes\left(\frac{\lambda_{j}}{\lambda_{k}} g_{i}(a b)-g_{i}(a) \beta^{r}(b)\right)=0$. Hence we may assume that the indexing set is partitioned into two subsets $I_{2}=I_{21} \cup I_{22}$ such that $f_{i}\left([x, y]_{\mathcal{G}}\right)=\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}+\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}}=0$, for all $i \in I_{21}$, and for all $i \in I_{22}$ we have $\delta^{\prime} \frac{\lambda_{k}}{\lambda_{j}} f_{i}\left([x, y]_{\mathcal{G}}\right)=\left[f_{i}(x), \alpha^{r}(y)\right]_{\mathcal{G}}+\left[\alpha^{r}(x), f_{i}(y)\right]_{\mathcal{G}}=0$, and $\frac{\lambda_{j}}{\lambda_{k}} g_{i}(a b)=g_{i}(a) \beta^{r}(b)$.
4.4. Centroids of current Hom-Lie algebras. Using Proposition 11 and the fact that β is an isomorphism, we get the following result.

Proposition 13. One has

$$
\Gamma_{\gamma^{r}}(\mathcal{G} \otimes \mathcal{A})=C_{\alpha^{r}}(\mathcal{G}) \otimes \operatorname{End}(\mathcal{A})+\sum_{i=1}^{s} \sum_{j=1}^{s} \operatorname{Der}_{\alpha^{r}}^{\frac{\lambda_{i}}{\lambda^{r}}, 1,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{\frac{\lambda_{j}}{\lambda^{r}}, 1,0}(\mathcal{A}) .
$$

Corollary 3. Suppose \mathcal{G} is finite dimensional, simple and $\beta=i d_{\mathcal{A}}$. Then

$$
\Gamma_{\gamma^{0}}(\mathcal{G} \otimes \mathcal{A}) \cap C_{\gamma}^{1}(\mathcal{G} \otimes \mathcal{A}) \cong \mathcal{A} .
$$

Theorem 4. If \mathcal{G} is a perfect Hom-Lie algebra, then

$$
\Gamma_{\gamma^{r}}(\mathcal{G} \otimes \mathcal{A})=\sum_{i=1}^{s} \sum_{j=1}^{s} \operatorname{Der}_{\alpha^{r}}^{\frac{\lambda_{i}}{\lambda_{j}}, 1,0}(\mathcal{G}) \otimes \operatorname{Der}_{\beta^{r}}^{\frac{\lambda_{j}}{\lambda_{i}}, 1,0}(\mathcal{A}) .
$$

Theorem 5. Suppose \mathcal{G} is finite dimensional and perfect. Then

$$
\Gamma_{\gamma^{r}}(\mathcal{G} \otimes \mathbb{C}[t]) \cong \Gamma_{\alpha^{r}}(\mathcal{G}) \otimes \mathbb{C}[t] .
$$

4.5. Derivations of current Hom-Lie algebras. Letting $\delta^{\prime}=1$ in Proposition 12 , we obtain the following result.

Theorem 6. Any derivation in $\operatorname{Der}_{\gamma^{r}}(\mathcal{G} \otimes \mathcal{A})$ is a linear combination of γ^{r}-derivations $f \otimes g$ of the five following types:
(i) $f\left([x, y]_{\mathcal{G}}\right)=\left[f(x), \alpha^{r}(y)\right]_{\mathcal{G}}=0$;
(ii) $f\left([x, y]_{\mathcal{G}}\right)=\frac{1}{2 \lambda_{i}}\left[f(x), \alpha^{r}(y)\right]_{\mathcal{G}}, \quad 2 \lambda_{i} g(a b)=g(a) \beta^{r}(b)+\beta^{r}(a) g(b)$;
(iii) $f\left([x, y]_{\mathcal{G}}\right)=0,\left[f(x), \alpha^{r}(y)\right]_{\mathcal{G}}+\left[\alpha^{r}(x), f(y)\right]_{\mathcal{G}}=0, g(a) \beta^{r}(b)=\beta^{r}(a) g(b)$;
(iv) $\frac{\lambda_{i}}{\lambda_{j}} f\left([x, y]_{\mathcal{G}}\right)=\left[f(x), \alpha^{r}(y)\right]_{\mathcal{G}}+\left[\alpha^{r}(x), f(y)\right]_{\mathcal{G}}, \quad \frac{\lambda_{j}}{\lambda_{i}} g(a b)=g(a) \beta^{r}(b)$, $\forall i, j \in\{1, \cdots, s\}$;
(v) $\frac{\lambda_{j}}{\lambda_{i}} f\left([x, y]_{\mathcal{G}}\right)=\left[f(x), \alpha^{r}(y)\right]_{\mathcal{G}}, \quad \frac{\lambda_{i}}{\lambda_{j}} g(a b)=g(a) \beta^{r}(b)+\beta^{r}(a) g(b) \forall i, j \in$ $\{1, \cdots, s\}$;
for all $x, y \in \mathcal{G}, a, b \in \mathcal{A}$.

4.6. Derivations of current Hom-Lie algebras of small dimensions.

In the following, we describe the γ^{r}-derivations of four-dimensional complex current Hom-Lie algebras corresponding to the classification provided in Remark 1. Let $\left\{e_{1}, e_{2}\right\}$ be a basis of L_{i} and $\left\{f_{1}, f_{2}\right\}$ be a basis of A_{j}, for $i \in\{1,2\}$ and $j \in\{1, \ldots, 7\}$. We consider the following basis for $L_{i} \otimes A_{j}$, with $i \in\{1,2\}$ and $j \in\{1, \ldots, 7\},\left\{u_{1}=e_{1} \otimes f_{1}, u_{2}=e_{1} \otimes f_{2}, u_{3}=e_{2} \otimes f_{1}\right.$, $\left.u_{4}=e_{2} \otimes f_{2}\right\}$. In the following table, we set $D_{i, j}:=\operatorname{dim}\left(\operatorname{Der}_{\gamma_{i j}^{r}}\left(L_{i} \otimes A_{j}\right)\right)$.

$L_{1} \otimes A_{j}$	$\operatorname{Der}_{\gamma_{i j}^{r}}\left(L_{i} \otimes A_{j}\right)$	$D_{i, j}$
$L_{1} \otimes A_{1}$	$\begin{aligned} & d\left(u_{1}\right)=d\left(u_{2}\right)=0, d\left(u_{3}\right)=d_{44}(-1)^{r+1}\left(\frac{\lambda}{\mu} u_{1}+u_{3}\right) \\ & d\left(u_{4}\right)=d_{44}\left(\frac{\lambda}{\mu} u_{2}+u_{4}\right) \end{aligned}$	1
$L_{1} \otimes A_{2}$	$d\left(u_{1}\right)=d\left(u_{2}\right)=0, d\left(u_{3}\right)=d_{13}\left(u_{1}+\frac{\mu}{\lambda} u_{3}\right), d\left(u_{4}\right)=d_{24} u_{2}$	2
$L_{1} \otimes A_{3}$	$\begin{aligned} & d\left(u_{1}\right)=d_{11}\left(u_{1}-\left(1-\mu^{r}\right) u_{2}\right), d\left(u_{2}\right)=0 \\ & d\left(u_{3}\right)=d_{13} u_{1}+\frac{\lambda}{\mu}\left(1-\mu^{r}\right) d_{11} u_{2}+\left(d_{11}+\frac{\mu}{\lambda} d_{13}\right) u_{3} \\ & d\left(u_{4}\right)=d_{24} u_{2} \end{aligned}$	3
$L_{1} \otimes A_{4}$	$\begin{aligned} & d\left(u_{1}\right)=d\left(u_{2}\right)=0, d\left(u_{3}\right)=d_{13} u_{1}+d_{23} u_{2}+d_{13} \frac{\mu}{\lambda} u_{3}+d_{23} \frac{\mu}{\lambda} u_{4} \\ & d\left(u_{4}\right)=d_{14} u_{1}+d_{24} u_{2}+d_{14} \frac{\mu}{\lambda} u_{3}+d_{24} \frac{\mu}{\lambda} u_{4} \end{aligned}$	4
$L_{1} \otimes A_{5}$	$\begin{aligned} & d\left(u_{1}\right)=d_{11} u_{1}+d_{21} u_{2}-\left(d_{11}+d_{21}\right) u_{3} \\ & d\left(u_{2}\right)=d_{12} u_{1}+d_{22} u_{2}+d_{32} u_{3} \\ & d\left(u_{3}\right)=d_{13} u_{1}+d_{23} u_{2}+d_{33} u_{3} \\ & d\left(u_{4}\right)=-\frac{\lambda}{\mu} d_{12} u_{1}+d_{24} u_{2}-\frac{\lambda}{\mu} d_{32} u_{3}+\left(d_{22}+\frac{\mu}{\lambda} d_{24}\right) u_{4} \\ & \hline \end{aligned}$	9
$L_{1} \otimes A_{6}$	$\begin{aligned} & d\left(u_{1}\right)=d_{11} u_{1}+d_{21} u_{2}, d\left(u_{2}\right)=\mu^{r} d_{11} u_{2} \\ & d\left(u_{3}\right)=d_{13} u_{1}+d_{23} u_{2}+\left(d_{11}+\frac{\mu}{\lambda} d_{13}\right) u_{3}+\left(d_{21}+\frac{\mu}{\lambda} d_{23}\right) u_{4} \\ & d\left(u_{4}\right)=d_{14} u_{1}+d_{24} u_{2}+\frac{\mu}{\lambda} d_{14} u_{3}+\left(\mu^{r} d_{11}+\frac{\mu}{\lambda} d_{24}\right) u_{4} \end{aligned}$	6
$\begin{gathered} r \in\{0,1\} \\ L_{1} \otimes A_{7} \end{gathered}$	$\begin{aligned} & d\left(u_{1}\right)=d_{11}\left(u_{1}-u_{3}\right), d\left(u_{2}\right)=d_{12} u_{1}+d_{32} u_{3} \\ & d\left(u_{3}\right)=\frac{\lambda}{\mu}\left(d_{44}-d_{11}\right) u_{1}+\left(\frac{\lambda}{\mu} d_{11}+d_{44}\right) u_{3} \\ & d\left(u_{4}\right)=d_{14} u_{1}+d_{24} u_{2}+d_{34} u_{3}+d_{44} u_{4} \end{aligned}$	8
$\begin{gathered} L_{2} \otimes A_{1} \\ (\lambda=1) \\ \hline \end{gathered}$	$\begin{aligned} & d\left(u_{1}\right)=d\left(u_{2}\right)=0, d\left(u_{3}\right)=(-1)^{r} d_{24} u_{1} \\ & d\left(u_{4}\right)=d_{24} u_{2} \end{aligned}$	1
$\begin{aligned} & L_{2} \otimes A_{2} \\ & (\lambda=1) \end{aligned}$	$\begin{aligned} & d\left(u_{1}\right)=d\left(u_{2}\right)=0 \\ & d\left(u_{3}\right)=d_{13} u_{1}, d\left(u_{4}\right)=d_{24} u_{2} \end{aligned}$	2
$L_{2} \otimes A_{3}$	$d\left(u_{1}\right)=\frac{\lambda-1}{\mu} d_{13} u_{1}, d\left(u_{2}\right)=0, d\left(u_{3}\right)=d_{13} u_{1}, d\left(u_{4}\right)=d_{24} u_{2}$	2
$L_{2} \otimes A_{4}$	$\begin{aligned} & d\left(u_{1}\right)=\frac{\lambda-1}{\mu} d_{13} u_{1}, d\left(u_{2}\right)=\frac{\lambda-1}{\lambda^{r}-1} \frac{1}{\mu}\left(\lambda^{r} d_{24}-d_{13}\right) u_{2} \\ & d\left(u_{3}\right)=d_{13} u_{1}, d\left(u_{4}\right)=d_{24} u_{2}+\frac{\lambda-1}{\lambda^{r}-1} \frac{1}{\mu}\left(d_{24}-d_{13}\right) u_{4} \end{aligned}$	4
$L_{2} \otimes A_{5}$	$\begin{aligned} & d\left(u_{1}\right)=d_{11} u_{1}, d\left(u_{2}\right)=d_{22} u_{2}, d\left(u_{3}\right)=d_{33} u_{3} \\ & d\left(u_{4}\right)=d_{24} u_{2}+\left(d_{22}-\frac{\lambda-1}{\mu} d_{24}\right) u_{4} \end{aligned}$	4

$L_{2} \otimes A_{6}$	$d\left(u_{1}\right)=d_{11} u_{1}+d_{21} u_{2}$ $d\left(u_{2}\right)=\left(\left(\lambda^{r}+1\right) d_{11}-\lambda^{r}\left(\frac{\lambda-1}{\mu}\right) d_{13}\right) u_{2}$ $d\left(u_{3}\right)=d_{13} u_{1}+d_{23} u_{2}+\left(d_{11}+\frac{1-\lambda}{\mu} d_{13}\right) u_{3}+\left(d_{21}+\frac{1-\lambda}{\mu} d_{23}\right) u_{4}$	5
	$d\left(u_{4}\right)=d_{24} u_{2}+\left(\left(\lambda^{r}+1\right) d_{11}+\frac{1-\lambda}{\mu} \lambda^{r} d_{13}+\frac{1-\lambda}{\mu} \lambda^{r} d_{24}\right) u_{4}$	
$L_{2} \otimes A_{7}$	$d\left(u_{1}\right)=d_{11}\left(u_{1}-u_{3}\right)$ $d\left(u_{2}\right)=d_{12} u_{1}+(1+\mu) d_{11} u_{2}+d_{32} u_{3}-\lambda d_{11} u_{4}$ $d\left(u_{3}\right)=d_{13} u_{1}-\frac{1+\mu}{\lambda} d_{11} u_{3}$ $d\left(u_{4}\right)=d_{14} u_{1}+\left(\frac{(1+\lambda)(1+\mu) \mu}{\lambda^{2}} d_{11}+\frac{d_{13}}{\lambda}\right) u_{2}+d_{34} u_{3}-\frac{1+\mu+\mu \lambda}{\lambda} d_{11} u_{4}$	6

4.7. Extensions by derivations. Let $(\mathcal{G},[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra and d be a derivation of this Hom-Lie algebra. Define a skew-symmetric bilinear map $[,,,]_{d}$ on the direct sum $\mathcal{G} \oplus \mathbb{C} d$ by $\left[x+\lambda^{\prime} d, y+\mu^{\prime} d\right]=[x, y]_{\mathcal{G}}+\lambda^{\prime} d(y)-\mu^{\prime} d(x)$.
Define $\alpha_{d} \in \operatorname{End}(\mathcal{G} \oplus \mathbb{C} d)$ by $\alpha_{d}\left(x+\lambda^{\prime} d\right)=\alpha(x)+\lambda^{\prime} d$.
Theorem 7 ([20]). With the above notations, $\left(\mathcal{G} \oplus \mathbb{C} d,[\cdot, \cdot]_{d}, \alpha_{d}\right)$ is a Hom-Lie algebra.

Example 12. Define a linear map $d: L(\mathcal{G}) \rightarrow L(\mathcal{G})$ by $d\left(x \otimes t^{n}\right)=n x \otimes t^{n}$. Then $\left(\left(\mathcal{G} \otimes \mathbb{C}\left[t, t^{-1}\right]\right) \oplus\left(\mathbb{C} \alpha \otimes t \frac{d}{d t} \cdot\right),[\cdot, \cdot]_{d}, \gamma_{d}\right)$ is a Hom-Lie algebra.

5. Scalar second cohomology group

The general Chevalley-Eilenberg cohomology theory of Hom-Lie algebras was initiated in [13] and established in [2, 20]. We deal here only with scalar cohomology. A scalar k-cochain is an alternating k-linear map from $(\mathcal{G} \otimes A)^{k}$ to \mathbb{C}. The vector space of scalar k-cochains is denoted by $C^{k}(\mathcal{G} \otimes A, \mathbb{C})$ and by definition $C^{0}(\mathcal{G} \otimes$ $A, \mathbb{C})=\mathbb{C}$. In this section, we study the second cohomology group of current HomLie algebras with coefficients in a trivial representation.
The coboundary operator $\delta^{k}: C^{k}(\mathcal{G} \otimes A, \mathbb{C}) \rightarrow C^{k+1}(\mathcal{G} \otimes A, \mathbb{C})$ is given by

$$
\begin{aligned}
& \delta^{k}(f \otimes g)\left(x_{0} \otimes a_{0}, \ldots, x_{k} \otimes a_{k}\right) \\
& =\sum_{0 \leq s<t \leq k}(-1)^{t} \times f\left(\alpha\left(x_{0}\right), \cdots, \alpha\left(x_{s-1}\right),\left[x_{s}, x_{t}\right], \alpha\left(x_{s+1}\right), \cdots, \widehat{x_{t}}, \cdots, \alpha\left(x_{k}\right)\right) \\
&
\end{aligned} \quad \otimes g\left(\beta\left(a_{0}\right), \cdots, \beta\left(a_{s-1}\right), a_{s} a_{t}, \beta\left(a_{s+1}\right), \cdots, \widehat{a_{t}}, \cdots, \beta\left(a_{k}\right)\right) .
$$

Denote by $Z^{k}(\mathcal{G} \otimes A)$ and $B^{k}(\mathcal{G} \otimes A)$ the corresponding space of k-cocycles and k-coboundaries, respectively. We denote the resulting cohomology by $H^{k}(\mathcal{G} \otimes A)$.

In the following, we give a result similar to [26, Theorem 1.1], in the case of current Hom-Lie algebras.

Theorem 8. Let $\mathcal{G} \otimes A$ be a current Hom-Lie algebra such that either \mathcal{G} or A is finite dimensional. We denote by $\mathcal{S}^{2}(A)$ the set of all bilinear maps $g: A \times A \rightarrow A$ which are symmetric in the sense that $g(a, b)=g(b, a)$ for all $a, b \in A$ and $\mathcal{C}^{2}(A)$ the set of all bilinear maps $g: A \times A \rightarrow A$ which are skew-symmetric in the sense that $g(a, b)=-g(b, a)$ for all $a, b \in A$.
Then each cocycle in $Z^{2}(\mathcal{G} \otimes A)$ is a linear combination of cocycles of the 8 following types:
(1) $f([x, z], \alpha(y))=0, f \in C^{2}(\mathcal{G})$ and $g \in S^{2}(A)$;
(2) $f \in Z^{2}(\mathcal{G}, \mathbb{C}), g(a c, \beta(b))=g(b c, \beta(a))$ and $g \in S^{2}(A)$;
(3) $f([x, z], \alpha(y))=f(\alpha(x),[y, z]), g(a b, \beta(c))+g(a c, \beta(b))+g(\beta(a), b c)=0$ and $f \otimes g \in C^{2}(\mathcal{G}) \otimes S^{2}(A) ;$
(4) $g(a b, \beta(c))=0$ and $f \otimes g \in C^{2}(\mathcal{G}) \otimes S^{2}(A)$;
(5) $f([x, z], \alpha(y))=0$ and $f \otimes g \in S^{2}(\mathcal{G}) \otimes C^{2}(A)$;
(6) $-f([x, y], \alpha(z))+f([x, z], \alpha(y))-f(\alpha(x),[y, z])=0, g(a b, \beta(c))=g(b c, \beta(a))$ and $f \otimes g \in S^{2}(\mathcal{G}) \otimes C^{2}(A)$;
(7) $f([x, z], \alpha(y))+f(\alpha(x),[y, z])=0, g(a b, \beta(c))+g(a c, \beta(b))+g(b c, \beta(a))=0$ and $f \otimes g \in S^{2}(\mathcal{G}) \otimes C^{2}(A)$;
(8) $g(a b, \beta(c))=0$ and $f \otimes g \in S^{2}(\mathcal{G}) \otimes C^{2}(A)$.

Now, we will describe the second cohomology group of Loop Hom-Lie algebra $\tilde{L}(\mathcal{G})$, where the Hom-Lie algebra \mathcal{G} is multiplicative simple (for the definition of Loop Hom-Lie algebra, see Example 8).
First we give a relationship between simple multiplicative Hom-Lie algebras and Lie algebras, as well as some relevant properties.

Lemma 1 ([5]). Define the bracket $[\cdot, \cdot]^{\prime}: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ by $[x, y]^{\prime}=\left[\alpha^{-1}(x), \alpha^{-1}(y)\right]$ for all $x, y \in \mathcal{G}$. The induced Lie algebra $\left(\mathcal{G},[x, y]^{\prime}\right)$ of the multiplicative simple Hom-Lie algebra $(\mathcal{G},[\cdot, \cdot], \alpha)$ is semisimple and can be decomposed into a direct sum of isomorphic simple ideals: $\mathcal{G}=\mathcal{G}_{1} \oplus \alpha\left(\mathcal{G}_{1}\right) \oplus \cdots \oplus \alpha^{r}\left(\mathcal{G}_{1}\right)$.

Lemma 2. For all $i, j \in\{0, \cdots, r\}$, the ideals $\alpha^{i}\left(\mathcal{G}_{1}\right)$ and $\alpha^{j}\left(\mathcal{G}_{1}\right)$ of the Lie algebra $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$ are isomorphic.

The previous lemmas lead us to see the Lie case.
Lemma 3 ([6]). A finite-dimensional simple Lie algebra \mathcal{G} has only trivial 2cocycle.

Lemma 4 ([6]). Every symmetric associative bilinear form on a simple Lie algebra is proportional to the Cartan-Killing form: $K(x, y)=\operatorname{tr}\left(a d_{x} \circ a d_{y}\right)$, for all $x, y \in \mathcal{G}$.

Lemma 5. Every 2-cocycle on the induced Lie algebra ($\mathcal{G},[\cdot, \cdot]^{\prime}$) is a linear combination of the 2-cocycles Φ_{i} given by $\Phi_{i}(x, y)=\left\{\begin{array}{l}\Phi(x, y), \text { if } x, y \in \alpha^{i}\left(\mathcal{G}_{1}\right) \\ 0, \\ \text { otherwise. }\end{array}\right.$

Lemma 6. A skew-symmetric bilinear map Φ is a 2-cocycle on the multiplicative simple Hom-Lie algebra $(\mathcal{G},[\cdot, \cdot], \alpha)$ if and only if it is a 2 -cocycle on the induced Lie algebra $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$.

Now, we state the main result of this section.
Theorem 9. Let $(\mathcal{G},[\cdot, \cdot], \alpha)$ be a finite-dimensional simple Hom-Lie algebra. Then the space $H^{2}(\tilde{L}(\mathcal{G}))$ is generated by the maps $\Phi_{i}: \tilde{L}(\mathcal{G}) \times \tilde{L}(\mathcal{G}) \rightarrow \mathbb{C}$ defined by:

$$
\Phi_{i}\left(x \otimes t^{n}, y \otimes t^{m}\right)= \begin{cases}n \delta_{n+m, 0} K(x, y), & \text { if } x, y \in \alpha^{i}\left(\mathcal{G}_{1}\right) \\ 0, & \text { otherwise } .\end{cases}
$$

Hence, $\operatorname{dim} H^{2}(\tilde{L}(\mathcal{G}))=r+1$.

Proof. Let $\Phi=f \otimes g$ be a 2-cocycle on the simple Hom-Lie algebra $(\mathcal{G},[\cdot, \cdot], \alpha)$. Φ is a 2-cocycle of type 1 : Let $x, y \in \mathcal{G}$. Since \mathcal{G} is simple and α is an isomorphisme, we can write $x=[a, b]$ and $y=\alpha(c)$. Then $f(x, y)=f([a, b], \alpha(c))=0$. Φ is a 2-cocycle of type 2: By Lemma 3, Lemma 2 and Lemma 5, we obtain that the 2-cocycle f is trivial.
Taking $a=t^{n}, b=t^{m}, c=t^{s}$, we get

$$
\begin{align*}
g(a b, \beta(c))=g(b c, \beta(a)) & \Longrightarrow g\left((q t)^{n}(q t)^{m},(q t)^{s}\right)=g\left((q t)^{m}(q t)^{s},(q t)^{n}\right) \\
& \Longrightarrow g\left(t^{n+m}, t^{s}\right)=g\left(t^{m+s}, t^{n}\right) \tag{14}
\end{align*}
$$

Taking $m+s=0$ in (14), we get $g\left(t^{n+m}, t^{-m}\right)=g\left(1, t^{n}\right)$. Let $h\left(t^{n}\right)=q^{-n} g\left(1, t^{n}\right)$. Then, $g\left(t^{n}, t^{m}\right)=g\left(1, t^{n+m}\right)=\varrho h\left(t^{n+m}\right), \varrho=q^{-(n+m)}$. Thus g is trivial.
Since f and g are trivial, one can deduce that $\Phi=f \otimes g$ is trivial.
Φ is a 2-cocycle of type 3: We have $g(a b, \beta(c))+g(a c, \beta(b))+g(\beta(a), b c)=0$. Then

$$
\begin{equation*}
g\left(t^{n+m}, t^{s}\right)+g\left(t^{n+s}, t^{m}\right)+g\left(t^{n}, t^{m+s}\right)=0 \tag{15}
\end{equation*}
$$

Taking $s=0$ in (15), we obtain $g\left(t^{n}, t^{m}\right)=\frac{1}{2} g\left(t^{n+m}, 1\right)$. Then, using (15) and that g is symmetric, one can deduce $g\left(t^{n+m+s}, 1\right)=0$. Thus $g=0$.
Φ is a 2-cocycle of type 4: By $g(a b, \beta(c))=0$, we obtain $g=0$.
$\bar{\Phi}$ is a 2-cocycle of type 5: Similarly to type 1 , we obtain $f=0$.

$$
\begin{equation*}
g\left(t^{n+m}, t^{s}\right)=g\left(t^{m+s}, t^{n}\right) \tag{16}
\end{equation*}
$$

Taking $m=0$ in (16), we obtain $g\left(t^{n}, t^{s}\right)=g\left(t^{s}, t^{n}\right)$. Since g is skew-symmetric, one can deduce $g=0$.
Φ is a 2-cocycle of type 7: Let $x^{\prime}=\alpha(x), y^{\prime}=\alpha(y)$ and $z^{\prime}=\alpha(z)$. We have

$$
\begin{aligned}
f\left(x^{\prime},\left[y^{\prime}, z^{\prime}\right]^{\prime}\right) & =f\left(\alpha(x),\left[\alpha^{-1}\left(y^{\prime}\right), \alpha^{-1}\left(z^{\prime}\right)\right]\right)=f\left(\alpha(x),\left[\alpha^{-1}\left(y^{\prime}\right), \alpha^{-1}\left(z^{\prime}\right)\right]\right) \\
& =f\left(\left[x, \alpha^{-1}\left(y^{\prime}\right)\right], z^{\prime}\right)=f\left(\left[\alpha^{-1}\left(x^{\prime}\right), \alpha^{-1}\left(y^{\prime}\right)\right], z^{\prime}\right)=f\left(\left[x^{\prime}, y^{\prime}\right]^{\prime}, z^{\prime}\right)
\end{aligned}
$$

Then the symmetric bilinear form f is associative in the induced Lie algebra $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$. Define a symmetric associative bilinear form f_{i} by

$$
f_{i}(x, y)=\left\{\begin{array}{l}
f(x, y), \text { if } x, y \in \alpha^{i}\left(\mathcal{G}_{1}\right) \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Since $\alpha^{i}\left(\mathcal{G}_{1}\right)$ is a simple ideal of the Lie algebra $\left(\mathcal{G},[\cdot, \cdot]^{\prime}\right)$, by Lemma 4, one can deduce $f_{i}(x, y)=\lambda_{i} K(x, y)$ for all $x, y \in \alpha^{i}\left(\mathcal{G}_{1}\right)$ and $f(x, y)=\sum_{i=0}^{m} \lambda_{i} f_{i}(x, y)$.
By $g(a b, \beta(c))+g(a c, \beta(b))+g(b c, \beta(a))=0$, we obtain

$$
\begin{equation*}
g\left(t^{n+m}, t^{s}\right)+g\left(t^{n+s}, t^{m}\right)+g\left(t^{m+s}, t^{n}\right)=0 \tag{17}
\end{equation*}
$$

Take $s=0$ in (17). Since g is skew-symmetric, we obtain $g\left(t^{n+m}, 1\right)=0$.
Take $n+s=0$ in (17). Using $g\left(t^{m}, 1\right)=0$ and that g is skew-symmetric, we obtain $g\left(t^{n+m}, t^{-n}\right)=g\left(t^{n}, t^{m-n}\right)$. Fix $k \in \mathbb{Z}$ and let $n+m+s=k$. Then

$$
g\left(t^{n+m}, t^{k-n-m}\right)+g\left(t^{k-m}, t^{m}\right)+g\left(t^{k-n}, t^{n}\right)=0
$$

Therefore, $g\left(t^{n+m+k}, t^{-n-m}\right)=g\left(t^{m+k}, t^{-m}\right)+g\left(t^{n+k}, t^{-n}\right)$.
Let $U_{n}=g\left(t^{n+k}, t^{-n}\right)$. Then $U_{n+m}=U_{n}+U_{m}$. Hence, $U_{m}=m U_{1}$. Therefore, $g\left(t^{m+k}, t^{-m}\right)=m U_{1}$. Thus $g\left(t^{m}, t^{n}\right)=\delta_{n+m, k} m U_{1}^{(k)}$ and $g\left(t^{n}, t^{m}\right)=$ $\delta_{n+m, k} n U_{1}^{(k)}=-\delta_{n+m, k}(m-k) U_{1}^{(k)}$. Since g is skew-symmetric, one can deduce $k=0$ or $U_{1}^{(k)}=0$, which gives $g\left(t^{n}, t^{m}\right)=\delta_{n+m, 0} n U_{1}^{(0)}$.
Φ is a 2-cocycle of type 8: By $g(a b, \beta(c))=0$, one can deduce $g=0$.
Example 13. The induced Lie algebra of $\left(s l_{2}(\mathbb{C}),[\cdot, \cdot], \alpha\right)$ (see Example 1) is given by $\left[x_{1}, x_{2}\right]^{\prime}=-\frac{2}{a^{2}} x_{2},\left[x_{1}, x_{3}\right]^{\prime}=\left[\alpha^{-1}\left(x_{1}\right), \alpha^{-1}\left(x_{3}\right)\right]=\frac{2}{a^{2}} x_{3},\left[x_{2}, x_{3}\right]^{\prime}=-\frac{1+a}{2 a^{3}} x_{1}$. $\operatorname{By} \operatorname{dim}\left(s l_{2}(\mathbb{C})\right)=(r+1) \operatorname{dim}\left(\mathcal{G}_{1}\right)$ and $\left[\alpha^{i}\left(\mathcal{G}_{1}\right), \alpha^{j}\left(\mathcal{G}_{1}\right)\right]^{\prime}=\delta_{i, j}\left[\alpha^{i}\left(\mathcal{G}_{1}\right), \alpha^{i}\left(\mathcal{G}_{1}\right)\right]$, we ob$\operatorname{tain} r=0$. Hence $\operatorname{dim} H^{2}\left(\tilde{L}\left(s l_{2}(\mathbb{C})\right)\right)=1$ and each non trivial 2-cocycle of $\tilde{L}\left(s l_{2}(\mathbb{C})\right)$ $(a \notin\{-1,0\})$ is proportional to the linear map $\Phi: \tilde{L}\left(s l_{2}(\mathbb{C})\right) \times \tilde{L}\left(s l_{2}(\mathbb{C})\right) \rightarrow \mathbb{C}$ defined by $\Phi\left(x \otimes t^{n}, y \otimes t^{m}\right)=\delta_{m+n, 0} n K(x, y)$. Furthermore,

$$
\begin{aligned}
\Phi\left(x_{1} \otimes t^{n}, x_{1} \otimes t^{m}\right) & =\delta_{m+n, 0} n K\left(x_{1}, x_{1}\right)=\delta_{m+n, 0} n \operatorname{tr}\left(\operatorname{ad}\left(x_{1}\right) \circ \operatorname{ad}\left(x_{1}\right)\right) \\
& =\delta_{m+n, 0} n \frac{8}{a^{4}} ; \\
\Phi\left(x_{1} \otimes t^{n}, x_{2} \otimes t^{m}\right) & =\delta_{m+n, 0} n K\left(x_{1}, x_{2}\right)=\delta_{m+n, 0} n \operatorname{tr}\left(\operatorname{ad}\left(x_{1}\right) \circ \operatorname{ad}\left(x_{2}\right)\right)=0 ; \\
\Phi\left(x_{1} \otimes t^{n}, x_{3} \otimes t^{m}\right) & =\delta_{m+n, 0} n K\left(x_{1}, x_{3}\right)=\delta_{m+n, 0} n \operatorname{tr}\left(\operatorname{ad}\left(x_{1}\right) \circ \operatorname{ad}\left(x_{3}\right)\right)=0 ; \\
\Phi\left(x_{2} \otimes t^{n}, x_{2} \otimes t^{m}\right) & =\delta_{m+n, 0} n K\left(x_{2}, x_{2}\right)=\delta_{m+n, 0} n \operatorname{tr}\left(\operatorname{ad}\left(x_{2}\right) \circ \operatorname{ad}\left(x_{2}\right)\right)=0 ; \\
\Phi\left(x_{2} \otimes t^{n}, x_{3} \otimes t^{m}\right) & =\delta_{m+n, 0} n K\left(x_{2}, x_{3}\right)=\delta_{m+n, 0} n \operatorname{tr}\left(\operatorname{ad}\left(x_{2}\right) \circ \operatorname{ad}\left(x_{3}\right)\right) \\
& =\delta_{m+n, 0} n 2 \frac{1+a}{a^{5}} ; \\
\Phi\left(x_{3} \otimes t^{n}, x_{3} \otimes t^{m}\right) & =\delta_{m+n, 0} n K\left(x_{3}, x_{3}\right)=\delta_{m+n, 0} n \operatorname{tr}\left(\operatorname{ad}\left(x_{3}\right) \circ \operatorname{ad}\left(x_{3}\right)\right) \\
& =\delta_{m+n, 0} n(-2) \frac{1+a}{a^{5}} .
\end{aligned}
$$

Using Theorem 8, one obtains the second cohomology group of the truncated Hom-Lie algebra \widehat{L}_{p} (see Example 9 for the definition of \widehat{L}_{p}):

Theorem 10. Each non-trivial cocycle in $Z^{2}\left(\widehat{L}_{p}\right)$ can be represented as the sum of decomposable cocycles $f \otimes g$ where $f: L \times L \rightarrow \mathbb{C}$ and $g: \mathbb{C}[t] / t^{p+1} \mathbb{C}[t] \times$ $\mathbb{C}[t] / t^{p+1} \mathbb{C}[t] \rightarrow \mathbb{C}$ are of one of the following 3 types:
(1) $f\left(x_{1}, z\right)=f\left(x_{2}, z\right)=f(z, z)=0, f \in S^{2}\left(\mathfrak{h}_{1}\right), g \in C^{2}\left(\mathbb{C}[t] / t^{p+1} \mathbb{C}[t]\right)$;
(2) $f(z, z)=0, f \in S^{2}\left(\mathfrak{h}_{1}\right), g \in C^{2}\left(\mathbb{C}[t] / t^{p+1} \mathbb{C}[t]\right), g\left(t^{n}, t^{m}\right)=g(1,1)$;
(3) $f\left(x_{1}, z\right)=f\left(x_{2}, z\right)=f(z, z)=0, f \in C^{2}\left(\mathfrak{h}_{1}\right), g \in S^{2}\left(\mathbb{C}[t] / t^{p+1} \mathbb{C}[t]\right)$.

6. Extensions of current Hom-Lie algebras

The aim of this section is to provide a method to construct Hom-Lie algebras by extensions of current Hom-Lie algebras.

Definition 11 ([23]). An extension of a Hom-Lie algebra ($\mathcal{G},[\cdot, \cdot], \alpha)$ by a representation $\left(V,[\cdot, \cdot]_{V}, \beta\right)$ is an exact sequence

$$
0 \longrightarrow(V, \beta) \xrightarrow{i}(K, \gamma) \xrightarrow{\pi}(\mathcal{G}, \alpha) \longrightarrow 0
$$

satisfying $\gamma o i=i o \beta$ and $\alpha o \pi=\pi o \gamma$. This extension is said to be central if $[K, i(V)]_{K}=0$. In particular, if $K=\mathcal{G} \times V, i(v)=v$, for all $v \in V$ and $\pi(x)=x$, for all $x \in \mathcal{G}$, then we have $\gamma(x, v)=(\alpha(x), \beta(v))$ and we denote

$$
0 \longrightarrow(V, \beta) \longrightarrow(K, \gamma) \longrightarrow(\mathcal{G}, \alpha) \longrightarrow 0
$$

For convenience, we denote $K=\mathcal{G} \times V=\mathcal{G} \oplus V$ and $C^{k, l}=\operatorname{Hom}\left(\mathcal{G}^{k} V^{l}, V\right)$ where $\mathcal{G}^{k} V^{l}$ is the subspace of $C^{k+l}(K, K)$ consisting of products of k elements from \mathcal{G} and l elements from V. Let $d=\mu+\lambda+f$ where $\mu \in C^{2}(\mathcal{G}, \mathcal{G}), \lambda \in C^{1,1}$ and $f \in C^{2,0}$. Let $\gamma^{\prime}=\left(\alpha^{\prime}, \beta^{\prime}\right) \in \operatorname{End}(\mathcal{G} \oplus V)$. Now we shall determine the 2 -cochains d satisfying $\left(K, d, \gamma^{\prime}\right)$ is a Hom-Lie algebra. Let $d=\mu+\lambda+f$, where $\mu \in C^{2}(\mathcal{G}, \mathcal{G}), \lambda \in C^{1,1}$ and $f \in C^{2,0}$. We have

$$
\begin{gathered}
\circlearrowleft_{x, y, z} d(\gamma(x+a), d(y+b, z+c)) \\
=\left(\circlearrowleft_{x, y, z} \mu\left(\alpha^{\prime}(x), \mu(y, z)\right), \lambda\left(\alpha^{\prime}(x), \lambda(y, c)\right)-\lambda\left(\alpha^{\prime}(y), \lambda(x, c)\right)-\lambda\left(\mu(x, y), \beta^{\prime}(c)\right)\right. \\
\left.+\lambda\left(\alpha^{\prime}(z), \lambda(x, b)\right)-\lambda\left(\alpha^{\prime}(x), \lambda(z, b)\right)-\lambda\left(\mu(z, x), \beta^{\prime}(b)\right)+\delta^{2}(f)(x, y, z)\right)
\end{gathered}
$$

where

$$
\begin{gathered}
\delta^{2}(f)(x, y, z)=\left(\lambda\left(\alpha^{\prime}(x), f(y, z)\right)+\lambda\left(\alpha^{\prime}(y), f(z, x)\right)+\lambda\left(\alpha^{\prime}(z), f(x, y)\right)\right. \\
\left.+f\left(\alpha^{\prime}(x), \mu(y, z)\right)+f\left(\alpha^{\prime}(y), \mu(z, x)\right)+f\left(\alpha^{\prime}(z), \mu(x, y)\right)\right)
\end{gathered}
$$

Then $\circlearrowleft_{x, y, z} d\left(\gamma(x+a), d(y+b, z+c)=0 \Longrightarrow \circlearrowleft_{x, y, z} \mu\left(\alpha^{\prime}(x), \mu(y, z)\right)=0\right.$.
Hence $\left(\mathcal{G}, \mu, \alpha^{\prime}\right)$ is a Hom-Lie algebra. We assume that $\left(V, \lambda, \beta^{\prime}\right)$ is a representation of $\left(\mathcal{G}, \mu, \alpha^{\prime}\right)$.

Theorem 11. If (V, λ, β) is a representation of $(\mathcal{G}, \mu, \alpha)$. Then (K, d, γ) is a Hom-Lie algebra if and only if f is a 2-cocycle on V.

Theorem 12. A cohomology class $[f] \in H^{2}(\mathcal{G}, V)$ defines an extension of the Hom-Lie algebra \mathcal{G} which is unique up to equivalence.
6.1. Classification of central extensions of Hom-Loop algebras. By Theorem 8, Theorem 9 and Theorem 12, we obtain the following result.

Proposition 14. Any central extension of a Hom-Loop algebra is equivalent to the extension defined by the skew-symmetric map $d: \tilde{L}(\mathcal{G}) \times \tilde{L}(\mathcal{G}) \rightarrow \tilde{L}(\mathcal{G})$ given by $d\left(x \otimes t^{n}, y \otimes t^{m}\right)=q^{n+m}[x, y] \otimes t^{n+m}+\delta_{n+m, 0} n K(x, y)$ and the endomorphism $\gamma: \tilde{L}(\mathcal{G}) \rightarrow \tilde{L}(\mathcal{G})$ given by $\gamma\left(x \otimes t^{n}\right)=q^{n} \alpha(x) \otimes t^{n}$.

Example 14. Any central extension of a Hom-Loop algebra $\tilde{L}\left(s l_{2}(\mathbb{C})\right)$ is equivalent to the extension given by

$$
\begin{gathered}
d\left(x_{1} \otimes t^{n}, x_{1} \otimes t^{m}\right)=\delta_{m+n, 0} n c ; d\left(x_{1} \otimes t^{n}, x_{2} \otimes t^{m}\right)=-2 a q^{n+m} x_{2} \otimes t^{n+m} ; \\
d\left(x_{1} \otimes t^{n}, x_{3} \otimes t^{m}\right)=2 q^{n+m} x_{3} \otimes t^{n+m} ; d\left(x_{2} \otimes t^{n}, x_{2} \otimes t^{m}\right)=0 ; \\
d\left(x_{2} \otimes t^{n}, x_{3} \otimes t^{m}\right)=-\frac{1+a}{2} q^{n+m} x_{1} \otimes t^{n+m}+\frac{1+a}{4 a} \delta_{m+n, 0} n c ;
\end{gathered}
$$

$$
\begin{gathered}
d\left(x_{3} \otimes t^{n}, x_{3} \otimes t^{m}\right)=-\frac{1+a}{4 a} \delta_{m+n, 0} n c ; \\
\gamma\left(x_{1} \otimes t^{n}\right)=a q^{n} x_{1} \otimes t^{n}, \gamma\left(x_{2} \otimes t^{n}\right)=a^{2} q^{n} x_{2} \otimes t^{n}, \gamma\left(x_{3} \otimes t^{n}\right)=a q^{n} x_{3} \otimes t^{n} ; \\
\text { and } c=\frac{8}{a^{4}} .
\end{gathered}
$$

6.2. Classification of central extensions of Hom-truncated Heisenberg algebras. In Theorem 10, we denote $f(x, x)=f_{11}, f(y, x)=f(x, y)=f_{12}$, $f(x, z)=f(z, x)=f_{13}, f(y, y)=f_{22}, f(z, y)=f(y, z)=f_{23}, f(z, z)=f_{23}$ and $g\left(t^{m}, t^{n}\right)=g\left(t^{n}, t^{m}\right)=\gamma_{n m}$ for all $n, m \in\{0, \cdots, p\}$.

Theorem 13. Any central extension of a Hom-truncated Heisenberg algebra $\widehat{L}\left(\mathfrak{h}_{1}\right)_{p}$ is equivalent to one of following extensions:
(1) $\left[x \otimes t^{n}, x \otimes t^{m}\right]=f_{11} \gamma_{n m} c_{1} ;\left[x \otimes t^{n}, y \otimes t^{m}\right]=q^{n+m} z \otimes t^{n+m}+f_{12} \gamma_{n m} c_{1}$; $\left[y \otimes t^{n}, y \otimes t^{m}\right]=f_{22} \gamma_{n m} c_{1} ;$
(2) $\left[x \otimes t^{n}, x \otimes t^{m}\right]=f_{11} \gamma_{n m} c_{1} ;\left[x \otimes t^{n}, y \otimes t^{m}\right]=q^{n+m} z \otimes t^{n+m}+f_{12} \gamma_{n m} c_{1}$;
$\left[x \otimes t^{n}, z \otimes t^{m}\right]=f_{13} \gamma_{n m} c_{1} ;\left[y \otimes t^{n}, y \otimes t^{m}\right]=f_{22} \gamma_{n m} c_{1} ;$
$\left[y \otimes t^{n}, z \otimes t^{m}\right]=f_{23} \gamma_{n m} c_{1} ;$
(3) $\left[x \otimes t^{n}, x \otimes t^{m}\right]=f_{11} \gamma_{n m} c_{1} ;\left[x \otimes t^{n}, y \otimes t^{m}\right]=q^{n+m} z \otimes t^{n+m}+f_{12} \gamma_{n m} c_{1}$; $\left[y \otimes t^{n}, y \otimes t^{m}\right]=f_{22} \gamma_{n m} c_{1} ;$
and $\gamma\left(x \otimes t^{n}\right)=\lambda_{1} q^{n} x \otimes t^{n}, \gamma\left(y \otimes t^{n}\right)=\frac{\lambda}{\lambda_{1}} q^{n} y \otimes t^{n}, \gamma\left(z \otimes t^{n}\right)=\lambda q^{n} z \otimes t^{n}$.

References

[1] V. Abramov, On a graded q-differential algebra, J. Nonlinear Math. Phys. 13 (2006), 1-8.
[2] F. Ammar, Z. Ejbehi, and A. Makhlouf, Cohomology and Deformations of Homalgebras, J. Lie Theory 21 (2011), 813-836.
[3] S. Benayadi and A. Makhlouf, Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 38-60.
[4] J. M. Casas, M. A. Insua, and N. Pacheco Rego, On universal central extensions of Hom-Lie algebras, Hacet. J. Math. Stat. 44 (2015), 277-288.
[5] X. Chen and W. Han, Classification of multiplicative simple Hom-Lie algebras, J. Lie Theory 26 (2016), 767-775.
[6] E. A. De Kerf, G. G. A. Buerle, and A. P. E. Ten Kroode, Chapter 18 Extensions of Lie algebras, Studies in Mathematical Physics 7 (1997), 5-48.
[7] J. T. Hartwig, D. Larsson, and S. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2) (2006), 314-361.
[8] A. S. Hegazi, Representations of Heisenberg Lie superalgebras, Indian J. Pure Appl. Math. 21 (1990), 557-566.
[9] Q. Jin and X. Li, Hom-Lie algebra structures on semi-simple Lie algebras, J. Algebra 319 (2008), 1398-1408.
[10] C. Leandro and R. Nadina, Faithful representations of minimal dimension of current Heisenberg Lie algebras, Internat. J. Math. 20 (2009), 1347-1362.
[11] A. Makhlouf and F. Panaite, Twisting operators, twisted tensor products and smash products for Hom-associative algebras, Glasg. Math. J. 58 (2016), 513-538.
[12] A. Makhlouf and S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
[13] A. Makhlouf and S. Silvestrov, Notes on 1-parameter formal deformations of Homassociative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739.
[14] A. Makhlouf and A. Zahari, Structure and classification of Hom-associative algebras, Acta Comment. Univ. Tartu. Math. 24 2020, 79-102.
[15] A. Makhlouf and P. Zusmanovich, Hom-Lie structures on Kac-Moody algebras, J. Algebra 515 (2018), 278-297.
[16] N. Saadaoui, Cohomology of Heisenberg Hom-Lie algebras arXiv:1701.07090v4 (2018).
[17] P. Novotny and J. Hrivnak, On (α, β, γ)-derivations of Lie algebras and corresponding invariant functions, J. Geom. Phys. 58 (2008), 208-217.
[18] I. S. Rakhimov, Sh. K. Said Husain, and A. Abdulkadir, On generalized derivations of finite dimensional associative algebras, Internat. Conf. Engineering Education 2015, Madinah, Kingdom of Saudi Arabia (2015), 29-30.
[19] E. Remm and M. Goze, Rigid Current Lie algebras, in A. Makhlouf et al. (eds.), Algebra Geometry and Mathematical Physics, Springer Proceedings in Mathematics \& Statistics 85 (2014), 247-258.
[20] Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098.
[21] L. Wende and C. Meiwei, The minimal dimensions of faithful representations for Heisenberg Lie superalgebras, J. Geom. Phys. 89 (2015), 17-23.
[22] D. Yau, Hom-Algebras and Homology, J. Lie Theory. 19 (2009), 409-421.
[23] C. Yongsheng and Y. Hengyun, Low-dimensional cohomology of q-deformed Heisenberg-Virasoro algebra of Hom-type, Front. Math. China 5 (2010), 607-622.
[24] P. Zusmanovich, A compendium of Lie structures on tensor products, J. Math. Sci. 199 (2014), 266-288.
[25] P. Zusmanovich, Low-dimensional cohomology of current Lie algebras and analogs of the Riemann tensor for loop manifolds, Linear Algebra Appl. 407 (2005), 71-104.
[26] P. Zusmanovich, Invariants of Lie algebras extented over commutative algebras without unit, J. Nonlinear Math. Phys. 17 (2010), 87-102.

Université de Gabès, Laboratoire de Mathématiques et Applications. Faculté des Sciences de Gabès Cité Erriadh 6072 Zrig Gabès, Tunisie.

E-mail address: torkia.benjmaa@gmail.com
Université de Haute Alsace, IRIMAS-Département de Mathématiques, 6 bis, rue des frères Lumière, F-68093 Mulhouse, France.

E-mail address: Abdenacer.Makhlouf@uha.fr
Université de Gabès, Institut Supérieur D’Informatique de Medenine. Rue Djerba km 3, B.P 283 Medenine 4100, Tunisie.

E-mail address: nejib.saadaoui@fsg.rnu.tn

[^0]: Received December 17, 2021.
 2020 Mathematics Subject Classification. 17B61, 17B67, 17B56.
 Key words and phrases. Current Hom-Lie algebra, representation, current Heisenberg Hom-Lie algebra, derivation, cohomology, extension.
 https://doi.org/10.12697/ACUTM.2022.26.08
 Corresponding author: Abdenacer Makhlouf

