Narayana numbers as sums of two base b repdigits

Kisan Bhoi, Bijan Kuamr Patel, and Prasanta Kumar Ray

Abstract. In this study, we find all Narayana numbers which are expressible as sums of two base b repdigits. The proof of the main result uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker-Davenport reduction method.

1. Introduction

For an integer $b \geq 2$, a positive integer R is called a base b repdigit if it has only one distinct digit in its base b representation. In particular, such number has the form $a\left(b^{m}-1\right) /(b-1)$ for $1 \leq a \leq b-1$. For $m=1$, we get single repdigits and call them trivial repdigits in this paper. When $b=10$, we omit the base and simply say R is a repdigit.

Recently, Diophantine equations involving repdigits in linear recurrent sequences like Fibonacci, Lucas, Pell, Pell-Lucas, balancing, Lucas-balancing sequences, etc. have been considered by many authors. For instance, Luca (9) showed that 55 and 11 are the largest repdigits in the Fibonacci and Lucas sequences respectively. In 2015, Faye and Luca 7 proved that there are no Pell or Pell-Lucas numbers larger than 10 which are repdigits. Lucas, Pell and Pell-Lucas numbers as sums of two repdigits have been studied in [2, 3]. Rayaguru and Panda [11] searched the presence of repdigits in balancing or Lucas-balancing numbers. In [12], they found that 35 is the only balancing number which is concatenation of two repdigits. Later they found [13] all balancing and Lucas-balancing numbers expressible as sums of two repdigits. Bravo et al. [4] obtained all base b repdigits which are sums of two Narayana numbers. They also showed that 88 is the only repdigit which

[^0]is also a Narayana number. Here, we are interested in searching Narayana numbers which are sums of two base b repdigits.

Narayana numbers originated from a herd of cows and calves problem which was proposed by the Indian mathematician Narayana Pandit [1]. The Narayana's cows sequence $\left\{N_{n}\right\}_{n \geq 0}$ is a third-order recurrence relation given by

$$
N_{n+3}=N_{n+2}+N_{n}
$$

for $n \geq 0$ with initial condition $\left(N_{0}, N_{1}, N_{2}\right)=(0,1,1)$. It is the sequence A000930 in the OEIS (On-line Encyclopedia of Integer Sequences). Each term in this sequence is a Narayana number. The first few Narayana numbers are

$$
0,1,1,1,2,3,4,6,9,13,19,28,41, \cdots
$$

The characteristic polynomial for the Narayana's cows sequence is given by $f(x)=x^{3}-x^{2}-1$ which is irreducible in $\mathbb{Q}[x]$. The zeros of this polynomial are $\alpha(\approx 1.46557)$ and two conjugate complex zeros β and γ with $|\beta|=|\gamma|<$ 1. The following are some properties of Narayana sequence (see Lemma 5 in [4]). The Binet's formula for the Narayana's cows sequence is given by

$$
N_{n}=a \alpha^{n}+b \beta^{n}+c \gamma^{n} \text { for all } n \geq 0,
$$

where

$$
a=\frac{\alpha}{(\alpha-\beta)(\alpha-\gamma)}, b=\frac{\beta}{(\beta-\alpha)(\beta-\gamma)}, c=\frac{\gamma}{(\gamma-\alpha)(\gamma-\beta)} .
$$

This formula can also be written as $N_{n}=C_{\alpha} \alpha^{n+2}+C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}$ for all $n \geq 0$ where $C_{x}=\frac{1}{x^{3}+2}$ for $x \in\{\alpha, \beta, \gamma\}$. Numerically, the following estimates hold for α, C_{α} and $C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}$:

$$
1.45<\alpha<1.5 ; 5<C_{\alpha}^{-1}<5.15 ;\left|C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right|<1 / 2 \text { for all } n \geq 1
$$

Using induction it is easy to prove that

$$
\begin{equation*}
\alpha^{n-2} \leq N_{n} \leq \alpha^{n-1} \text { for all } n \geq 1 \tag{1}
\end{equation*}
$$

In this study, we solve the exponential Diophantine equation

$$
\begin{equation*}
N_{n}=d_{1}\left(\frac{b^{m_{1}}-1}{b-1}\right)+d_{2}\left(\frac{b^{m_{2}}-1}{b-1}\right) \tag{2}
\end{equation*}
$$

for some integers $2 \leq m_{1} \leq m_{2}, d_{1}, d_{2} \in\{1,2, \ldots, b-1\}$. We give an upper bound for the highest solution in every base b. As an illustration, we explicitly find the solutions to the equation (2) for the base $b=10$. Our main result is the following.

Theorem 1. The Diophantine equation

$$
N_{n}=d_{1}\left(\frac{b^{m_{1}}-1}{b-1}\right)+d_{2}\left(\frac{b^{m_{2}}-1}{b-1}\right)
$$

has finitely many solutions in integers $\left(n, d_{1}, d_{2}, m_{1}, m_{2}, b\right)$ where b is the base with $1 \leq d_{1}, d_{2} \leq b-1$ and $2 \leq m_{1} \leq m_{2}$. Moreover n is bounded by $5.39 \cdot 10^{32} \log ^{5} b$. In particular, the only Narayana numbers expressible as sums of two repdigits are $N_{14}=88=11+77=22+66=33+55=44+44$ and $N_{17}=277=55+222$.

In order to prove Theorem 1, we need some elementary results which are mentioned in the next section.

2. Preliminaries

The following lemma gives a relation between n and m_{2} of (2).
Lemma 1. All solutions of (2) satisfy $\left(m_{2}-1\right) \log b<n \log \alpha<m_{2} \log b+3$.
Proof. From (1), we have

$$
\alpha^{n-2} \leq N_{n}<2 \cdot b^{m_{2}}
$$

Taking logarithm on both sides, we get

$$
(n-2) \log \alpha<\log 2+m_{2} \log b
$$

which leads to

$$
n \log \alpha<m_{2} \log b+3
$$

Similarly, $b^{m_{2}-1}<N_{n}<\alpha^{n}$ gives

$$
n \log \alpha>\left(m_{2}-1\right) \log b
$$

This completes the proof.
Baker's theory plays an important role in reducing the bounds concerning linear forms in logarithms of algebraic numbers. Let η be an algebraic number with minimal primitive polynomial

$$
f(X)=a_{0}\left(X-\eta^{(1)}\right) \ldots\left(X-\eta^{(k)}\right) \in \mathbb{Z}[X]
$$

where $a_{0}>0$, and $\eta^{(i)}$'s are conjugates of η. Then

$$
h(\eta)=\frac{1}{k}\left(\log a_{0}+\sum_{j=1}^{k} \max \left\{0, \log \left|\eta^{(j)}\right|\right\}\right)
$$

is called the logarithmic height of η. In particular, if $\eta=a / b$ is a rational number with $\operatorname{gcd}(a, b)=1$ and $b>0$, then $h(\eta)=\log (\max \{|a|, b\})$. The following are some properties of the logarithmic height function:

$$
\bullet h(\eta+\gamma) \leq h(\eta)+h(\gamma)+\log 2
$$

- $h\left(\eta \gamma^{ \pm 1}\right) \leq h(\eta)+h(\gamma)$,
- $h\left(\eta^{k}\right)=|k| h(\eta)$.

With these notations, Matveev (see [10] or [5, Theorem 9.4]) proved the following result.

Theorem 2. Let $\eta_{1}, \eta_{2}, \ldots, \eta_{l}$ be positive real algebraic integers in a real algebraic number field \mathbb{L} of degree $d_{\mathbb{L}}$ and $b_{1}, b_{2}, \ldots, b_{l}$ be non-zero integers. If $\Gamma=\prod_{i=1}^{l} \eta_{i}^{b_{i}}-1$ is not zero, then

$$
\log |\Gamma|>-1.4 \cdot 30^{l+3} 4^{4.5} d_{\mathbb{L}}^{2}\left(1+\log d_{\mathbb{L}}\right)(1+\log D) A_{1} A_{2} \ldots A_{l},
$$

where $D=\max \left\{\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{l}\right|\right\}$ and $A_{1}, A_{2}, \ldots, A_{l}$ are positive real numbers such that

$$
A_{j} \geq \max \left\{d_{\mathbb{L}} h\left(\eta_{j}\right),\left|\log \eta_{j}\right|, 0.16\right\} \text { for } j=1, \ldots, l
$$

We use the following reduction method of Baker-Davenport due to Dujella and Pethő [6, Lemma 5] for bound reduction.

Lemma 2. Let M be a positive integer and p / q be a convergent of the continued fraction of the irrational number τ such that $q>6 M$. Let A, B, μ be some real numbers with $A>0$ and $B>1$. Let $\varepsilon:=\|\mu q\|-M\|\tau q\|$, where $\|$.$\| denotes the distance from the nearest integer. If \varepsilon>0$, then there exists no solution to the inequality

$$
0<|u \tau-v+\mu|<A B^{-w},
$$

in positive integers u, v, w with

$$
u \leq M \text { and } w \geq \frac{\log (A q / \varepsilon)}{\log B}
$$

The following lemma will be used in our proof. It is seen in [8, Lemma 7].
Lemma 3. Let $r \geq 1$ and $H>0$ be such that $H>\left(4 r^{2}\right)^{r}$ and $H>$ $L /(\log L)^{r}$. Then

$$
L<2^{r} H(\log H)^{r} .
$$

3. Proof of Theorem 1

Our aim is to find upper bounds for the variables n, m_{1}, m_{2} of (2). If $m_{1}=m_{2}$, then we assume $d_{1} \leq d_{2}$. Using Binet's formula of Narayana's cows sequence in (2), we get

$$
\begin{equation*}
C_{\alpha} \alpha^{n+2}+C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}=d_{1}\left(\frac{b^{m_{1}}-1}{b-1}\right)+d_{2}\left(\frac{b^{m_{2}}-1}{b-1}\right) . \tag{3}
\end{equation*}
$$

We examine (3) in two different steps.

Firstly, we write (3) in the following way

$$
C_{\alpha} \alpha^{n+2}-\frac{d_{2} b^{m_{2}}}{b-1}=\frac{d_{1} b^{m_{1}}}{b-1}-\frac{\left(d_{1}+d_{2}\right)}{b-1}-\left(C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right)
$$

Taking absolute values on both sides and dividing by $\frac{d_{2} b^{m_{2}}}{b-1}$, we get

$$
\begin{equation*}
\left|\left(\frac{(b-1) C_{\alpha}}{d_{2}}\right) \alpha^{n+2} b^{-m_{2}}-1\right|<\frac{3}{b^{m_{2}-m_{1}-1}} \tag{4}
\end{equation*}
$$

Put

$$
\begin{equation*}
\Gamma=\left(\frac{(b-1) C_{\alpha}}{d_{2}}\right) \alpha^{n+2} b^{-m_{2}}-1 \tag{5}
\end{equation*}
$$

We need to show that $\Gamma \neq 0$. Suppose $\Gamma=0$, then

$$
\begin{equation*}
C_{\alpha} \alpha^{n+2}=\frac{d_{2}}{b-1} b^{m_{2}} \tag{6}
\end{equation*}
$$

To show the above equality is absurd, let G be the Galois group of the splitting field of the characteristic polynomial $f(x)$ over \mathbb{Q} and let $\sigma \in G$ be an automorphism such that $\sigma(\alpha)=\beta$. Applying σ on both sides of (6) and taking their absolute values, we get

$$
\left|C_{\beta} \beta^{n+2}\right|=\frac{d_{2}}{b-1} b^{m_{2}}
$$

But $\left|C_{\beta} \beta^{n+2}\right|<\left|C_{\beta}\right|=0.407506 \ldots<1$, whereas $\frac{d_{2}}{b-1} b^{m_{2}} \geq 4$ for $m_{2} \geq 2$ which is not possible. Therefore, $\Gamma \neq 0$. To apply Theorem 2 in (5), let

$$
\eta_{1}=\frac{(b-1) C_{\alpha}}{d_{2}}, \eta_{2}=\alpha, \eta_{3}=b, b_{1}=1, b_{2}=n+2, b_{3}=-m_{2}, l=3
$$

where $\eta_{1}, \eta_{2}, \eta_{3} \in \mathbb{Q}(\alpha)$ and $b_{1}, b_{2}, b_{3} \in \mathbb{Z}$. The degree $d_{\mathbb{L}}=[\mathbb{Q}(\alpha): \mathbb{Q}]$ is 3.

Since $b^{m_{2}-1}<N_{n}<\alpha^{n-1}$, we have inequality $m_{2}<n$. Therefore, $D=$ $\max \left\{1, n+2, m_{2}\right\}=n+2$. To estimate the parameters A_{1}, A_{2}, A_{3}, we calculate the logarithmic heights of $\eta_{1}, \eta_{2}, \eta_{3}$ as follows:

$$
\begin{aligned}
& h\left(\eta_{2}\right)=h(\alpha)=\frac{\log \alpha}{3}, h\left(\eta_{3}\right)=h(b)=\log b \\
& h\left(\eta_{1}\right)=h\left(\frac{(b-1) C_{\alpha}}{d_{2}}\right) \leq h(b-1)+h\left(C_{\alpha}\right)+h\left(d_{2}\right)
\end{aligned}
$$

The minimal polynomial of C_{α} over \mathbb{Z} is $31 x^{3}-31 x^{2}+10 x-1$ with all its zeros of modulus <1. Hence,

$$
h\left(\eta_{1}\right)<2 \log b+\frac{\log 31}{3}<4 \log b
$$

Thus, one can take

$$
A_{1}=12 \log b, A_{2}=\log \alpha \text { and } A_{3}=3 \log b
$$

We apply Theorem 2 and find

$$
\log |\Gamma|>-1.4 \cdot 30^{6} 3^{4.5} 3^{2}(1+\log 3)(1+\log (n+2))(12 \log b)(\log \alpha)(3 \log b)
$$

Comparing the above inequality with (4) gives

$$
\log 3-\left(m_{2}-m_{1}-1\right) \log b>\log |\Gamma|>-3.7 \cdot 10^{13}(1+\log (n+2))\left(\log ^{2} b\right)
$$

which reduces to

$$
\begin{aligned}
\left(m_{2}-m_{1}-1\right) \log b & <\log 3+3.7 \cdot 10^{13}(1+\log (n+2))\left(\log ^{2} b\right) \\
& <3.8 \cdot 10^{13}(1+\log (n+2))\left(\log ^{2} b\right)
\end{aligned}
$$

Then, we get

$$
\begin{equation*}
\left(m_{2}-m_{1}\right)<3.9 \cdot 10^{13}(1+\log (n+2))(\log b) \tag{7}
\end{equation*}
$$

Secondly, we rewrite (3) as

$$
C_{\alpha} \alpha^{n+2}-\frac{d_{1} b^{m_{1}}+d_{2} b^{m_{2}}}{b-1}=-\frac{d_{1}+d_{2}}{b-1}-\left(C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right)
$$

Taking absolute values on both sides and dividing by $C_{\alpha} \alpha^{n+2}$, we obtain

$$
\begin{equation*}
\left|1-\alpha^{-(n+2)} b^{m_{2}}\left(\frac{d_{1} b^{m_{1}-m_{2}}+d_{2}}{(b-1) C_{\alpha}}\right)\right|<\frac{2.5}{C_{\alpha} \alpha^{n+2}}<\frac{6}{\alpha^{n}} \tag{8}
\end{equation*}
$$

Put

$$
\Gamma^{\prime}=1-\alpha^{-(n+2)} b^{m_{2}}\left(\frac{d_{1} b^{m_{1}-m_{2}}+d_{2}}{(b-1) C_{\alpha}}\right)
$$

Using similar arguments as before we can show that $\Gamma^{\prime} \neq 0$. With the notations of Theorem 2, we take
$\eta_{1}=\alpha, \eta_{2}=b, \eta_{3}=\frac{d_{1} b^{m_{1}-m_{2}}+d_{2}}{(b-1) C_{\alpha}}, b_{1}=-(n+2), b_{2}=m_{2}, b_{3}=1, l=3$, where $\eta_{1}, \eta_{2}, \eta_{3} \in \mathbb{Q}(\alpha)$ and $b_{1}, b_{2}, b_{3} \in \mathbb{Z}$. The degree $d_{\mathbb{L}}=[\mathbb{Q}(\alpha): \mathbb{Q}]$ is 3.

Since $m_{2}<n, D=n+2$. Computing the logarithmic heights of η_{1}, η_{2} and η_{3}, we get

$$
h\left(\eta_{1}\right)=\frac{\log \alpha}{3}, h\left(\eta_{2}\right)=\log b
$$

and

$$
\begin{aligned}
h\left(\eta_{3}\right) & \leq h\left(d_{1} b^{m_{1}-m_{2}}+d_{2}\right)+h\left((b-1) C_{\alpha}\right) \\
& \leq h\left(d_{1}\right)+\left(m_{2}-m_{1}\right) h(b)+h\left(d_{2}\right)+h(b-1)+h\left(C_{\alpha}\right)+\log 2 \\
& <3 \log b+\log 2+\frac{\log 31}{3}+\left(m_{2}-m_{1}\right) \log b \\
& <6 \log b+\left(m_{2}-m_{1}\right) \log b
\end{aligned}
$$

Hence from (7) we get

$$
h\left(\eta_{3}\right)<6 \log b+3.9 \cdot 10^{13}(1+\log (n+2)) \log ^{2} b .
$$

So, we take

$$
A_{1}=\log \alpha, A_{2}=3 \log b \text { and } A_{3}=11.8 \cdot 10^{13}(1+\log (n+2)) \log ^{2} b
$$

Using all these values in Theorem 2, we have

$$
\begin{aligned}
\log \left|\Gamma^{\prime}\right|>-1.4 \cdot 30^{6} 3^{4.5} 3^{2}(1+\log 3) & (1+\log (n+2))(\log \alpha)(3 \log b) \\
\cdot & \left(11.8 \cdot 10^{13}(1+\log (n+2)) \log ^{2} b\right)
\end{aligned}
$$

Comparing the above inequality with (8) implies that

$$
n \log \alpha-\log 6<3.65 \cdot 10^{26}(1+\log (n+2))^{2} \log ^{3} b
$$

Thus, we conclude that

$$
n<9.81 \cdot 10^{26}(1+\log (n+2))^{2} \log ^{3} b<1.56 \cdot 10^{28}(\log n)^{2} \log ^{3} b
$$

With the notation of Lemma 3, we take $r=2, L=n$ and $H=1.56$. $10^{28} \log ^{3} b$. Applying Lemma 3, we have

$$
\begin{aligned}
n & <2^{2}\left(1.56 \cdot 10^{28} \log ^{3} b\right)\left(\log \left(1.56 \cdot 10^{28} \log ^{3} b\right)\right)^{2} \\
& <\left(6.24 \cdot 10^{28} \log ^{3} b\right)(65+3 \log \log b)^{2} \\
& <\left(6.24 \cdot 10^{28} \log ^{3} b\right)(93 \log b)^{2} \\
& <5.39 \cdot 10^{32} \log ^{5} b
\end{aligned}
$$

For a fixed base b, the equation (2) has only finitely many solutions. Once b is fixed, we can determine all the solutions of (2) explicitly.

Now, as an illustration, we solve the equation (2) for $b=10$. When $b=10$, the bound on n becomes

$$
n<3.4 \cdot 10^{34}
$$

From Lemma 1, we find

$$
m_{1} \leq m_{2}<5.64 \cdot 10^{33}
$$

Our next aim is to reduce these bounds of (2). Put

$$
\Lambda=(n+2) \log \alpha-m_{2} \log 10+\log \left(\frac{9 C_{\alpha}}{d_{2}}\right)
$$

The inequality (4) can be written as

$$
\left|e^{\Lambda}-1\right|<\frac{3}{10^{m_{2}-m_{1}-1}}
$$

Observe that $\Lambda \neq 0$ as $e^{\Lambda}-1=\Gamma \neq 0$. Assuming $m_{2}-m_{1} \geq 2$, the right-hand side in the above inequality is at most $\frac{3}{10}<\frac{1}{2}$. The inequality $\left|e^{z}-1\right|<y$ for real values of z and y implies $z<2 y$. Thus, we get

$$
|\Lambda|<\frac{6}{10^{m_{2}-m_{1}-1}},
$$

which implies that

$$
\left|(n+2) \log \alpha-m_{2} \log 10+\log \left(\frac{9 C_{\alpha}}{d_{2}}\right)\right|<\frac{6}{10^{m_{2}-m_{1}-1}} .
$$

Dividing both sides by $\log 10$ gives

$$
\begin{equation*}
\left|n\left(\frac{\log \alpha}{\log 10}\right)-m_{2}+\left(\frac{\log \left(9 \alpha^{2} C_{\alpha} / d_{2}\right)}{\log 10}\right)\right|<\frac{2.7}{10^{m_{2}-m_{1}-1}} \tag{9}
\end{equation*}
$$

To apply Lemma 2 in (9), let

$$
\begin{gathered}
u=n, \tau=\left(\frac{\log \alpha}{\log 10}\right), v=m_{2}, \mu=\left(\frac{\log \left(9 \alpha^{2} C_{\alpha} / d_{2}\right)}{\log 10}\right), \\
A=2.7, B=10, w=m_{2}-m_{1}-1 .
\end{gathered}
$$

Choose $M=3.4 \cdot 10^{34}$. We find $q_{61}=837814603282183274510378124425469951$ exceeds $6 M$ with $0.120711<\varepsilon:=\left\|\mu q_{61}\right\|-M\left\|\tau q_{61}\right\|<0.454115$. Applying Lemma 2 for $1 \leq d_{2} \leq 9$, we get
$m_{2}-m_{1}-1 \leq \frac{\log (2.7 \cdot 837814603282183274510378124425469951 / 0.120711)}{\log 10}$.
Thus, $m_{2}-m_{1}-1 \leq 37$.
Now for $1 \leq d_{1}, d_{2} \leq 9$ and $m_{2}-m_{1} \leq 38$, put

$$
\Lambda^{\prime}=-(n+2) \log \alpha+m_{2} \log 10+\log \left(\frac{d_{1} 10^{m_{1}-m_{2}}+d_{2}}{9 C_{\alpha}}\right) .
$$

From (3), we have

$$
C_{\alpha} \alpha^{n+2}\left(1-e^{\Lambda^{\prime}}\right)=-\left(\frac{d_{1}+d_{2}}{9}\right)-\left(C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right) .
$$

Furthermore, we obtain

$$
\frac{d_{1}+d_{2}}{9}+\left(C_{\beta} \beta^{n+2}+C_{\gamma} \gamma^{n+2}\right)>0 .
$$

So $e^{\Lambda^{\prime}}-1>0$. Thus, $\Lambda^{\prime}>0$ and we have

$$
0<\Lambda^{\prime}<e^{\Lambda^{\prime}}-1=\left|\Gamma^{\prime}\right|<\frac{6}{\alpha^{n}} .
$$

This implies

$$
\left|-(n+2) \log \alpha+m_{2} \log 10+\log \left(\frac{d_{1} 10^{m_{1}-m_{2}}+d_{2}}{9 C_{\alpha}}\right)\right|<\frac{6}{\alpha^{n}} .
$$

Dividing both sides by $\log \alpha$ gives

$$
\begin{equation*}
\left|m_{2}\left(\frac{\log 10}{\log \alpha}\right)-n+\left(\frac{\log \left(\left(d_{1} 10^{m_{1}-m_{2}}+d_{2}\right) / 9 C_{\alpha}\right)}{\log \alpha}-2\right)\right|<16 \cdot \alpha^{-n} . \tag{10}
\end{equation*}
$$

Now, let

$$
\begin{gathered}
u=m_{2}, \tau=\left(\frac{\log 10}{\log \alpha}\right), v=n, \mu=\left(\frac{\log \left(\left(d_{1} 10^{m_{1}-m_{2}}+d_{2}\right) / 9 C_{\alpha}\right)}{\log \alpha}-2\right) \\
A=16, B=\alpha, w=n
\end{gathered}
$$

Choose $M=3.4 \cdot 10^{34}$. Find $q_{61}=5030181332394063736620036033151353623$ exceeds $6 M$ with $0.000137436<\varepsilon:=\left\|\mu q_{61}\right\|-M\left\|\tau q_{61}\right\|<0.499986$. Then we apply Lemma 2 to the inequality for $1 \leq d_{1}, d_{2} \leq 9$ and $m_{2}-m_{1} \leq 38$ and get
$n \leq \frac{\log (16 \cdot 5030181332394063736620036033151353623 / 0.000137436)}{\log \alpha} \leq 251$.
We compute all the solutions of the equation (22) using Mathematica for the above range and find the following solutions

$$
\begin{aligned}
N_{14}=88 & =11+77=\frac{10^{2}-1}{9}+7\left(\frac{10^{2}-1}{9}\right) \\
& =22+66=2\left(\frac{10^{2}-1}{9}\right)+6\left(\frac{10^{2}-1}{9}\right), \\
& =33+55=3\left(\frac{10^{2}-1}{9}\right)+5\left(\frac{10^{2}-1}{9}\right), \\
& =44+44=4\left(\frac{10^{2}-1}{9}\right)+4\left(\frac{10^{2}-1}{9}\right),
\end{aligned}
$$

and

$$
N_{17}=277=55+222=5\left(\frac{10^{2}-1}{9}\right)+2\left(\frac{10^{3}-1}{9}\right)
$$

Hence the theorem is proved.

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions which have significantly improved the presentation of this article.

References

[1] J. P. Allouche and T. Johnson, Narayana's cows and delayed morphisms, in articles of 3rd computer music conference JIM96, France, (1996).
[2] C. Adegbindin, F. Luca, and A. Togbé, Pell and Pell-Lucas numbers as sum of two repdigits, Bull. Malays. Math. Sci. Soc. 43 (2020), 1253-1271.
[3] C. Adegbindin, F. Luca, and A. Togbé, Lucas numbers as sums of two repdigits, Lith. Math. J. 59 (2019), 295-304.
[4] J. J. Bravo, P. Das, and S. Guzmán, Repdigits in Narayana's cows sequence and their consequences, J. Integer Seq. 23 (2020), Article 20.8.7, 15 pp.
[5] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. (2) 163 (2006), 969-1018.
[6] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49 (1998), 291-306.
[7] B. Faye and F. Luca, Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55-60.
[8] S. Gúzman Sánchez and F. Luca, Linear combinations of factorials and s-units in a binary recurrence sequence, Ann. Math. Qué. 38 (2014), 169-188.
[9] F. Luca, Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254.
[10] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), 125-180. Translation in Izv. Math. 64 (2000), 1217-1269.
[11] S. G. Rayguru and G. K. Panda, Repdigits as product of consecutive Balancing or Lucas-Balancing numbers, Fibonacci Quart. 56 (2018), 319-324.
[12] S. G. Rayguru and G. K. Panda, Balancing numbers which are concatenation of two repdigits, Bol. Soc. Mat. Mex. 26 (2020), 911-919.
[13] S. G. Rayguru and G. K. Panda, Balancing and Lucas-balancing numbers expressible as sums of two repdigits, Integers 21 (2021), Paper No. A7, 17 pp.

Department of Mathematics, Sambalpur University, Jyoti Vihar, Burla, INDIA

E-mail address: kisanbhoi.95@suniv.ac.in
E-mail address: prasantamath@suniv.ac.in
Department of Mathematics, KIIT Deemed to be University, Bhubaneswar, InDIA

E-mail address: bijan.patelfma@kiit.ac.in

[^0]: Received March 3, 2022.
 2020 Mathematics Subject Classification. 11A25, 11B39, 11J86.
 Key words and phrases. Narayana numbers, linear forms in logarithms, repdigits, reduction method.
 https://doi.org/10.12697/ACUTM.2022.26.12
 Corresponding author: Prasanta Kumar Ray

