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Central part interpolation schemes for a class of
fractional initial value problems

Margus Lillemäe, Arvet Pedas, and Mikk Vikerpuur

Abstract. We consider an initial value problem for linear fractional
integro-differential equations with weakly singular kernels. Using an
integral equation reformulation of the underlying problem, a collocation
method based on the central part interpolation by continuous piecewise
polynomials on the uniform grid is constructed and analysed. Optimal
convergence order of the proposed method is established and confirmed
by numerical experiments.

1. Introduction

Differential equations with derivatives of fractional (non-integer) order
have proved to be valuable tools in the modelling of many real-life pro-
cesses, especially when modelling phenomena with memory properties [21].
Therefore theoretical and numerical analysis of equations involving fractional
differential operators has become a very important area of research for many
scientists. First of all, we refer here to the works [1, 5, 8, 19, 20, 24]. Some
recent results concerning the numerical solution of fractional differential and
integro-differential equations can be found in [4, 6, 7, 9, 16, 18, 26].

In the present paper we introduce and justify a high-order method for the
numerical solution of a class of initial value problems for fractional integro-
differential equations involving a Caputo fractional differential operator of
order α ∈ (0, 1). First, the problem is reformulated as a weakly singular
Volterra integral equation of the second kind. Then a smoothing change of
variables is used to improve the boundary behaviour of the exact solution of
the underlying problem. After that, a collocation method based on the cen-
tral part interpolation by continuous piecewise polynomials on the uniform
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grid is constructed and analysed. The central part interpolation approach
was first introduced in [12] for solving Fredholm integral equations of the
second kind. The obtained numerical schemes show accuracy and numerical
stability advantages compared to standard piecewise polynomial collocation
methods, including collocation at Chebyshev knots [13]. In the present paper
we will use some ideas and results of [12, 13].

Our paper is organized as follows. In Section 2 the exact problem setting
is given. In Section 3 a result about the smoothness of the exact solution
of the underlying problem is presented. Later this result will play a key
role in the convergence analysis of the proposed method. In Section 4 a
smoothing transformation is introduced and some of its properties are given.
In Sections 5 and 6 a description of central part interpolation by polynomials
and piecewise polynomials is presented. In Section 7 the attainable order
of the proposed approach is studied and in Section 8 its matrix form is
presented. Finally, in Section 9 the theoretical results are tested by some
numerical experiments.

2. Problem setting

By N we denote the set of all positive integers {1, 2, . . . }, by N0 we define
the set of all non-negative integers {0, 1, . . . }, by Z the set of all integers
and by R the set of all real numbers (−∞,∞). By L∞(0, 1) we denote the
Banach space of measurable functions u : [0, 1] → R such that

∥u∥L∞(0,1) = inf
meas(Ω)=0

sup
x∈(0,1)\Ω

|u(x)| < ∞,

where “meas(Ω) = 0” means Ω ⊂ (0, 1) is a measurable set with measure
zero. By Cm[0, 1] we denote the set of m times (m ∈ N0, for m = 0 we set
C0[0, 1] = C[0, 1]) continuous functions u : [0, 1] → R. By C[0, 1] we denote
the Banach space of continous functions u : [0, 1] → R with the norm

∥u∥C[0,1] = ∥u∥∞ = max
0≤x≤1

|u(x)|.

We consider the following fractional initial value problem:

(Dα
Capu)(x) + r(x)u(x) +

∫ x

0
(x− y)−κK(x, y)u(y)dy = f(x), 0 ≤ x ≤ 1,

(1)

u(0) = u0. (2)

Here 0 < α < 1, 0 ≤ κ < 1, u0 ∈ R, r, f ∈ C[0, 1], K ∈ C(∆),

∆ := {(x, y) : 0 ≤ y ≤ x ≤ 1} (3)

and Dα
Capu is the α order Caputo fractional derivative of the unknown

function u = u(x). The Caputo derivative Dδ
Capu of order δ ∈ (0, 1) for
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u ∈ C[0, 1] is defined by formula (see, e.g., [5])

(Dδ
Capu)(x) := (Dδ

RL[u− u(0)])(x), 0 < x ≤ 1.

Here Dδ
RLu is the Riemann–Liouville fractional derivative of u :

(Dδ
RLu)(x) :=

d

dx
(J1−δu)(x), 0 < x ≤ 1, δ ∈ (0, 1),

with Jδ, the Riemann–Liouville integral operator, defined by

(Jδu)(x) :=
1

Γ(δ)

∫ x

0
(x− y)δ−1 u(y) dy, x > 0, δ > 0; J0 := I, (4)

where I is the identity mapping and

Γ(δ) =

∫ ∞

0
yδ−1e−ydy (δ > 0)

is the Euler gamma function. In [24], Vainikko has derived necessary and suf-
ficient conditions for the existence of continuous functions Dδ

RLu and Dδ
Capu.

In the following we are interested in solutions u ∈ C[0, 1] of the problem (1) –
(2) such that Dα

Capu ∈ C[0, 1], 0 < α < 1.

It is well known (see, e.g., [3]) that Jδ (δ > 0) is linear, bounded and
compact as an operator from L∞(0, 1) into C[0, 1], and we have, for any
u ∈ L∞(0, 1), that (see, e.g., [8])

Jδu ∈ C[0, 1], (Jδu)(0) = 0, δ > 0, (5)

Dδ
RLJ

ηu = Dδ
CapJ

ηu = Jη−δu, 0 < δ ≤ η.

Using an integral equation reformulation of problem (1) – (2), we first
study the existence, uniqueness and regularity of the exact solution u and
its Caputo derivative Dα

Capu. We observe that (usual) derivatives of u may

be unbounded near the left endpoint of the interval of integration [0, 1], even
if r, f and K are infinitely differentiable on [0, 1] and ∆, respectively (see
Theorem 1 below). Due to the lack of regularity of the exact solution, spline
collocation methods on uniform grids for solving the underlying integral
equation will show poor convergence behaviour. A better convergence can be
established by using polynomial splines on special non-uniform grids, where
the grid points are more densely clustered near the left endpoint of [0, 1],
see, e.g., [2, 10]; in the case of fractional differential equations we refer to
[11, 14, 15, 25]. A problem which may arise with strongly non-uniform grids
is that they can create significant round-off errors in the calculations and
lead to numerical instability. It is our aim, in the present paper, to construct
and analyze a high order numerical method for problem (1) – (2) which does
not need strongly graded grids. A suitable smoothing transformation will
be introduced so that central part interpolation together with collocation
techniques can be applied to the transformed integral equation on a uniform
grid. We will study the attainable order of the proposed algorithm in a
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situation where the higher order (usual) derivatives of r(x) and f(x) may be
unbounded at x = 0.

3. Existence, uniqueness and smoothness of the solution

In what follows we use an integral equation reformulation of (1) – (2).
Let u ∈ C[0, 1] be an arbitrary function such that Dα

Capu ∈ C[0, 1], where

0 < α < 1. Denote z := Dα
Capu. Then (cf. [5])

u(x) = (Jαz)(x) + c, (6)

where Jα is defined in (4) and c is a constant. Due to (5) a function of the
form (6) satisfies the condition (2) if and only if

c = u0,

that is, if u(x) is determined by formula

u(x) = (Jαz)(x) + u0, 0 ≤ x ≤ 1. (7)

Let now u ∈ C[0, 1] be a solution of problem (1) – (2) such that z = Dα
Capu ∈

C[0, 1]. From (1) it follows that

z(x) = f(x)− r(x)u(x)−
∫ x

0
(x− y)−κK(x, y)u(y)dy (8)

and by substituting (8) into (7) we get

u(x) = (Jα[f − r u])(x)

− 1

Γ(α)

∫ x

0
(x− y)α−1

∫ y

0
(y − τ)−κK(y, τ)u(τ)dτdy + u0.

By changing the order of integration we can write∫ x

0
(x− y)α−1

∫ y

0
(y − τ)−κK(y, τ)u(τ)dτdy

=

∫ x

0
u(y)

∫ x

y
(x− τ)α−1(τ − y)−κK(τ, y)dτdy.

Using a change of variables τ = (x− y)σ + y we obtain∫ x

y
(x− τ)α−1(τ − y)−κK(τ, y)dτ

= (x− y)α−κ

∫ 1

0
σ−κ(1− σ)α−1K((x− y)σ + y, y)dσ.

Therefore∫ x

0
(x− y)α−1

∫ y

0
(y − τ)−κK(y, τ)u(τ)dτdy =

∫ x

0
(x− y)α−κL(x, y)u(y)dy,
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where

L(x, y) =

∫ 1

0
σ−κ(1− σ)α−1K((x− y)σ + y, y)dσ, 0 ≤ y ≤ x ≤ 1. (9)

Thus u, the solution of (1) – (2), is also a solution of an integral equation in
the form

u = Tu+ g, (10)

where, for 0 ≤ x ≤ 1, we have

(Tu)(x) = − 1

Γ(α)

∫ x

0

[
(x− y)α−1r(y) + (x− y)α−κL(x, y)

]
u(y)dy (11)

and

g(x) =
1

Γ(α)

∫ x

0
(x− y)α−1f(y)dy + u0. (12)

Conversely, it is easy to see that if u ∈ C[0, 1] is a solution to (10), then
u is also a solution to (1) – (2) such that Dα

Capu ∈ C[0, 1]. In this sense

equation (10) is equivalent to problem (1) – (2).
In order to study the existence and regularity properties of the exact

solution of problem (1) – (2) we first establish some auxiliary results.
For given q ∈ N and ν ∈ R, ν < 1, by Cq,ν(0, 1] we denote the set of

continuous functions u : [0, 1] → R which are q times continuously differen-
tiable in (0, 1] and such that, for all x ∈ (0, 1] and i = 1, . . . , q, the following
estimates hold (cf. [3, 23]):

∣∣u(i)(x)∣∣ ≤ c

 1 if i < 1− ν ,
1 + | log x| if i = 1− ν ,
x1−ν−i if i > 1− ν .

Here c = c(u) is a positive constant. In other words, u ∈ Cq,ν(0, 1] if
u ∈ C[0, 1] ∩ Cq(0, 1] and

|u|q,ν :=

q∑
i=1

sup
0<x≤1

ωi−1+ν(x)
∣∣∣u(i)(x)∣∣∣ < ∞,

where, for x > 0, λ ∈ R,

ωλ(x) :=


1 if λ < 0,

1
1+| log x| if λ = 0,

xλ if λ > 0.

Equipped with the norm ∥u∥Cq,ν(0,1] := ∥u∥∞ + |u|q,ν , the set Cq,ν(0, 1]
becomes a Banach space. Note that

Cq[0, 1] ⊂ Cq,ν(0, 1] ⊂ Cm,µ(0, 1] ⊂ C[0, 1], q ≥ m ≥ 1, ν ≤ µ < 1.

In particular, a function of the form u(x) = g1(x)x
µ + g2(x) is included in

Cq,ν(0, 1] if µ ≥ 1− ν > 0 and gj ∈ Cq[0, 1] , j = 1, 2.
Next two lemmas follow from the corresponding results of [3].
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Lemma 1. If v1, v2 ∈ Cq,ν(0, 1], q ∈ N, ν ∈ R, ν < 1, then v1v2 ∈
Cq,ν(0, 1], and

∥v1v2∥Cq,ν(0,1] ≤ c∥v1∥Cq,ν(0,1]∥v2∥Cq,ν(0,1],

with a constant c which is independent of v1 and v2.

Lemma 2. Let η ∈ R, η < 1 and let K ∈ C(∆) with ∆ given by (3).
Then operator S defined by

(Sv)(x) =

∫ x

0
(x− y)−ηK(x, y)v(y)dy, x ∈ [0, 1],

is compact as an operator from L∞(0, 1) into C[0, 1]. If, in addition, K ∈
Cq(∆), q ∈ N, then S is compact as an operator from Cq,ν(0, 1] into Cq,ν(0, 1],
where η ≤ ν < 1.

The existence, uniqueness and regularity of the solution to (1) – (2) (of
the solution of equation (10)) can be characterized by the following theorem
(cf. [15]).

Theorem 1. Assume that 0 < α < 1, 0 ≤ κ < 1, r, f ∈ C[0, 1] and
K ∈ C(∆). Then problem (1) – (2) possesses a unique solution u ∈ C[0, 1]
such that Dα

Capu ∈ C[0, 1].

Moreover, if K ∈ Cq(∆), r, f ∈ Cq,µ(0, 1], q ∈ N, µ ∈ R, µ < 1, then u
and its derivative Dα

Capu belong to Cq,ν(0, 1], where

ν := max{1− α, µ, κ}. (13)

Proof. In order to prove that problem (1) – (2) possesses a unique solution
u ∈ C[0, 1], we show that equation (10) is uniquely solvable in C[0, 1]. We
first note that due to f ∈ C[0, 1] and Lemma 2 the forcing function g of
equation u = Tu+ g (see (10) and (12)) belongs to C[0, 1]. Further, due to
(11) operator T can be rewritten in the form

T = −JαR − Tα,κ,L, (14)

with R and Tα,κ,L defined by the following formulas:

(Rv)(x) = r(x)v(x), x ∈ [0, 1],

(Tα,κ,Lv)(x) =
1

Γ(α)

∫ x

0
(x− y)α−κL(x, y)v(y)dy, x ∈ [0, 1],

where the function L is given by the formula (9). Clearly, R is bounded
as an operator from C[0, 1] into C[0, 1]. It follows from Lemma 2 that Jα

and Tα,κ,L are compact as operators from C[0, 1] into C[0, 1]. Therefore T
is compact as an operator from C[0, 1] into C[0, 1]. Since the homogeneous
equation u = Tu has in C[0, 1] only the trivial solution u = 0, it follows from
the Fredholm alternative theorem that equation (10) has in C[0, 1] a unique
solution u. From this we obtain by equation (1) that Dα

Capu ∈ C[0, 1].
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Assume now that K ∈ Cq(∆), r, f ∈ Cq,µ(0, 1], q ∈ N, µ ∈ R, µ < 1. Let
us prove that the solution u then belongs to Cq,ν(0, 1] with ν given by the
formula (13). With the help of Lemma 2 we observe that g = Jαf + u0,
the forcing function of equation u = Tu + g, belongs to Cq,ν(0, 1], since
µ ≤ ν < 1 and hence f ∈ Cq,µ(0, 1] ⊂ Cq,ν(0, 1]. Further, we have also
that r ∈ Cq,µ(0, 1] ⊂ Cq,ν(0, 1]. Therefore, by Lemma 1 we obtain that R is
bounded as an operator from Cq,ν(0, 1] into Cq,ν(0, 1]. Since 1 − α ≤ ν, it
follows from Lemma 2 that Jα is compact as an operator from Cq,ν(0, 1] into
Cq,ν(0, 1]. Thus, JαR is linear and compact as an operator from Cq,ν(0, 1]
into Cq,ν(0, 1]. Moreover, since κ−α < 1−α ≤ ν, it follows from the defini-
tion of operator Tα,κ,L that it is compact in Cq,ν(0, 1] (see Lemma 2). There-
fore T defined by (14) is linear and compact as an operator from Cq,ν(0, 1]
into Cq,ν(0, 1] and it follows from the Fredholm alternative theorem that
equation u = Tu+ g has a unique solution u ∈ Cq,ν(0, 1].

Finally, since u, r, f ∈ Cq,ν(0, 1] and K ∈ Cq(∆), we obtain with the help
of equation (1) and Lemma 2 that Dα

Capu ∈ Cq,ν(0, 1]. □

We note that if K = 0 in Theorem 1, we actually have

ν = max{1− α, µ}.

4. Smoothing transformation

The possible boundary singularities of the solution u ∈ Cq,ν(0, 1] of equa-
tion (10) are generic, they occur for most free terms g even if g has no
boundary singularities. To suppress the singularities of the solution we per-
form in equation (10) a change of variables using a suitable transformation
φ. More precisely, let φ : [0, 1] → [0, 1] be defined by the formula

φ(t) =
1

cp

t∫
0

σp−1(1− σ)p−1dσ, 0 ≤ t ≤ 1, p ∈ N,

cp =

1∫
0

σp−1(1− σ)p−1dσ =
[(p− 1)!]2

(2p− 1)!
.

(15)

We can see that φ is a polynomial,

φ(t) =
1

cp
tp

p−1∑
k=0

(−1)k
1

k + p

(
p− 1
k

)
tk.

Moreover, we see that φ(0) = 0, φ(1) = 1 and φ′(t) > 0 for 0 < t < 1.
Thus φ is strictly increasing and there exists a unique continuous inverse
φ−1 : [0, 1] → [0, 1].

If p = 1, then φ(t) = t for 0 ≤ t ≤ 1. We are interested in transformations
(15) with p > 1 since then the transformation (15) possesses a smoothing
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property for functions u(x) with singularities of derivatives of u(x) at x = 0.
Namely, using some ideas and results of [17, 22] we can prove Lemma 3
below.

Lemma 3. Let q ∈ N and ν ∈ R, ν < 1. Let u ∈ Cq,ν (0, 1] and v (t) =
u (φ (t)), t ∈ [0, 1], where φ is defined by (15) with the parameter p ∈ N
satisfying

p > q for ν ≤ 0 ,
p > q

1−ν for 0 < ν < 1.
(16)

Then v ∈ Cq[0, 1] and

v(j)(0) = v(j)(1) = 0, j = 1, . . . , q.

5. Central part interpolation by polynomials

Given an interval [a, b] (a < b) and m ∈ N, introduce the uniform grid
consisting of m points

xi = a+

(
i− 1

2

)
h, i = 1, . . . ,m, h =

b− a

m
. (17)

Denote by Pm−1 the set of polynomials of degree not exceeding m − 1
and by Πm the Lagrange interpolation projection operator assigning to any
g ∈ C [a, b] the polynomial Πmg ∈ Pm−1 that interpolates g at points (17):

(Πmg)(x) =

m∑
j=1

g(xj)

m∏
k=1
k ̸=j

x− xk
xj − xk

, a ≤ x ≤ b, m ≥ 2,

(Π1g)(x) = g(x1), a ≤ x ≤ b.

The proof of the following lemma is given in [13], see also [12].

Lemma 4. In the case of interpolation knots (17) with m ∈ N, for g ∈
Cm [a, b] it holds

max
a≤x≤b

|g (x)− (Πmg) (x)| ≤ θmhm max
a≤x≤b

∣∣∣g(m) (x)
∣∣∣ , (18)

with

θm =
(2m)!

22m (m!)2
∼= (πm)−

1
2 ,

where θm ∼= ϵm means that θm/ϵm → 1 as m → ∞.
Further, for m = 2k, k ≥ 1, the non-improvable estimate

max
xk≤x≤xk+1

|g (x)− (Πmg) (x)| ≤ ϑmhm max
a≤x≤b

∣∣∣g(m) (x)
∣∣∣ (19)

holds with

ϑm = 2−2m m!

((m/2)!)2
∼=

√
2/π m− 1

2 2−m, (20)
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whereas for m = 2k + 1, k ≥ 1, the non-improvable estimate

max
xk≤x≤xk+2

|g (x)− (Πmg) (x)| ≤ ϑmhm max
a≤x≤b

∣∣∣g(m) (x)
∣∣∣ (21)

holds with

ϑm =
2
√
3

9

(k!)2

(2k + 1)!
∼=

2
√
6π

9
m− 1

2 2−m. (22)

Comparing estimates (18) – (22) we observe that in the underlying central
parts of [a, b], the estimates for the error g − Πmg are approximately 2m

times more precise than on the whole interval [a, b].

6. Central part interpolation by piecewise polynomials

Introduce in R the uniform grid

{jh : j ∈ Z} , h =
1

n
, n ∈ N.

Let m ∈ N, m ≥ 2 be fixed. Given a function g ∈ C [−δ, 1 + δ], δ >
0, we define a piecewise polynomial interpolant Πh,mg ∈ C [0, 1] for h =
1
n ≤ 2δ

m as follows. On every subinterval [jh, (j + 1)h], 0 ≤ j ≤ n − 1,
the function Πh,mg is defined independently from other subintervals as a

polynomial Π
[j]
h,mg ∈ Pm−1 of degree ≤ m− 1 by the conditions

Π
[j]
h,mg (lh) = g (lh) , l = j − m

2
+ 1, . . . , j +

m

2
if m is even,

Π
[j]
h,mg (lh) = g (lh) , l = j − m− 1

2
, . . . , j +

m− 1

2
if m is odd.

A unified writing form of these interpolation conditions is

Π
[j]
h,mg (lh) = g (lh) , for l ∈ Z such that l − j ∈ Zm, (23)

where

Zm =
{
k ∈ Z : −m

2
< k ≤ m

2

}
.

For an “interior” knot jh, 1 ≤ j ≤ n−1, interpolation conditions (23) contain

the condition
(
Π

[j−1]
h,m g

)
(jh) = g (jh) as well as the condition

(
Π

[j]
h,mg

)
(jh)

= g (jh) , thus Πh,mg is uniquely defined at interior knots and Πh,mg is
continuous on [0, 1]. The one side derivatives of the interpolant Πh,mg at the
interior knots may be different.

Introduce the Lagrange fundamental polynomials Lk,m ∈ Pm−1, k ∈ Zm,
satisfying Lk,m (l) = δk,l for l ∈ Zm, where δk,l is the Kronecker symbol,
δk,l = 0 for k ̸= l and δk,k = 1. An explicit formula for Lk,m is given by

Lk,m (t) =
∏

l∈Zm\{k}

t− l

k − l
, k ∈ Zm. (24)
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We claim for 0 ≤ j ≤ n− 1 that(
Π

[j]
h,mg

)
(t) =

∑
k∈Zm

g ((j + k)h)Lk,m (nt− j) , t ∈ [jh, (j + 1)h]. (25)

Indeed, Π
[j]
h,mg defined by (25) is really a polynomial of degree ≤ m− 1 and

it satisfies interpolation conditions (23): for l with l− j ∈ Zm, it holds that(
Π

[j]
h,mg

)
(lh) =

∑
k∈Zm

g ((j + k)h)Lk,m (l − j)

=
∑
k∈Zm

g ((j + k)h) δk,l−j = g ((j + (l − j))h) = g (lh) .

For m = 2, the interpolant Πh,2g is the usual piecewise linear function
joining for 0 ≤ j ≤ n− 1 the pair of points

(jh, g (jh)) ∈ R2 and ((j + 1)h, g ((j + 1)h)) ∈ R2

by a straight line and Πh,2g does not use the values of g outside [0, 1].
For m ≥ 3, Πh,mg uses values of g outside of [0, 1]. For g ∈ C [0, 1], Πh,mg

obtains a sense after an extension of g onto [−δ, 1 + δ] with δ ≥ m
2 h. In our

work we will consider the functions g ∈ Cm [0, 1] that satisfy the boundary
conditions (recall Lemma 3)

g(j) (0) = g(j) (1) = 0, j = 1, . . . ,m.

Then the simplest extension operator

Eδ : C [0, 1] → C [−δ, 1 + δ] , (Eδg) (t) =

g (0) for − δ ≤ t ≤ 0
g (t) for 0 ≤ t ≤ 1
g (1) for 1 ≤ t ≤ 1 + δ


maintains the smoothness of g. Therefore, we can define an operator Ph,m :
C [0, 1] → C [0, 1], m ≥ 2, as follows:

Ph,m := Πh,mEδ. (26)

We see that Ph,m is well defined and P 2
h,m = Ph,m, i.e., Ph,m is a projector

in C [0, 1].
For wh ∈ R (Ph,m) (the range of Ph,m) we have wh = Ph,mwh = Πh,mEδwh

and due to (25) we get for t ∈ [jh, (j + 1)h] (j = 0, . . . , n− 1) that

wh(t) =
∑
k∈Zm

(Eδwh)((j + k)h)Lk,m(nt− j), (27)

where

(Eδwh)(ih) =

 wh(ih) for i = 0, . . . , n
wh(0) for i < 0
wh(1) for i > n

 .

Thus wh ∈ R (Ph,m) is uniquely determined on [0, 1] by its knot values
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wh (ih), i = 0, . . . , n. We conclude that dimR (Ph,m) = n + 1. It is also
clear that for a wh ∈ R (Ph,m) we have wh = 0 if and only if wh (ih) = 0,
i = 0, . . . , n.

For g ∈ C [−δ, 1 + δ], the interpolant Πh,mg is closely related to the cen-
tral part interpolation of g on the uniform grid treated in Section 5. On

[jh, (j + 1)h], the interpolant Πh,mg = Π
[j]
h,mg coincides with the polynomial

interpolant Πmg constructed for g on the interval [aj , bj ] where

aj =

(
j − m− 1

2

)
h, bj =

(
j +

m+ 1

2

)
h (in the case of even m) ,

aj =
(
j − m

2

)
h, bj =

(
j +

m

2

)
h (in the case of odd m) .

Moreover, [jh, (j + 1)h] is contained in the central part of [aj , bj ] on which
the interpolation error can be estimated by (19) in the case of even m and
by (21) in the case of odd m. It follows from [13] that we have the following
results.

Lemma 5. Let m ∈ N,m ≥ 2, h = 1
n , n ∈ N. Let the operator Ph,m be

defined by the formula (26). Then we have for any g ∈ C [0, 1] that

∥g − Ph,mg∥∞ → 0 as n → ∞.

Moreover, for g ∈ Cm [0, 1], g(j)(0) = g(j)(1) = 0, j = 1, . . . ,m, we have

∥g − Ph,mg∥∞ ≤ ϑmhm max
0≤t≤1

∣∣∣g(m) (t)
∣∣∣ , (28)

where ϑm is defined by (20) for even m and by (22) for odd m.

7. Collocation method based on the central part
interpolation

Let E be a Banach space. In what follows by L(E) = L(E,E) we denote
the Banach space of linear bounded operators A : E → E with the norm

∥A∥L(E) = sup{∥Ax∥E : x ∈ E, ∥x∥E ≤ 1}.
Let p ∈ N and let φ : [0, 1] → [0, 1] be defined by the formula (15). After

a change of variables

x = φ(t), y = φ(s), 0 ≤ t ≤ 1, 0 ≤ s ≤ 1,

equation (10) takes the form

v(t) =

t∫
0

kφ(t, s)v(s)ds+ gφ(t), 0 ≤ t ≤ 1, (29)

with
gφ(t) = g(φ(t)), 0 ≤ t ≤ 1,
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kφ(t, s) = − 1

Γ(α)

[
(φ(t)− φ(s))α−1r(φ(s))

+ (φ(t)− φ(s))α−κL(φ(t), φ(s))
]
φ′(s),

where 0 ≤ s < t ≤ 1 and L is given by the formula (9). Since f ∈ C[0, 1], it
follows from (12) and Lemma 2 that gφ ∈ C[0, 1]. We rewrite equation (29)
in the form

v = Tφv + gφ,

where the underlying Volterra integral operator Tφ is defined by

(Tφv)(t) =

∫ t

0
kφ(t, s)v(s)ds, 0 ≤ t ≤ 1.

Observe that under the stated assumptions on φ, r,K, α and κ the kernel
kφ(t, s) is a continuous function for 0 ≤ s < t ≤ 1. Moreover, we have

|kφ(t, s)| ≤ c (t− s)α−1, 0 ≤ s < t ≤ 1,

where c is a positive constant. Therefore Tφ ∈ L(C[0, 1]) is a compact
Volterra integral operator and thus the homogeneous equation

v = Tφv

corresponding to equation (29) has in C[0, 1] only the trivial solution v = 0,
implying that equation (29) has in C[0, 1] a unique solution v ∈ C[0, 1].

The solutions of (10) (of (1)-(2)) and (29) are related by the equalities

v(t) = u(φ(t)), u(x) = v(φ−1(x)). (30)

Using the interpolation projector Ph,m defined in (26), we approximate
equation (29) by equation

vh = Ph,mTφvh + Ph,mgφ. (31)

This is the operator form of our method for finding approximate solutions
to equation (29). The matrix form of (31) is given in Section 8.

The approximation uh for u, the exact solution of equation (10) (of prob-
lem (1) – (2)), is defined by the formula (see (30))

uh(x) := vh(φ
−1(x)), 0 ≤ x ≤ 1. (32)

Theorem 2. (i) Assume that 0 < α < 1, 0 ≤ κ < 1, K ∈ C(∆),
r, f ∈ C[0, 1]. Let the smoothing transformation φ : [0, 1] → [0, 1] be defined
by (15) and let m ∈ N, m ≥ 2. Then there exists an n0 ∈ N such that for
n ≥ n0 the collocation equation (31) has a unique solution vh ∈ C[0, 1] such
that

∥u− uh∥∞ = ∥v − vh∥∞ → 0 for n → ∞, (33)

where u ∈ C[0, 1] is the solution of (10) (of problem (1) – (2)), v(t) = u(φ(t))
(0 ≤ t ≤ 1) is the solution of (29) and uh ∈ C[0, 1] is defined by the formula
(32).
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(ii) In addition to (i), let K ∈ Cm(∆), r, f ∈ Cm,µ(0, 1], m ≥ 2, µ ∈ R,
µ < 1 and let the parameter p ∈ N of the smoothing transformation φ :
[0, 1] → [0, 1] defined by (15) satisfy (16) with q = m and ν defined by (13).
Then the following error estimate holds:

∥u− uh∥∞ = ∥v − vh∥∞ ≤ c ϑm hm∥v(m)∥∞, h =
1

n
, n ≥ n0. (34)

Here c is defined by the formula (36) below, and ϑm is defined by (20) for
even m and by (22) for odd m.

Proof. Since Tφ ∈ L(C[0, 1]) is compact and the homogeneous equation
v = Tφv has in C[0, 1] only the trivial solution v = 0, the bounded inverse
(I − Tφ)

−1 : C[0, 1] → C[0, 1] exists by the Fredholm alternative (here I
is the identity mapping in C[0, 1]). The compactness of Tφ together with
the pointwise convergence of Ph,m to I in C[0, 1] (see Lemma 5) implies the
following norm convergence:

∥Ph,mTφ − Tφ∥L(C[0,1]) → 0 as n → ∞ (as h =
1

n
→ 0).

We pick an n0 ∈ N such that

δn0 := sup
n∈N,n≥n0

∥Ph,mTφ − Tφ∥L(C[0,1]) <
1

∥(I − Tφ)−1∥L(C[0,1])
.

It follows from this that the inverse[
I + (I − Tφ)

−1(Tφ − Ph,mTφ)
]−1

: C[0, 1] → C[0, 1]

exists and is uniformly bounded for n ≥ n0:

∥[I + (I − Tφ)
−1(Tφ − Ph,mTφ)]

−1∥L(C[0,1]) ≤
1

1− δn0∥(I − Tφ)−1∥L(C[0,1])
.

Further, we have

I − Ph,mTφ = (I − Tφ)
[
I + (I − Tφ)

−1(Tφ − Ph,mTφ)
]

and therefore we get for n ≥ n0 that the operators I −Ph,mTφ are invertible
in C[0, 1] and the norms of (I − Ph,mTφ)

−1 are uniformly bounded:

∥(I − Ph,mTφ)
−1∥L(C[0,1]) ≤

∥(I − Tφ)
−1∥L(C[0,1])

1− δn0 ∥(I − Tφ)−1∥L(C[0,1])
.

This proves the unique solvability of the collocation equation (31) for n ≥ n0:

vh = (I − Ph,mTφ)
−1Ph,mgφ, n ≥ n0.

Let v and vh be the solutions of (29) and (31), respectively. Then

(I − Ph,mTφ)(v − vh) = v − Ph,mTφv − Ph,mgφ = v − Ph,mv,

v − vh = (I − Ph,mTφ)
−1(v − Ph,mv), n ≥ n0.
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Thus we can write

∥u− uh∥∞ = ∥v − vh∥∞ ≤ c ∥v − Ph,mv∥∞, h =
1

n
, n ≥ n0, (35)

where

c :=
∥(I − Tφ)

−1∥L(C[0,1])

1− δn0 ∥(I − Tφ)−1∥L(C[0,1])
. (36)

Due to Lemma 5 the convergence (33) now follows from (35).
In the case of (ii) it follows from Theorem 1 that the solution u of (10)

(of (1) – (2)) belongs to Cm,ν(0, 1]; by Lemma 3 we have for v(t) = u(φ(t))

that v ∈ Cm[0, 1] and v(j)(0) = v(j)(1) = 0, j = 1, . . . ,m; by Lemma 5 (see

(28)) we obtain that ∥v − Ph,mv∥∞ ≤ ϑmhm∥v(m)∥∞. This together with
(35) yields (34). □

8. Matrix form of the method (31)

The solution vh of equation (31) belongs to R(Ph,m), so the knot values
vh(ih) (i = 0, . . . , n) determine vh uniquely. Equation (31) is equivalent to
a system of linear algebraic equations with respect to vh(ih), i = 0, . . . , n,
and our task is to write down this system.

For wh ∈ R(Ph,m) we have wh = 0 if and only if wh(ih) = 0, i = 0, . . . , n.
Since (Ph,mwh)(ih) = wh(ih), i = 0, . . . , n, equation (31) is equivalent to
the conditions

vh(ih) = (Tφvh)(ih) + gφ(ih), i = 0, . . . , n,

i.e. vh ∈ R(Ph,m) satisfies equation (31) (equation (29)) at the knots ih, i =
0, . . . , n. Clearly, vh(0) = gφ(0). Using for vh the representation (27) we
obtain for 1 ≤ i ≤ n that

(Tφvh)(ih) =

ih∫
0

kφ(ih, s)vh(s)ds =

i−1∑
j=0

(j+1)h∫
jh

kφ(ih, s)vh(s)ds

=

i−1∑
j=0

∑
k∈Zm

(j+1)h∫
jh

kφ(ih, s)Lk,m(ns− j)ds(Eδvh)((j + k)h)

=

i−1∑
j=0

∑
k∈Zm

αi,j,k ·

 vh(0) for j + k ≤ 0
vh((j + k)h) for 1 ≤ j + k ≤ n− 1

vh(1) for j + k ≥ n

 .

Here

αi,j,k =

(j+1)h∫
jh

kφ(ih, s)Lk,m(ns− j)ds, i = 1, . . . , n, j = 0, . . . , i− 1, k ∈ Zm.
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We denote

bi,l =


∑

k∈Zm

∑
{j:0≤j≤i−1,j+k≤0} αi,j,k, for l = 0∑

k∈Zm

∑
{j:0≤j≤i−1,j+k=l} αi,j,k, for 1 ≤ l ≤ n− 1∑

k∈Zm

∑
{j:0≤j≤i−1,j+k≥n} αi,j,k, for l = n


for i = 1, . . . , n, l = 0, . . . , n, and

b0,l = 0, for l = 0, . . . , n.

Thus,

(Tφvh)(ih) =
n∑

l=0

bi,lvh(lh), i = 0, . . . , n.

We see that the matrix form for finding vh by method (31) is equivalent to
finding the solution to the following linear algebraic system:

vh(ih) =

n∑
l=0

bi,lvh(lh) + gφ(ih), i = 0, . . . , n. (37)

Having determined vh(ih) (i = 0, . . . , n) by solving the system (37), the
collocation solution vh(t) at any intermediate point t ∈ [jh, (j + 1)h] (j =
0, . . . , n− 1), is given by

vh(t) =
∑
k∈Zm

 vh(0) for j + k ≤ 0
vh((j + k)h) for 1 ≤ j + k ≤ n− 1

vh(1) for j + k ≥ n

Lk,m(nt− j),

with Lk,m (k ∈ Zm) defined by (24). Finally, the approximate solution uh of
u, the solution to (10) (to problem (1) – (2)), is determined by the formula
(32).

9. Numerical experiments

Example 1. Consider the following initial value problem:

(D0.4
Capu)(x) + x0.6u(x) = f(x), x ∈ [0, 1], u(0) = 1, (38)

with

f(x) =
Γ(1.9)

Γ(1.5)
x0.5 + x0.6 + x1.5, x ∈ [0, 1].

We see that this is a special problem of (1) – (2) with

α = 0.4, u0 = 1; r(x) = x0.6, x ∈ [0, 1]; K(x, y) = 0, 0 ≤ y ≤ x ≤ 1.

Clearly K ∈ Cm(∆), r ∈ Cm,0.4(0, 1] ⊂ Cm,µ(0, 1], f ∈ Cm,µ(0, 1] with
µ = 0.5 and for all m ∈ N. The exact solution of problem (38) is given by
the formula

u(x) = x0.9 + 1, x ∈ [0, 1].
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In order to find a numerical solution to problem (38) for m ≥ 2, we assem-
ble and solve the system (37). The smoothing parameter p in the definition
(15) of φ is chosen to be greater than m

1−ν , where ν = max{1− α, µ} = 0.6.
Thus we have to take p > 2.5m to achieve the expected convergence order
O(hm) given by Theorem 2.

In Table 1, the errors

εn := max
0≤j≤10n

{
u

(
j

10n

)
− uh

(
j

10n

)}
(n = 2k, k = 3, . . . , 8)

are presented. Here u is the exact solution of problem (38) and uh, the
approximate solution to (38), is obtained by the method proposed above
(see (32)). Additionally, the quotients εn/2/εn for different values of m, n
and p are presented. Due to Theorem 2, the expected limit value of εn/2/εn
is 2m. These values are given in the last row of Table 1. As we can see,
the obtained numerical results are in good agreement with the theoretical
estimates.

Table 1. Numerical results for problem (38).

m = 2, p = 6 m = 3, p = 8 m = 4, p = 11
n εn εn/2/εn εn εn/2/εn εn εn/2/εn
8 1.96 · 10−2 1.40 · 10−2 1.14 · 10−2

16 4.85 · 10−3 4.03 1.94 · 10−3 7.21 9.55 · 10−4 11.96
32 1.25 · 10−3 3.88 2.62 · 10−4 7.41 6.51 · 10−5 14.66
64 3.11 · 10−4 4.02 3.27 · 10−5 8.01 4.08 · 10−6 15.95
128 7.80 · 10−5 3.98 4.09 · 10−6 7.99 2.56 · 10−7 15.93
256 1.94 · 10−5 4.00 5.10 · 10−7 8.03 1.60 · 10−8 16.00
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Example 2. Consider the following initial value problem:

(D0.5
Capu)(x)− xu(x) +

∫ x

0
(x− y)−0.3u(y)dy = f(x), x ∈ [0, 1], u(0) = −1,

(39)
where

f(x) =
Γ(2.1)

Γ(1.6)
x0.6 + x− x2.1 +

Γ(0.7)Γ(2.1)

Γ(2.8)
x1.8 − 10

7
x0.7, x ∈ [0, 1].

We see that this is a special problem of (1) – (2) with

α = 0.5, κ = 0.3, u0 = −1

and

r(x) = −x, 0 ≤ x ≤ 1; K(x, y) = 1, 0 ≤ y ≤ x ≤ 1.



CENTRAL PART INTERPOLATION SCHEMES 177

Clearly K ∈ Cm(∆), r ∈ Cm[0, 1] ⊂ Cm,µ(0, 1], f ∈ Cm,µ(0, 1] with µ = 0.4
and for all m ∈ N. The exact solution of problem (39) is given by the formula

u(x) = x1.1 − 1, x ∈ [0, 1].

In order to find a numerical solution to problem (39) for m ≥ 2, we
assemble and solve the system (37). The smoothing parameter p in the
definition (15) of φ is chosen to be greater than m

1−ν , where ν = max{1 −
α, µ, κ} = 0.5. Thus we have to take p > 2m to achieve the expected
convergence order O(hm) given by Theorem 2.

In Table 2, the errors εn are presented similarly as in Table 1. Due to
Theorem 2, the expected limit value of εn/2/εn is 2m. These values are given
in the last row of Table 2. As we can see, the obtained numerical results
agree with the theoretical estimates.

Table 2. Numerical results for problem (39).

m = 2, p = 5 m = 3, p = 7 m = 4, p = 9
n εn εn/2/εn εn εn/2/εn εn εn/2/εn
8 2.58 · 10−2 1.82 · 10−2 1.10 · 10−2

16 6.79 · 10−3 3.80 2.46 · 10−3 7.37 1.11 · 10−3 9.85
32 1.73 · 10−3 3.90 3.14 · 10−4 7.85 7.87 · 10−5 14.20
64 4.40 · 10−4 3.94 3.93 · 10−5 7.97 5.06 · 10−6 15.55
128 1.10 · 10−4 3.97 4.95 · 10−6 7.95 3.19 · 10−7 15.83
256 2.77 · 10−5 3.98 6.19 · 10−7 7.99 2.01 · 10−8 15.88

4 8 16
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