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Diophantine equations involving the bi-periodic
Fibonacci and Lucas sequences

Lyes Ait-Amrane, Djilali Behloul, and Akila Djoumakh

Abstract. In this paper, we present new identities involving the bi-
periodic Fibonacci and Lucas sequences. Then we solve completely some
quadratic Diophantine equations involving the bi-periodic Fibonacci and
Lucas sequences.

1. Introduction

The well known Fibonacci sequence (Fn)n and Lucas sequence (Ln)n are
defined, respectively, by

{
F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2,

and

{
L0 = 2, L1 = 1,
Ln = Ln−1 + Ln−2,

n ≥ 2.

These sequences and their different generalizations satisfy several properties,
e.g., [4, 9, 10, 15, 17, 19]. One of the last generalizations of the sequences
(Fn)n and (Ln)n is given by the bi-periodic Fibonacci sequence (qn)n, which
is defined by Edson and Yayenie [8], and the bi-periodic Lucas sequence
(ln)n, which is defined by Bilgici [3].

The bi-periodic Fibonacci sequence (qn)n is defined by

q0 = 0, q1 = 1, qn =

{
aqn−1 + qn−2, if n is even,
bqn−1 + qn−2, if n is odd,

n ≥ 2, (1)

where a and b are nonzero real numbers. It is clear that if a = b = 1, we
get the classical Fibonacci sequence. In [8], the authors extended Binet’s
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formula to the bi-periodic Fibonacci sequence (qn)n as follows

qn =
aξ(n+1)

(ab)⌊
n
2 ⌋

(
αn − βn

α− β

)
, n ≥ 0, (2)

where α = ab+
√
∆

2 and β = ab−
√
∆

2 are the roots of the quadratic equation

x2 − abx − ab = 0, ∆ = a2b2 + 4ab and ξ(n) = n − 2
⌊
n
2

⌋
, i.e., ξ(n) = 0

when n is even and ξ(n) = 1 when n is odd. Then, they deduce a number of
mathematical properties. In particular, they generalize Cassini’s, Catalan’s
and d’Ocagne’s identities.

The bi-periodic Lucas sequence (ln)n is defined by

l0 = 2, l1 = a, ln =

{
bln−1 + ln−2, if n is even,
aln−1 + ln−2, if n is odd,

n ≥ 2. (3)

If a = b = 1, we get the classical Lucas sequence. In [3], the author obtains
some properties of the bi-periodic Lucas sequence (ln)n and gives some re-
lations between the sequences (qn)n and (ln)n. In particular, he extended
Binet’s formula as follows

ln =
aξ(n)

(ab)⌊
n+1
2 ⌋ (αn + βn) , n ≥ 0. (4)

The numbers α and β verify the following properties

α2 = ab(α+1), β2 = ab(β+1), α+β = ab, αβ = −ab, α−β =
√
∆.

From Binet’s formulas (2) and (4), we get

q−n = (−1)n+1qn, n ∈ Z, (5)

and
l−n = (−1)nln, n ∈ Z.

Many authors have studied properties of the bi-periodic Fibonacci and
Lucas sequences, e.g., [3, 8, 13, 20]. In this paper, we give new identities
involving the sequences (qn)n and (ln)n. Then we use these identities to
define some Diophantine equations that we solve completely. Throughout
this paper, a and b are assumed to be nonzero integers and ∆ > 0. By a
simple induction, using (1) and (3), we can see that a | q2n and a | l2n+1 for

any n ∈ Z. Thus, we put tn = q2n
a and sn = l2n+1

a .
The study of Diophantine equations involving recurrence sequences has

interested several authors, e.g., [1, 3, 6, 7, 11, 14, 16, 18]. Our purpose is to
determine all integer solutions (x, y) of the following Diophantine equations

x2 −∆y2 = 4,

x2 −∆y2 = 4k,

(ab)x2 −
(
∆

ab

)
y2 = −4,
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x2 + absnxy − aby2 = q22n+1,

x2 − l2nxy + y2 = −(ab)t2n,

x2 −
(
∆

ab

)
q2n+1xy +

(
∆

ab

)
y2 = −(ab)s2n,

x2 −∆tnxy −∆y2 = −(ab)l22n,

x2 −
(
∆

ab

)
q2n+1xy +

(
∆

ab

)
y2 = s2n,

x2 − (ab)snxy − (ab)y2 =

(
∆

ab

)
q22n+1,

x2 − l2nxy + y2 =

(
∆

ab

)
t2n.

2. Some identities for (qn)n and (ln)n

Let n,m ∈ Z. We list here the identities that are necessary in our paper,
they can be found in [3]:

qn−1 + qn+1 = ln, (6)

ln−1 + ln+1 = (ab+ 4)qn, (7)

∆

(
1

a2

)ξ(m+1)ξ(n+1)( 1

ab

)1−ξ(n+1)ξ(m+1)

qmqn +

(
b

a

)ξ(n)ξ(m)

lmln

= 2lm+n, (8)(
b

a

)ξ(n+1)ξ(m)

qnlm −
(
b

a

)ξ(n)ξ(m+1)

qmln = 2(−1)mqn−m, (9)

(
b

a

)ξ(n)ξ(m)

lnlm −∆

(
1

a2

)ξ(n+1)ξ(m+1)( 1

ab

)1−ξ(n+1)ξ(m+1)

qnqm

= 2(−1)mln−m, (10)

(
b

a

)ξ(n+1)ξ(m)

qnlm +

(
b

a

)ξ(n)ξ(m+1)

qmln = 2qn+m, (11)(
b

a

)ξ(n)

l2n −∆

(
1

a2

)ξ(n+1)( 1

ab

)ξ(n)

q2n = 4(−1)n. (12)

We now give some new identities involving the bi-periodic Fibonacci and
Lucas sequences.
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Proposition 1. Let n,m, k ∈ Z. Then(
− b

a

)ξ(n+k)[1−ξ(n+m)]

q2n+m

+ (−1)1+ξ(n+k)[1−ξ(n+m)]

(
b

a

)ξ(n+k)

ln−kqn+mqm+k

+

(
− b

a

)ξ(n+k)ξ(n+m)

q2m+k =

(
− b

a

)ξ(n+m)[1−ξ(n+k)]

q2n−k.

Proof. According to the parity of (n + m) and (m + k), there are four
cases.

(1) If (n+m) and (n+ k) are even, we have to prove

q2n+m − ln−kqn+mqm+k + q2m+k = q2n−k. (13)

We consider the case n,m and k even. The case n,m and k odd is
done with the same method. From identity (11), we have{

qnlm + qmln = 2qn+m,
qklm + qmlk = 2qm+k.

(14)

Multiplying the first identity of (14) by qk and the second by qn, and
subtracting the results, we get

qm (lnqk − lkqn) = 2 (qn+mqk − qm+kqn) .

Using identity (9), we obtain

qmqn−k = qm+kqn − qn+mqk. (15)

Multiplying the first identity of (14) by lk and the second by ln, and
subtracting the results, we get

lm (qnlk − qkln) = 2 (qn+mlk − qm+kln) .

Using identity (9), we obtain

lmqn−k = qn+mlk − qm+kln. (16)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (17)

Replacing the left-hand sides of (15) and (16) in (17), expanding and
using identities (10) and (12), we get the result.

(2) If (n+m) is even and (n+ k) is odd, we have to prove

−
(
b

a

)
q2n+m +

(
b

a

)
ln−kqn+mqm+k + q2m+k = q2n−k. (18)
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We consider the case n,m even and k odd. The case n,m odd and
k even is done with the same method. From (11), we have{

qnlm + qmln = 2qn+m,

qklm +
(
b
a

)
qmlk = 2qm+k.

With the same process as before, we obtain

qmqn−k = qn+mqk − qm+kqn (19)

and

lmqn−k = qm+kln −
(
b

a

)
qn+mlk. (20)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (21)

Replacing the left-hand sides of (19) and (20) in (21), expanding and
using identities (10) and (12), we get the result.

(3) If (n+m) is odd and (n+ k) is even, we have to prove

q2n+m − ln−kqn+mqm+k + q2m+k = −
(
b

a

)
q2n−k. (22)

We consider the case n, k odd and m even. The case n, k even and
m odd is done with the same method. From Formula (11), we have{

qnlm +
(
b
a

)
qmln = 2qn+m,

qklm +
(
b
a

)
qmlk = 2qm+k.

(23)

With the same process as before, we obtain

qmqn−k =
(a
b

)
(qn+mqk − qm+kqn) (24)

and

lmqn−k = qm+kln − qn+mlk. (25)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (26)

Replacing the left-hand sides of (24) and (25) in (26), expanding and
using identities (10) and (12), we get the result.

(4) If (n+m) and (n+ k) are odd, we have to prove

q2n+m −
(
b

a

)
ln−kqn+mqm+k −

(
b

a

)
q2m+k = q2n−k. (27)
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We consider the case n odd and m, k even. The case n even and m, k
odd is done with the same method. From identity (11), we have{

qnlm +
(
b
a

)
qmln = 2qn+m,

qklm + qmlk = 2qm+k.
(28)

With the same process as before, we obtain

qmqn−k = qm+kqn − qn+mqk (29)

and

lmqn−k = qn+mlk −
(
b

a

)
qm+kln. (30)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (31)

Replacing the left-hand sides of (29) and (30) in (31), expanding and
using identities (10) and (12), we get the result.

□

Proposition 2. Let n,m, k ∈ Z. Then(
b

a

)ξ(n+m)[1−ξ(n+k)]

l2n+m −∆

(
1

a2

)1−ξ(n+k)( 1

ab

)ξ(n+k)

qn−kln+mqm+k

+ (−1)1−ξ(n+k)

(
∆

ab

)(
b

a

)[1−ξ(n+k)][1−ξ(n+m)]

q2m+k

= (−1)ξ(n+m)+ξ(n+k)

(
b

a

)[1−ξ(n+m)]ξ(n+k)

l2n−k.

Proof. According to the parity of (n + m) and (m + k), there are four
cases.

(1) If (n+m) and (n+ k) are even, we have to prove

l2n+m −
(
∆

a2

)
ln+mqn−kqm+k −

(
∆

a2

)
q2m+k = l2n−k. (32)

We consider the case n,m and k even. The case n,m and k odd is
done with the same method. From identities (8) and (11), we have

(
∆

a2

)
qnqm + lnlm = 2ln+m,

qklm + qmlk = 2qm+k.
(33)

Multiplying the first identity of (33) by qk and the second by ln, and
subtracting the results, we obtain

qm

[(
∆

a2

)
qnqk − lkln

]
= 2 (ln+mqk − qm+kln) .
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Using identity (10), we get

qmln−k = qm+kln − ln+mqk. (34)

Multiplying identity (8) by lk and identity (11) by
(
∆
a2

)
qn, and sub-

tracting the results, we obtain

lm

[
lnlk −

(
∆

a2

)
qnqk

]
= 2

[
ln+mlk −

(
∆

a2

)
qm+kqn

]
.

Using identity (10) we get

lmln−k = ln+mlk −
(
∆

a2

)
qm+kqn. (35)

From (12), we have

(lmln−k)
2 −

(
∆

a2

)
(qmln−k)

2 = 4l2n−k. (36)

Replacing the left-hand sides of (34) and (35) in (36), expanding and
using identities (9) and (12), we get the result.

(2) If (n+m) is even and (n+ k) is odd, we have to prove

l2n+m −
(
∆

ab

)
ln+mqn−kqm+k +

(
∆

ab

)
q2m+k = −

(
b

a

)
l2n−k. (37)

We consider the case n,m even and k odd. The case n,m odd and
k even is done with the same method. From identities (8) and (11),
we have { (

∆
a2

)
qnqm + lnlm = 2ln+m,

qklm +
(
b
a

)
qmlk = 2qm+k.

With the same process as before, we obtain

qmln−k =

(
− b

a

)
(ln+mqk − qm+kln) (38)

and

lmln−k = ln+mlk −
(
∆

ab

)
qm+kqn. (39)

From (12), we have

(lmln−k)
2 −

(
∆

a2

)
(qmln−k)

2 = 4l2n−k. (40)

Replacing the left-hand sides of (38) and (39) in (40), expanding and
using identities (9) and (12), we get the result.

(3) If (n+m) is odd and (n+ k) is even, we have to prove

l2n+m −
(
∆

ab

)
ln+mqn−kqm+k −

(
∆

b2

)
q2m+k = −

(a
b

)
l2n−k. (41)
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We consider the case n, k odd and m even. The case n, k even and
m odd is done with the same method. From identities (8) and (11),
we have { (

∆
ab

)
qnqm + lnlm = 2ln+m,

qklm +
(
b
a

)
qmlk = 2qm+k.

With the same process as before, we obtain

qmln−k = ln+mqk − qm+kln (42)

and

lmln−k =

(
∆

ab

)
qm+kqn −

(
b

a

)
ln+mlk. (43)

From (12), we have

(lmln−k)
2 −

(
∆

a2

)
(qmln−k)

2 = 4l2n−k. (44)

Replacing the left-hand sides of (42) and (43) in (44), expanding and
using identities (9) and (12), we get the result.

(4) If (n+m) and (n+ k) are odd, we have to prove

l2n+m −
(
∆

ab

)
ln+mqn−kqm+k +

(
∆

ab

)
q2m+k = l2n−k. (45)

We consider the case n odd and m, k even. The case n even and m, k
odd is done with the same method. From identities (8) and (11), we
have { (

∆
ab

)
qnqm + lnlm = 2ln+m,

qmlk + qklm = 2qm+k.

With the same process as before, we obtain

qmln−k = qm+kln − ln+mqk. (46)

and

lmln−k = ln+mlk −
(
∆

ab

)
qm+kqn. (47)

From (12), we have

(lmln−k)
2 −

(
∆

a2

)
(qmln−k)

2 = 4l2n−k. (48)

Replacing the left-hand sides of (46) and (47) in (48), expanding and
using identities (9) and (12), we get the result.

□

Proposition 3. Let n,m, k ∈ Z. Then(
−b

a

)ξ(n+m)ξ(n+k)

l2n+m − (−1)ξ(n+m)ξ(n+k)

(
b

a

)ξ(n+k)

ln−kln+mlm+k
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+

(
−b

a

)[1−ξ(n+m)]ξ(n+k)

l2m+k =

(
∆

ab

)(
−b

a

)[1−ξ(n+m)][1−ξ(n+k)]

q2n−k.

Proof. According to the parity of (n + m) and (m + k), there are four
cases.

(1) If (n+m) and (n+ k) are even, we have to prove

l2n+m − ln−kln+mlm+k + l2m+k = −
(
∆

a2

)
q2n−k. (49)

We consider the case n,m and k even. The case n,m and k odd is
done with the same method. From Identity (8), we have{ (

∆
a2

)
qnqm + lnlm = 2ln+m,(

∆
a2

)
qmqk + lmlk = 2lm+k.

(50)

Multiplying the first identity of (50) by lk and the second by ln, and
subtracting the results, we obtain(

∆

a2

)
qm (qnlk − qkln) = 2 (ln+mlk − lm+kln) .

Using identity (9), we get

qmqn−k =

(
a2

∆

)
(ln+mlk − lm+kln) . (51)

Multiplying the first identity of (50) by qk and the second by qn, and
subtracting the results, we obtain

lm (lnqk − qnlk) = 2 (ln+mqk − lm+kqn) .

Using identity (9), we get

lmqn−k = lm+kqn − ln+mqk. (52)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (53)

Replacing the left-hand sides of (51) and (52) in (53), expanding and
using Identities (10) and (12), we get the result.

(2) If (n+m) is even and (n+ k) is odd, we have to prove

l2n+m −
(
b

a

)
ln−kln+mlm+k −

(
b

a

)
l2m+k =

(
∆

ab

)
q2n−k. (54)

We consider the case n,m even and k odd. The case n,m odd and
k even is done with the same method. From identity (8), we have{ (

∆
a2

)
qnqm + lnlm = 2ln+m,(

∆
ab

)
qmqk + lmlk = 2lm+k.
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With the same process as before, we obtain

qmqn−k =

(
ab

∆

)
(lm+kln − ln+mlk) (55)

and

lmqn−k = ln+mqk −
(
b

a

)
lm+kqn. (56)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (57)

Replacing the left-hand sides of (55) and (56) in (57), expanding and
using identities (10) and (12), we get the result.

(3) If (n+m) is odd and (n+ k) is even, we have to prove

l2n+m − ln−kln+mlm+k + l2m+k =

(
∆

ab

)
q2n−k. (58)

We consider the case n, k odd and m even. The case n, k even and
m odd is done with the same method. From identity (8), we have{ (

∆
ab

)
qnqm + lnlm = 2ln+m,(

∆
ab

)
qmqk + lmlk = 2lm+k.

With the same process as before, we obtain

qmqn−k =

(
ab

∆

)
(lm+kln − ln+mlk) (59)

and

lmqn−k = ln+mqk − lm+kqn. (60)

From (12), we have

(lmqn−k)
2 −

(
∆

a2

)
(qmqn−k)

2 = 4q2n−k. (61)

Replacing the left-hand sides of (59) and (60) in (61), expanding and
using identities (10) and (12), we get the result.

(4) If (n+m) and (n+ k) are odd, we have to prove(
−b

a

)
l2n+m +

(
b

a

)
ln−kln+mlm+k + l2m+k =

(
∆

ab

)
q2n−k. (62)

We consider the case n odd and m, k even. The case n even and m, k
odd is done with the same method. From identity (8), we have{ (

∆
ab

)
qnqm + lnlm = 2ln+m,(

∆
a2

)
qmqk + lmlk = 2lm+k.



DIOPHANTINE EQUATIONS, BI-PERIODIC SEQUENCES 139

With the same process as before, we obtain

qmqn−k =

(
ab

∆

)
(ln+mlk − lm+kln) (63)

and

lmqn−k = lm+kqn −
(
b

a

)
ln+mqk. (64)

From (12), we have

(lmln−k)
2 −

(
∆

a2

)
(qmln−k)

2 = 4q2n−k. (65)

Replacing the left-hand sides of (63) and (64) in (65), expanding and
using identities (10) and (12), we get the result.

□

3. Solutions of some Diophantine equations

The identities (12), (18), (22), (37), (41), (45), (54) and (58) suggest to
explore the solutions of the Diophantine equations listed before. To do this,
we need the following proposition which is given in [5, Proposition 6.3.16.
p. 355].

Proposition 4 (The Structure Theorem). If D > 0 is not a square and
is congruent to 0 or 1 modulo 4, the Pell’s equation x2 − Dy2 = ±4 has
an infinity of solutions given in the following way. If (x0, y0) is a solution
with the least strictly positive y0 (and x0 > 0, say), the general solution
is given by

x+
√
Dy

2
= ±

(
x0 +

√
Dy0

2

)k

,

for any k ∈ Z.

Remark 1. It is well known (see [2]) that if D is a positive not square
integer, then all integer solutions of x2 −Dy2 = 1 are given by

x+
√
Dy = ±

(
x0 +

√
Dy0

)n
, n ∈ Z,

where (x0, y0) is the fundamental positive solution. Since x0 +
√
Dy0 =

−
(
−x0 +

√
Dy0

)−1
, so x+

√
Dy = ±

(
−x0 +

√
Dy0

)k
with k = −n ∈ Z.

The following lemma exists in an equivalent form in [12], but we prefer to
give a simple proof involving bi-periodic numbers.
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Lemma 1. All integer solutions of the Diophantine equation

x2 −∆y2 = 4 (66)

are (x, y) = ±
(
l2k,

q2k
a

)
where k ∈ Z.

Proof. A fundamental solution of the equation (66) is (x0, y0) = (ab+2, 1).
Thus, according to the Structure Theorem, the solutions of equation (66)
verify

x+
√
∆y

2
= ±

(
ab+ 2 +

√
∆

2

)k

, k ∈ Z.

Thus, we get for the “ + ” sign
x+

√
∆y

2 =
(
ab+2+

√
∆

2

)k
= (α+ 1)k =

(
α2

ab

)k
, k ∈ Z,

x−
√
∆y

2 =
(
ab+2−

√
∆

2

)k
= (β + 1)k =

(
β2

ab

)k
, k ∈ Z,

which is equivalent to
x =

(
α2

ab

)k
+
(
β2

ab

)k
= α2k+β2k

(ab)k
= l2k, k ∈ Z,

y = 1√
∆

[(
α2

ab

)k
−
(
β2

ab

)k]
= 1

(ab)k

[
α2k−β2k

√
∆

]
= t2k, k ∈ Z.

Proceeding in the same way for the “ − ” sign, we get that all solutions
are (x, y) = ±(l2k,

q2k
a ).

Conversely, from (12) we have

l22k −∆
(q2k

a

)2
= 4,

which means that ±
(
l2k,

q2k
a

)
are solutions of (66). □

Lemma 2. Assume that x2 −∆y2 = 4k with k ≥ 2. If ab is odd, then x
and y are even numbers.

Proof. Assume that ab is odd and let ab = 2c + 1. Then (ab)2 + 4ab =
(2c + 1)2 + 4(2c + 1) = 4c(c + 3) + 5 ≡ 5[8]. Since k ≥ 2, we have x2 −[
(ab)2 + 4ab

]
y2 ≡ 0[8]. Thus, x2 −

[
(ab)2 + 4ab

]
y2 ≡ x2 − 5y2[8]. But

x2 − 5y2 ≡ 0[8] if and only if either x2, y2 ≡ 0[8] or x2, y2 ≡ 4[8]. We
conclude that either x, y ≡ 0, 4[8] or x, y ≡ 2, 6[8], i.e., we conclude that x
and y are even. □

Remark 2. If ab is even, the conclusion of Lemma 2 is not true. Indeed,
for k = 4 and ab = 16, the equation x2−∆y2 = 4k becomes x2−26 ·5y2 = 28.
We deduce that 23 | x. Let x = 23x1. Then, the equation x2 − 26 · 5y2 = 28

becomes x21 − 5y2 = 4. It is clear that (x1, y) = (3, 1) is a solution and y is
odd.
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Corollary 1. Let k ≥ 1 be an integer. Then all integer solutions (x, y)
of the equation x2 − ∆y2 = 4k with ab odd are ±

(
2k−1l2m, 2k−1 q2m

a

)
with

m ∈ Z.

Proof. By induction using Lemmas 1 and 2, the details are left to the
reader. □

To solve the Diophantine equation in the following lemma, it is necessary
to study several cases.

Lemma 3. All integer solutions of the Diophantine equation

(ab)x2 −
(
∆

ab

)
y2 = −4 (67)

are (x, y) = ±
(
l2k−1

a , q2k−1

)
, where k ∈ Z.

Proof. Let t = −ab. Then equation (67) becomes

tx2 − (t− 4)y2 = 4. (68)

It is clear that gcd(t, t− 4) = 1, 2 or 4. Thus, we have three cases.

(1) If gcd(t, t− 4) = 1, then t ≡ 1[2]. Since x2 ≡ x[2] and y2 ≡ y[2], we
get from equation (68) that x− y ≡ 0[2], i.e., x and y have the same
parity. We make the following change of variables:{
u = −1

2 [tx+ (t− 4)y]
v = 1

2(x+ y)
⇐⇒

{
x = −1

2 [u+ (t− 4)v]
y = 1

2(u+ tv)
.

Then, using the fact that t(t− 4) = ∆, the equation (68) becomes

u2 −∆v2 = 4. (69)

Then, from Lemma 1, we have{
u = l2k, k ∈ Z,
v = q2k

a , k ∈ Z.
From identities (6) and (7), we get

u = q2k−1 + q2k+1 and v =
l2k−1 + l2k+1

a(4− t)
.

Thus,

x = −1

2

[
l2k + (t− 4)

l2k−1 + l2k+1

a(4− t)

]
=

l2k−1

a

and

y =
1

2
(q2k−1 + q2k+1 − bq2k) = q2k−1.

Proceeding in the same way for the “−” sign, we get that all solutions

are (x, y) = ±
(
l2k−1

a , q2k−1

)
.
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(2) If gcd(t, t− 4) = 2, let s = t
2 . Then, the equation (68) becomes

sx2 − (s− 2)y2 = 2. (70)

Since s is odd, we deduce that x and y have the same parity. Thus,
we use the following change of variables:{
u = −1

2 [sx+ (s− 2)y]
v = 1

2(x+ y)
⇐⇒

{
x = −u− (s− 2)v
y = u+ sv

.

Equation (70) becomes

u2 − s(s− 2)v2 = 1. (71)

The fundamental solution of (71) is (u0, v0) = (s− 1, 1). Therefore,
according to Remark 1, the solutions of equation (71) verify

u+
√

s(s− 2)v = ±
(
1− s+

√
s(s− 2)

)k
, k ∈ Z.

Thus, we get for the “ + ” signu+
√
s(s− 2)v = (α+ 1)k =

(
α2

ab

)k
, k ∈ Z,

u−
√
s(s− 2)v = (β + 1)k =

(
β2

ab

)k
, k ∈ Z,

which is equivalent to
u = 1

2

[(
α2

ab

)k
+
(
β2

ab

)k]
, k ∈ Z,

v = 1√
∆

[(
α2

ab

)k
−
(
β2

ab

)k]
, k ∈ Z.

Hence

x =
(
−1
2 − s−2√

∆

)(
α2

ab

)k
+
(
−1
2 + s−2√

∆

)(
β2

ab

)k
= 1

α

(
α2

ab

)k
+ 1

β

(
β2

ab

)k
= α2k−1+β2k−1

(ab)k

=
l2k−1

a

and

y =
[
1
2 + s√

∆

] (
α2

ab

)k
+
[
1
2 − s√

∆

] (
β2

ab

)k
= −β√

∆

(
α2

ab

)k
+ α√

∆

(
β2

ab

)k
= 1√

∆

[
α2k−1−β2k−1

(ab)k−1

]
= q2k−1.

Proceeding in the same way for the “−” sign, we get that all solutions

are (x, y) = ±
(
l2k−1

a , q2k−1

)
.
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(3) If gcd(t, t− 4) = 4, let s = t
4 , then equation (68) becomes

sx2 − (s− 1)y2 = 1. (72)

Let us have the following change of variables:{
u = −sx− (s− 1)y
v = x+ y

⇐⇒
{

x = −u− (s− 1)v
y = u+ sv

.

Thus the equation (72) becomes

u2 − s(s− 1)v2 = 1. (73)

The fundamental solution of (73) is (u0, v0) = (2s− 1, 2). That is, if
(u, 1) is a solution of (73), then

u2 = s2 − s+ 1 =

(
s− 1

2

)2

+
3

4
=⇒ (2u)2 − (2s− 1)2 = 3,

i.e., (2u − 2s + 1)(2u + 2s − 1) = 3, which leads to s = 0 or 1, this
contradicts the hypothesis ∆ = 16s(s − 1) > 0. Thus, according to
Remark 1, the solutions of equation (73) verify

u+
√

s(s− 1)v = ±
(
1− 2s+ 2

√
s(s− 1)

)k
, k ∈ Z.

Thus we get for the “ + ” signu+
√
s(s− 1)v = (α+ 1)k =

(
α2

ab

)k
, k ∈ Z,

u−
√
s(s− 1)v = (β + 1)k =

(
β2

ab

)k
, k ∈ Z,

which is equivalent to
u = 1

2

[(
α2

ab

)k
+
(
β2

ab

)k]
, k ∈ Z,

v = 2√
∆

[(
α2

ab

)k
−
(
β2

ab

)k]
, k ∈ Z.

Hence

x =
[
−1
2 − 2(s−1)√

∆

] (
α2

ab

)k
+
[
−1
2 + 2(s−1)√

∆

] (
β2

ab

)k
= 1

α

(
α2

ab

)k
+ 1

β

(
β2

ab

)k
= α2k−1+β2k−1

(ab)k

=
l2k−1

a
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and

y =
[
1
2 + 2s√

∆

] (
α2

ab

)k
+
[
1
2 − 2s√

∆

] (
β2

ab

)k
= −β√

∆

(
α2

ab

)k
+ α√

∆

(
β2

ab

)k
= 1√

∆

[
α2k−1−β2k−1

(ab)k−1

]
= q2k−1.

Proceeding in the same way for the “−” sign, we get that all solutions

are (x, y) = ±
(
l2k−1

a , q2k−1

)
.

Conversely, from (12) we have(
b
a

)
l22k−1 −

(
∆
ab

)
q22k−1 = −4 ⇐⇒ ab

(
l2k−1

a

)2
−
[
(ab)2+4ab

ab

]
q22k−1 = −4,

⇐⇒ ab
(
l2k−1

a

)2
− (ab+ 4)q22k−1 = −4,

which means that ±
(
l2k−1

a , q2k−1

)
are solutions of (67). □

Theorem 1. Let n be an integer.

(1) All integer solutions (x, y) of

x2 + absnxy − aby2 = q22n+1 (74)

are ±
(
q2(n−m)+1,

q2m
a

)
, where m ∈ Z.

(2) All integer solutions (x, y) of

x2 −
(
∆

ab

)
q2n+1xy +

(
∆

ab

)
y2 = s2n (75)

are ±
(
l2(n+m)+1

a , q2ma

)
, where m ∈ Z.

Proof.

(1) Assume that

x2 + absnxy − aby2 = q22n+1.

Then

(2x+ absny)
2 − ab(4 + abs2n)y

2 = 4q22n+1.

Using (12), we obtain

(2x+ absny)
2 −∆q22n+1y

2 = 4q22n+1. (76)

We deduce that q2n+1 | (2x+ absny). Thus the equation (76) is
equivalent to

z2 −∆y2 = 4, (77)
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where z = 2x+absny
q2n+1

. Therefore, according to Lemma 1, the solutions

of equation (77) are (z, y) = ± (l2m, tm), m ∈ Z.
For the “ + ” sign we obtain{

z = 2x+absny
q2n+1

= l2m,

y = tm.
⇐⇒

{
2x = l2m q2n+1 − absny,

y = tm.

From (9), we get x = q2(n−m)+1.
Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
q2(n−m)+1,

q2m
a

)
,m ∈ Z.

Conversely, replacing in identity (18) n by (2n+ k+ 1) and m by
(2m− 2n− k − 1) for k ∈ Z, we obtain

q22m−2n−1 +

(
b

a

)
l2n+1q2m−2n−1q2m −

(
b

a

)
q22m = q22n+1.

From (5), we get

q22(n−m)+1 +

(
b

a

)
l2n+1q2(n−m)+1q2m −

(
b

a

)
q22m = q22n+1,

which means that ±
(
q2(n−m)+1,

q2m
a

)
,m ∈ Z, are solutions of (74).

(2) Assume that

x2 −
(
∆

ab

)
q2n+1xy +

(
∆

ab

)
y2 = s2n.

Then[
2x−

(
∆

ab

)
q2n+1y

]2
−
(
∆

ab

)[(
∆

ab

)
q22n+1 − 4

]
y2 = 4s2n.

Using (12), we obtain[
2x−

(
∆

ab

)
q2n+1y

]2
−∆s2ny

2 = 4s2n. (78)

We deduce that sn |
[
2x−

(
∆
ab

)
q2n+1y

]
. Thus the equation (78) is

equivalent to

z2 −∆y2 = 4. (79)

where z =
2x−( ∆

ab)q2n+1y

sn
. Therefore, according to Lemma 1, the

solutions of equation (79) are (z, y) = ±(l2m, tm), m ∈ Z.
For the “ + ” sign we obtain{

z = l2m,

y = tm.
⇐⇒

{
2x = l2msn +

(
∆
ab

)
q2n+1tm,

y = tm.

From (8), we get x =
l2(n+m)+1

a = s2(n+m)+1.
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Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
l2(n+m)+1

a , q2ma

)
,m ∈ Z.

Conversely, replacing in (45) n by (2n+k+1) and m by (2m−k)
for k ∈ Z, we get

l22(n+m)+1 −
(
∆

ab

)
q2ml2(n+m)+1q2n+1 +

(
∆

ab

)
q22m = l22n+1,

which means that ±
(
l2(n+m)+1

a , q2ma

)
,m ∈ Z, are solutions of (75).

□

Theorem 2. Let n be an integer and assume that ab is a square-free
integer.

(1) All integer solutions (x, y) of

x2 − l2nxy + y2 = −(ab)t2n (80)

are ±(q2(n+m)−1, q2m−1) with m ∈ Z, if n ̸= 0 and (x, x) with x ∈ Z, if
n = 0.

(2) All integer solutions (x, y) of

x2 −
(
∆

ab

)
q2n+1xy +

(
∆

ab

)
y2 = −(ab)s2n (81)

are ±(l2(n+m), q2m−1), where m ∈ Z.
(3) All integer solutions (x, y) of

x2 −∆tnxy −∆y2 = −(ab)l22n (82)

are ±(bl2(n+m)−1, q2m−1), where m ∈ Z.
Proof.

(1) Assume that n ̸= 0 and

x2 − l2nxy + y2 = −(ab)t2n.

Then
(2x− l2ny)

2 − (l22n − 4)y2 = −4(ab)t2n.

Using (12), we obtain

(2x− l2ny)
2 −∆t2ny

2 = −4(ab)t2n. (83)

We deduce that tn | (2x−l2ny). Thus, the equation (83) is equivalent
to

z2 −∆y2 = −4(ab), (84)

where z = 2x−l2ny
tn

. Since (ab) is a square-free integer and (ab) | ∆,

then (ab) | z. Therefore, the equation (84) is equivalent to

(ab)w2 −
(
∆

ab

)
y2 = −4, (85)
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where w = z
ab . According to Lemma 3, the solutions of equation (85)

are (w, y) = ± (sm−1, q2m−1), m ∈ Z.
For the “ + ” sign, we obtain{
w = 2x−l2ny

(ab)tn
= sm−1,

y = q2m−1.
⇐⇒

{
2x = (ab)tnsm−1 + l2ny,

y = q2m−1.

From (11), we get x = q2(n+m)−1.
Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
q2(n+m)−1, q2m−1

)
,m ∈ Z.

Conversely, replacing in (22) n by (2n+k) and m by (2m−k− 1)
for k ∈ Z, we obtain

q22(n+m)−1 − l2nq2(n+m)−1q2m−1 + q22m−1 = −
(
b

a

)
q22n,

which means that ±
(
q2(n+m)−1, q2m−1

)
,m ∈ Z, are solutions of (80).

If n = 0, the equation (80) becomes (x− y)2 = 0.
(2) Assume that

x2 −
(
∆

ab

)
q2n+1xy +

(
∆

ab

)
y2 = −(ab)s2n.

Then[
2x−

(
∆

ab

)
q2n+1y

]2
+

[
4

(
∆

ab

)
−
(
∆

ab

)2

q22n+1

]
y2 = −4(ab)s2n.

Using (12), we obtain[
2x−

(
∆

ab

)
q2n+1y

]2
−∆s2ny

2 = −4(ab)s2n. (86)

We deduce that sn |
[
2x−

(
∆
ab

)
q2n+1y

]
. Thus, the equation (86)

gives

z2 −∆y2 = −4(ab), (87)

where z =
2x−( ∆

ab)q2n+1y

sn
. Since (ab) is a square-free integer and

(ab) | ∆, then (ab) | z. Therefore, the equation (87) is equivalent to

(ab)w2 −
(
∆

ab

)
y2 = −4, (88)

where w = z
ab . According to Lemma 3, the solutions of equation (88)

are (w, y) = ± (sm−1, q2m−1), m ∈ Z.
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For the “ + ” sign, we obtain
w =

2x−( ∆
ab)q2n+1y

(ab)sn
,

w = sm−1,

y = q2m−1.

⇐⇒

{
2x = (ab)snsm−1 +

(
∆
ab

)
q2n+1y,

y = q2m−1.

From (8), we get x = l2(n+m).
Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
l2(n+m), q2m−1

)
,m ∈ Z.

Conversely, replacing in (37) n by (2n+k+1) andm by (2m−k−1)
for k ∈ Z, we obtain

l22(n+m) −
(
∆

ab

)
q2n+1l2(n+m)q2m−1 +

(
∆

ab

)
q22m−1 = −

(
b

a

)
l22n+1,

which means that ±
(
l2(n+m), q2m−1

)
,m ∈ Z, are solutions of (81).

(3) Assume that

x2 −∆tnxy −∆y2 = −(ab)l22n.

Then

(2x−∆tny)
2 −

(
∆2t2n + 4∆

)
y2 = −4(ab)l22n.

Using (12), we obtain

(2x−∆tny)
2 −∆l22ny

2 = −4(ab)l22n. (89)

We deduce that l2n | (2x−∆tny). Thus the equation (89) is equiv-
alent to

z2 −∆y2 = −4(ab), (90)

where z = 2x−∆tny
l2n

. Since (ab) is a square-free integer and (ab) | ∆,

then (ab) | z. Therefore, the equation (90) is equivalent to

(ab)w2 −
(
∆

ab

)
y2 = −4, (91)

where w = z
ab . Thus, according to Lemma 3, the solutions of Equa-

tion (91) are (w, y) = ± (sm−1, q2m−1), m ∈ Z.
For the “ + ” sign, we obtain{

w = 2x−∆tny
(ab)l2n

= sm−1,

y = q2m−1.
⇐⇒

{
2x = (ab)l2nsm−1 +∆tny,

y = q2m−1.

From (8), we get x = bl2(n+m)−1.
Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
bl2(n+m)−1, q2m−1

)
,m ∈ Z.
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Conversely, replacing in (41) n by (2n+k) and m by (2m−k− 1)
for k ∈ Z, we obtain

l22(n+m)−1 −
(
∆

ab

)
q2nl2(n+m)−1q2m−1 −

(
∆

b2

)
q22m−1 = −

(a
b

)
l22n,

which means that ±
(
bl2(n+m)−1, q2m−1

)
,m ∈ Z, are solutions of

(82).

□

Theorem 3. Let n be an integer and assume that ab+ 4 is a square-free
integer.

(1) All integer solutions (x, y) of

x2 − (ab)snxy − (ab)y2 =

(
∆

ab

)
q22n+1 (92)

are ±
(
l2(n+m),

l2m−1

a

)
, where m ∈ Z.

(2) All integer solutions (x, y) of

x2 − l2nxy + y2 =

(
∆

ab

)
t2n (93)

are ±
(
l2(n+m)−1

a , l2m−1

a

)
with m ∈ Z, if n ̸= 0 and (x, x) with x ∈ Z, if

n = 0.
Proof.

(1) Assume that

x2 − (ab)snxy − (ab)y2 =

(
∆

ab

)
q22n+1.

Then

[2x− (ab)sny]
2 −

[
(ab)2s2n + 4(ab)

]
y2 = 4

(
∆

ab

)
q22n+1.

Using (12), we obtain

[2x− (ab)sny]
2 −∆q22n+1y

2 = 4

(
∆

ab

)
q22n+1. (94)

We deduce that q2n+1 | [2x− (ab)sny]. Thus, the equation (94) is
equivalent to

z2 −∆y2 = 4(ab+ 4), (95)

where z = 2x−(ab)sny
q2n+1

. Since (ab + 4) is a square-free integer and

(ab + 4) | ∆, we have (ab + 4) | z. Therefore, the equation (95) is
equivalent to

(ab)y2 −
(
∆

ab

)
w2 = −4, (96)
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where w = z
ab+4 . According to Lemma 3, the solutions of equation

(96) are (y, w) = ± (sm−1, q2m−1), m ∈ Z.
For the “ + ” sign, we obtain

y = sm−1,

w = 2x−(ab)sny
(ab+4)q2n+1

,

w = q2m−1.

⇐⇒

{
y = sm−1,

2x =
(
∆
ab

)
q2n+1q2m−1 + (ab)sny.

From (8), we get x = l2(n+m).
Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
l2(n+m),

l2m−1

a

)
,m ∈ Z.

Conversely, replacing in (54) n by (2n+k+1) andm by (2m−k−1)
for k ∈ Z, we obtain

l22(n+m) −
(
b

a

)
l2n+1l2(n+m)l2m−1 −

(
b

a

)
l22m−1 =

(
∆

ab

)
q22n+1,

which means that ±
(
l2(n+m),

l2m−1

a

)
,m ∈ Z, are solutions of (92).

(2) Assume that n ̸= 0 and

x2 − l2nxy + y2 =

(
∆

ab

)
t2n.

Then

(2x− l2ny)
2 −

(
l22n − 4

)
y2 = 4

(
∆

ab

)
t2n.

Using (12), we obtain

(2x− l2ny)
2 −∆t2ny

2 = 4

(
∆

ab

)
t2n. (97)

We deduce that tn | (2x− l2ny). Thus, the equation (97) is equiva-
lent to

z2 −∆y2 = 4(ab+ 4), (98)

where z = 2x−l2ny
tn

. Since (ab + 4) is a square-free and (ab + 4) | ∆,

we have (ab+ 4) | z. Therefore, the equation (98) is equivalent to

(ab)y2 −
(
∆

ab

)
w2 = −4, (99)

where w = z
ab+4 . Thus, according to Lemma 3, the solutions of

equation (99) are (y, w) = ± (sm−1, q2m−1), m ∈ Z.
For the “ + ” sign, we obtain{

y = sm−1,

w = 2x−l2ny
(ab+4)tn

= q2m−1.
⇐⇒

{
y = sm−1,

2x =
(
∆
ab

)
tnq2m−1 + l2ny.
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From (8), we get x =
l2(n+m)−1

a .
Proceeding in the same way for the “ − ” sign, we find that all

solutions are (x, y) = ±
(
l2(n+m)−1

a , l2m−1

a

)
,m ∈ Z.

Conversely, replacing in (58) n by (2n+k) and m by (2m−k− 1)
for k ∈ Z, we obtain

l22(n+m)−1 − l2nl2(n+m)−1l2m−1 + l22m−1 =

(
∆

ab

)
q22n,

which means that ±
(
l2(n+m)−1

a , l2m−1

a

)
,m ∈ Z, are solutions of (93).

If n = 0, the equation (93) becomes (x− y)2 = 0.

□

4. Concluding Remarks

Propositions 1, 2 and 3 give rise to twelve identities, these identities sug-
gest us to study twelve Diophantine equations, but only seven of them are
studied in Theorems 1, 2 and 3. The remaining ones rise from the identities
(13),(27), (32), (49), (62) and are

x2 − (ab)snxy − (ab)y2 = q22n+1, (100)

−(ab)x2 + (ab)snxy + y2 =

(
∆

ab

)
q22n+1, (101)

x2 − l2nxy + y2 = t2n, (102)

x2 −∆tnxy −∆y2 = l22n, (103)

x2 − l2nxy + y2 = −∆t2n. (104)

Equation (100) follows from equation (74) by replacing x by −x and equation
(101) follows from equation (92) by replacing (x, y) by (−y, x).

Thanks to Binet’s formulas, we have tn = un and l2n = vn, where (un)n
and (vn)n are defined respectively by un = (ab+ 2)un−1 − un−2 with initial
values u0 = 0, u1 = 1 and vn = (ab + 2)vn−1 − vn−2 with initial values
v0 = 2, v1 = ab + 2. It turns out that the equations (102), (103) and (104)
are solved in [6].
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