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Narayana numbers as sums of two base b repdigits

Kisan Bhoi, Bijan Kuamr Patel, and Prasanta Kumar Ray

Abstract. In this study, we find all Narayana numbers which are ex-
pressible as sums of two base b repdigits. The proof of the main result
uses lower bounds for linear forms in logarithms of algebraic numbers
and a version of the Baker–Davenport reduction method.

1. Introduction

For an integer b ≥ 2, a positive integer R is called a base b repdigit if it
has only one distinct digit in its base b representation. In particular, such
number has the form a(bm − 1)/(b− 1) for 1 ≤ a ≤ b− 1. For m = 1, we get
single repdigits and call them trivial repdigits in this paper. When b = 10,
we omit the base and simply say R is a repdigit.

Recently, Diophantine equations involving repdigits in linear recurrent se-
quences like Fibonacci, Lucas, Pell, Pell–Lucas, balancing, Lucas-balancing
sequences, etc. have been considered by many authors. For instance, Luca
[9] showed that 55 and 11 are the largest repdigits in the Fibonacci and
Lucas sequences respectively. In 2015, Faye and Luca [7] proved that there
are no Pell or Pell–Lucas numbers larger than 10 which are repdigits. Lucas,
Pell and Pell–Lucas numbers as sums of two repdigits have been studied in
[2, 3]. Rayaguru and Panda [11] searched the presence of repdigits in bal-
ancing or Lucas-balancing numbers. In [12], they found that 35 is the only
balancing number which is concatenation of two repdigits. Later they found
[13] all balancing and Lucas-balancing numbers expressible as sums of two
repdigits. Bravo et al. [4] obtained all base b repdigits which are sums of
two Narayana numbers. They also showed that 88 is the only repdigit which
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is also a Narayana number. Here, we are interested in searching Narayana
numbers which are sums of two base b repdigits.

Narayana numbers originated from a herd of cows and calves problem
which was proposed by the Indian mathematician Narayana Pandit [1]. The
Narayana’s cows sequence {Nn}n≥0 is a third-order recurrence relation given
by

Nn+3 = Nn+2 +Nn

for n ≥ 0 with initial condition (N0, N1, N2) = (0, 1, 1). It is the sequence
A000930 in the OEIS (On-line Encyclopedia of Integer Sequences). Each
term in this sequence is a Narayana number. The first few Narayana numbers
are

0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, · · · .

The characteristic polynomial for the Narayana’s cows sequence is given by
f(x) = x3−x2−1 which is irreducible in Q[x]. The zeros of this polynomial
are α (≈ 1.46557) and two conjugate complex zeros β and γ with |β| = |γ| <
1. The following are some properties of Narayana sequence (see Lemma 5 in
[4]). The Binet’s formula for the Narayana’s cows sequence is given by

Nn = aαn + bβn + cγn for all n ≥ 0,

where

a =
α

(α− β)(α− γ)
, b =

β

(β − α)(β − γ)
, c =

γ

(γ − α)(γ − β)
.

This formula can also be written as Nn = Cαα
n+2 + Cββ

n+2 + Cγγ
n+2 for

all n ≥ 0 where Cx = 1
x3+2

for x ∈ {α, β, γ}. Numerically, the following

estimates hold for α,Cα and Cββ
n+2 + Cγγ

n+2:

1.45 < α < 1.5; 5 < C−1
α < 5.15; |Cββ

n+2 + Cγγ
n+2| < 1/2 for all n ≥ 1.

Using induction it is easy to prove that

αn−2 ≤ Nn ≤ αn−1 for all n ≥ 1. (1)

In this study, we solve the exponential Diophantine equation

Nn = d1

(
bm1 − 1

b− 1

)
+ d2

(
bm2 − 1

b− 1

)
(2)

for some integers 2 ≤ m1 ≤ m2, d1, d2 ∈ {1, 2, . . . , b − 1}. We give an
upper bound for the highest solution in every base b. As an illustration, we
explicitly find the solutions to the equation (2) for the base b = 10. Our
main result is the following.

https://oeis.org/A000930
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Theorem 1. The Diophantine equation

Nn = d1

(
bm1 − 1

b− 1

)
+ d2

(
bm2 − 1

b− 1

)
has finitely many solutions in integers (n, d1, d2,m1,m2, b) where b is the
base with 1 ≤ d1, d2 ≤ b − 1 and 2 ≤ m1 ≤ m2. Moreover n is bounded
by 5.39 · 1032 log5 b. In particular, the only Narayana numbers expressible as
sums of two repdigits are N14 = 88 = 11+ 77 = 22+ 66 = 33+ 55 = 44+ 44
and N17 = 277 = 55 + 222.

In order to prove Theorem 1, we need some elementary results which are
mentioned in the next section.

2. Preliminaries

The following lemma gives a relation between n and m2 of (2).

Lemma 1. All solutions of (2) satisfy (m2−1) log b < nlogα < m2 log b+3.

Proof. From (1), we have

αn−2 ≤ Nn < 2 · bm2 .

Taking logarithm on both sides, we get

(n− 2) logα < log 2 +m2 log b,

which leads to

n logα < m2 log b+ 3.

Similarly, bm2−1 < Nn < αn gives

n logα > (m2 − 1) log b.

This completes the proof. □

Baker’s theory plays an important role in reducing the bounds concern-
ing linear forms in logarithms of algebraic numbers. Let η be an algebraic
number with minimal primitive polynomial

f (X) = a0(X − η(1)) . . . (X − η(k)) ∈ Z [X],

where a0 > 0, and η(i)’s are conjugates of η. Then

h(η) =
1

k

log a0 +
k∑

j=1

max{0, log |η(j)|}


is called the logarithmic height of η. In particular, if η = a/b is a rational
number with gcd(a, b) = 1 and b > 0, then h(η) = log(max{|a|, b}). The
following are some properties of the logarithmic height function:

• h(η + γ) ≤ h(η) + h(γ) + log 2,
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• h(ηγ±1) ≤ h(η) + h(γ),

• h(ηk) = |k|h(η).

With these notations, Matveev (see [10] or [5, Theorem 9.4]) proved the
following result.

Theorem 2. Let η1, η2, . . . , ηl be positive real algebraic integers in a real
algebraic number field L of degree dL and b1, b2, . . . , bl be non-zero integers.

If Γ =
∏l

i=1 η
bi
i − 1 is not zero, then

log |Γ| > −1.4 · 30l+3l4.5d2L(1 + log dL)(1 + logD)A1A2 . . . Al,

where D = max{|b1|, |b2|, . . . , |bl|} and A1, A2, . . . , Al are positive real num-
bers such that

Aj ≥ max{dLh (ηj) , | log ηj |, 0.16} for j = 1, . . . , l.

We use the following reduction method of Baker–Davenport due to Dujella
and Pethő [6, Lemma 5] for bound reduction.

Lemma 2. Let M be a positive integer and p/q be a convergent of the
continued fraction of the irrational number τ such that q > 6M . Let A, B,
µ be some real numbers with A > 0 and B > 1. Let ε := ∥µq∥ − M∥τq∥,
where ∥.∥ denotes the distance from the nearest integer. If ε > 0, then there
exists no solution to the inequality

0 < |uτ − v + µ| < AB−w,

in positive integers u, v, w with

u ≤ M and w ≥ log(Aq/ε)

logB
.

The following lemma will be used in our proof. It is seen in [8, Lemma 7].

Lemma 3. Let r ≥ 1 and H > 0 be such that H > (4r2)r and H >
L/(logL)r. Then

L < 2rH(logH)r.

3. Proof of Theorem 1

Our aim is to find upper bounds for the variables n,m1,m2 of (2). If
m1 = m2, then we assume d1 ≤ d2. Using Binet’s formula of Narayana’s
cows sequence in (2), we get

Cαα
n+2 + Cββ

n+2 + Cγγ
n+2 = d1

(
bm1 − 1

b− 1

)
+ d2

(
bm2 − 1

b− 1

)
. (3)

We examine (3) in two different steps.
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Firstly, we write (3) in the following way

Cαα
n+2 − d2b

m2

b− 1
=

d1b
m1

b− 1
− (d1 + d2)

b− 1
−
(
Cββ

n+2 + Cγγ
n+2

)
.

Taking absolute values on both sides and dividing by d2bm2

b−1 , we get∣∣∣∣((b− 1)Cα

d2

)
αn+2b−m2 − 1

∣∣∣∣ < 3

bm2−m1−1
. (4)

Put

Γ =

(
(b− 1)Cα

d2

)
αn+2b−m2 − 1. (5)

We need to show that Γ ̸= 0. Suppose Γ = 0, then

Cαα
n+2 =

d2
b− 1

bm2 . (6)

To show the above equality is absurd, let G be the Galois group of the
splitting field of the characteristic polynomial f(x) over Q and let σ ∈ G be
an automorphism such that σ(α) = β. Applying σ on both sides of (6) and
taking their absolute values, we get

|Cββ
n+2| = d2

b− 1
bm2 .

But |Cββ
n+2| < |Cβ| = 0.407506 . . . < 1, whereas d2

b−1b
m2 ≥ 4 for m2 ≥ 2

which is not possible. Therefore, Γ ̸= 0. To apply Theorem 2 in (5), let

η1 =
(b− 1)Cα

d2
, η2 = α, η3 = b, b1 = 1, b2 = n+ 2, b3 = −m2, l = 3,

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is
3.

Since bm2−1 < Nn < αn−1, we have inequality m2 < n. Therefore, D =
max{1, n + 2,m2} = n + 2. To estimate the parameters A1, A2, A3, we
calculate the logarithmic heights of η1, η2, η3 as follows:

h(η2) = h(α) =
logα

3
, h(η3) = h(b) = log b,

h(η1) = h

(
(b− 1)Cα

d2

)
≤ h(b− 1) + h(Cα) + h(d2).

The minimal polynomial of Cα over Z is 31x3 − 31x2 + 10x− 1 with all its
zeros of modulus < 1. Hence,

h(η1) < 2 log b+
log 31

3
< 4 log b.

Thus, one can take

A1 = 12 log b, A2 = logα and A3 = 3 log b.
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We apply Theorem 2 and find

log |Γ| > −1.4 · 30634.532(1 + log 3)(1 + log(n+ 2))(12 log b)(logα)(3 log b).

Comparing the above inequality with (4) gives

log 3− (m2 −m1 − 1) log b > log |Γ| > −3.7 · 1013(1 + log(n+ 2))(log2 b),

which reduces to

(m2 −m1 − 1) log b < log 3 + 3.7 · 1013(1 + log(n+ 2))(log2 b)

< 3.8 · 1013(1 + log(n+ 2))(log2 b).

Then, we get

(m2 −m1) < 3.9 · 1013(1 + log(n+ 2))(log b). (7)

Secondly, we rewrite (3) as

Cαα
n+2 − d1b

m1 + d2b
m2

b− 1
= −d1 + d2

b− 1
−
(
Cββ

n+2 + Cγγ
n+2

)
.

Taking absolute values on both sides and dividing by Cαα
n+2, we obtain∣∣∣∣1− α−(n+2)bm2

(
d1b

m1−m2 + d2
(b− 1)Cα

)∣∣∣∣ < 2.5

Cααn+2
<

6

αn
. (8)

Put

Γ′ = 1− α−(n+2)bm2

(
d1b

m1−m2 + d2
(b− 1)Cα

)
.

Using similar arguments as before we can show that Γ′ ̸= 0. With the
notations of Theorem 2, we take

η1 = α, η2 = b, η3 =
d1b

m1−m2 + d2
(b− 1)Cα

, b1 = −(n+ 2), b2 = m2, b3=1, l=3,

where η1, η2, η3 ∈ Q(α) and b1, b2, b3 ∈ Z. The degree dL = [Q(α) : Q] is
3.

Since m2 < n, D = n + 2. Computing the logarithmic heights of η1, η2
and η3, we get

h(η1) =
logα

3
, h(η2) = log b

and

h(η3) ≤ h(d1b
m1−m2 + d2) + h((b− 1)Cα)

≤ h(d1) + (m2 −m1)h(b) + h(d2) + h(b− 1) + h(Cα) + log 2

< 3 log b+ log 2 +
log 31

3
+ (m2 −m1) log b

< 6 log b+ (m2 −m1) log b.
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Hence from (7) we get

h(η3) < 6 log b+ 3.9 · 1013(1 + log(n+ 2)) log2 b.

So, we take

A1 = logα, A2 = 3 log b and A3 = 11.8 · 1013(1 + log(n+ 2)) log2 b.

Using all these values in Theorem 2, we have

log |Γ′| > −1.4 · 30634.532(1 + log 3)(1 + log(n+ 2))(logα)(3 log b)

· (11.8 · 1013(1 + log(n+ 2)) log2 b).

Comparing the above inequality with (8) implies that

n logα− log 6 < 3.65 · 1026(1 + log(n+ 2))2 log3 b.

Thus, we conclude that

n < 9.81 · 1026(1 + log(n+ 2))2 log3 b < 1.56 · 1028(log n)2 log3 b.

With the notation of Lemma 3, we take r = 2, L = n and H = 1.56 ·
1028 log3 b. Applying Lemma 3, we have

n < 22(1.56 · 1028 log3 b)(log(1.56 · 1028 log3 b))2

< (6.24 · 1028 log3 b)(65 + 3 log log b)2

< (6.24 · 1028 log3 b)(93 log b)2

< 5.39 · 1032 log5 b.

For a fixed base b, the equation (2) has only finitely many solutions. Once
b is fixed, we can determine all the solutions of (2) explicitly.

Now, as an illustration, we solve the equation (2) for b = 10. When b = 10,
the bound on n becomes

n < 3.4 · 1034.

From Lemma 1, we find

m1 ≤ m2 < 5.64 · 1033.

Our next aim is to reduce these bounds of (2). Put

Λ = (n+ 2) logα−m2 log 10 + log

(
9Cα

d2

)
.

The inequality (4) can be written as

|eΛ − 1| < 3

10m2−m1−1
.



190 KISAN BHOI, BIJAN KUAMR PATEL, AND PRASANTA KUMAR RAY

Observe that Λ ̸= 0 as eΛ−1 = Γ ̸= 0. Assumingm2−m1 ≥ 2, the right-hand
side in the above inequality is at most 3

10 < 1
2 . The inequality |ez − 1| < y

for real values of z and y implies z < 2y. Thus, we get

|Λ| < 6

10m2−m1−1
,

which implies that∣∣∣∣(n+ 2) logα−m2 log 10 + log

(
9Cα

d2

)∣∣∣∣ < 6

10m2−m1−1
.

Dividing both sides by log 10 gives∣∣∣∣n(
logα

log 10

)
−m2 +

(
log(9α2Cα/d2)

log 10

)∣∣∣∣ < 2.7

10m2−m1−1
. (9)

To apply Lemma 2 in (9), let

u = n, τ =

(
logα

log 10

)
, v = m2, µ =

(
log(9α2Cα/d2)

log 10

)
,

A = 2.7, B = 10, w = m2 −m1 − 1.

ChooseM=3.4·1034. We find q61=837814603282183274510378124425469951
exceeds 6M with 0.120711 < ε := ∥µq61∥ −M∥τq61∥ < 0.454115. Applying
Lemma 2 for 1 ≤ d2 ≤ 9, we get

m2 −m1 − 1 ≤ log(2.7 · 837814603282183274510378124425469951/0.120711)
log 10

.

Thus, m2 −m1 − 1 ≤ 37.
Now for 1 ≤ d1, d2 ≤ 9 and m2 −m1 ≤ 38, put

Λ′ = −(n+ 2) logα+m2 log 10 + log

(
d110

m1−m2 + d2
9Cα

)
.

From (3), we have

Cαα
n+2

(
1− eΛ

′
)
= −

(
d1 + d2

9

)
−

(
Cββ

n+2 + Cγγ
n+2

)
.

Furthermore, we obtain

d1 + d2
9

+
(
Cββ

n+2 + Cγγ
n+2

)
> 0.

So eΛ
′ − 1 > 0. Thus, Λ′ > 0 and we have

0 < Λ′ < eΛ
′ − 1 = |Γ′| < 6

αn
.

This implies∣∣∣∣−(n+ 2) logα+m2 log 10 + log

(
d110

m1−m2 + d2
9Cα

)∣∣∣∣ < 6

αn
.
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Dividing both sides by logα gives∣∣∣∣m2

(
log 10

logα

)
− n+

(
log ((d110

m1−m2 + d2)/9Cα)

logα
− 2

)∣∣∣∣ < 16 · α−n. (10)

Now, let

u = m2, τ =

(
log 10

logα

)
, v = n, µ =

(
log ((d110

m1−m2 + d2)/9Cα)

logα
− 2

)
,

A = 16, B = α, w = n.

ChooseM = 3.4·1034. Find q61=5030181332394063736620036033151353623
exceeds 6M with 0.000137436 < ε := ∥µq61∥ −M∥τq61∥ < 0.499986. Then
we apply Lemma 2 to the inequality (10) for 1 ≤ d1, d2 ≤ 9 andm2−m1 ≤ 38
and get

n ≤ log(16 · 5030181332394063736620036033151353623/0.000137436)
logα

≤ 251.

We compute all the solutions of the equation (2) using Mathematica for
the above range and find the following solutions

N14 = 88 = 11 + 77 =
102 − 1

9
+ 7

(
102 − 1

9

)
,

= 22 + 66 = 2

(
102 − 1

9

)
+ 6

(
102 − 1

9

)
,

= 33 + 55 = 3

(
102 − 1

9

)
+ 5

(
102 − 1

9

)
,

= 44 + 44 = 4

(
102 − 1

9

)
+ 4

(
102 − 1

9

)
,

and

N17 = 277 = 55 + 222 = 5

(
102 − 1

9

)
+ 2

(
103 − 1

9

)
.

Hence the theorem is proved.
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