# Properties of $\theta$ - $\mathcal{H}$ -compact sets in hereditary *m*-spaces

Ahmad Al-Omari and Takashi Noiri

ABSTRACT. Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. A subset *A* of *X* is said to be  $\theta$ - $\mathcal{H}$ -compact relative to *X* if for every cover  $\mathcal{U}$  of *A* by  $m(\theta)$ open sets of *X*, there exists a finite subset  $\mathcal{U}_0$  of  $\mathcal{U}$  such that  $A \setminus \cup \mathcal{U}_0 \in \mathcal{H}$ . We obtain several properties of these sets. Also, we define and investigate two kinds of strong forms of " $\theta$ - $\mathcal{H}$ -compact relative to *X*".

#### 1. Introduction

In 1967, Newcomb [9] introduced the notion of compactness modulo an ideal. Rančin [12] and Hamlett and Janković [4] further investigated this notion and obtained some more properties of compactness modulo an ideal. Jafari et al. [5] introduced and studied compactness via ideals called  $\theta$ -*I*-compactness. Császár [3] introduced the notion of hereditary classes as a generalization of ideals. In [10], a minimal structure and a minimal space (X, m) are introduced and investigated.

In this paper, we define a subset A of a hereditary m-space  $(X, m, \mathcal{H})$  to be  $\theta$ - $\mathcal{H}$ -compact relative to X if for every cover  $\mathcal{U}$  of A by  $m(\theta)$ -open sets of X, there exists a finite subset  $\mathcal{U}_0$  of  $\mathcal{U}$  such that  $A \setminus \cup \mathcal{U}_0 \in \mathcal{H}$ . We obtain several properties of these sets. For example, if A is  $\theta$ - $\mathcal{H}$ -compact relative to X and B is  $m(\theta)$ -closed, then  $A \cap B$  is  $\theta$ - $\mathcal{H}$ -compact relative to X (Theorem 4). And also, we define and investigate two kinds of strong forms of " $\theta$ - $\mathcal{H}$ -compact relative to X". Moreover, for a function  $f : (X, m, \mathcal{H}) \to (Y, n)$  we define a hereditary class  $J_H = \{B \subset Y : f^{-1}(B) \in \mathcal{H}\}$  and by using hereditary classes  $f(\mathcal{H})$  and  $J_H$  on Y we obtain several preservation theorems. For example, if  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a quasi  $m(\theta)$ -continuous function and A is super

Received April 4, 2022.

<sup>2020</sup> Mathematics Subject Classification. 54D30, 54C10.

Key words and phrases. Hereditary *m*-space,  $\theta$ - $\mathcal{H}$ -compactness, strong  $\theta$ - $\mathcal{H}$ -compactness.

https://doi.org/10.12697/ACUTM.2022.26.13

Corresponding author: Ahmad Al-Omari

 $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A) is super  $\theta$ - $\mathcal{J}_H$ -compact relative to Y (Theorem 19). Also papers [1, 2] have introduced some property related to  $\theta$ - $\mathcal{H}$ -compact sets in hereditary *m*-spaces.

#### 2. Preliminaries

**Definition 1.** A subfamily m of the power set  $\mathcal{P}(X)$  of a nonempty set X is called a *minimal structure* (briefly *m*-structure) [10] on X if  $\emptyset \in m$  and  $X \in m$ .

By (X, m) we denote a nonempty set X with a minimal structure m on X and call it an *m*-space. Each member of m is said to be *m*-open and the complement of an *m*-open set is said to be *m*-closed. For a point  $x \in X$ , the family  $\{U : x \in U \text{ and } U \in m\}$  is denoted by m(x).

**Definition 2.** Let (X, m) be an *m*-space and *A* a subset of *X*. The *m*closure mCl(*A*) of *A* [8] is defined by mCl(*A*) =  $\cap \{F \subset X : A \subset F, X \setminus F \in m\}$ .

**Lemma 1** (Maki et al. [8]). Let X be a nonempty set and m a minimal structure on X. For subsets A and B of X, the following properties hold:

(1)  $A \subset \mathrm{mCl}(A)$  and  $\mathrm{mCl}(A) = A$  if A is m-closed,

(2)  $\mathrm{mCl}(\emptyset) = \emptyset$ ,  $\mathrm{mCl}(X) = X$ ,

(3) if  $A \subset B$ , then  $mCl(A) \subset mCl(B)$ ,

(4)  $\mathrm{mCl}(A) \cup \mathrm{mCl}(B) \subset \mathrm{mCl}(A \cup B),$ 

(5)  $\mathrm{mCl}(\mathrm{mCl}(A)) = \mathrm{mCl}(A).$ 

**Definition 3.** A minimal structure m of a set X is said to have property  $\mathcal{B}$  [8] if the union of any collection of elements of m is an element of m.

**Lemma 2** (Popa and Noiri [10]). Let (X, m) be an *m*-space and A a subset of X.

(1)  $x \in \mathrm{mCl}(A)$  if and only if  $U \cap A \neq \emptyset$  for every  $U \in m(x)$ .

(2) Let m have property  $\mathcal{B}$ . Then the following properties hold:

(i) A is m-closed if and only if mCl(A) = A,

(ii) mCl(A) is m-closed.

**Definition 4.** Let A be a subset of (X, m). A point  $x \in X$  is called an  $m(\theta)$ -cluster point of A if  $mCl(U) \cap A \neq \emptyset$  for every m-open set U containing x.

The set of all  $m(\theta)$ -cluster points of A is called the  $m(\theta)$ -closure of A and is denoted by  $mCl_{\theta}(A)$ . If  $A = mCl_{\theta}(A)$ , then A is said to be  $m(\theta)$ -closed. The complement of an  $m(\theta)$ -closed set is said to be  $m(\theta)$ -open.

**Lemma 3** (Popa and Noiri [11]). Let A be a subset of (X, m). Then the following properties hold.

(1) If A is m-open in (X, m), then  $mCl(A) = mCl_{\theta}(A)$ .

(2) If (X,m) satisfies the property  $\mathcal{B}$ , then an  $m(\theta)$ -open set is m-open.

(3) Let  $m(\theta)$  be the family of all  $m(\theta)$ -open sets of (X,m), then  $m(\theta)$  is a minimal structure with property  $\mathcal{B}$ .

**Definition 5.** A nonempty subfamily  $\mathcal{H}$  of  $\mathcal{P}(X)$  is called a *hereditary* class on X [3] if it satisfies the following properties:  $A \in \mathcal{H}$  and  $B \subset A$ implies  $B \in \mathcal{H}$ . A hereditary class  $\mathcal{H}$  is called an *ideal* [7, 13] if it satisfies the additional condition:  $A \in \mathcal{H}$  and  $B \in \mathcal{H}$  implies  $A \cup B \in \mathcal{H}$ .

A minimal space (X, m) with a hereditary class  $\mathcal{H}$  on X is called a *heredi*tary minimal space (briefly hereditary m-space) and is denoted by  $(X, m, \mathcal{H})$ . The notion of ideals has been introduced in [7] and [13] and further investigated in [6].

**Lemma 4** ([9]). For a function  $f: (X, \tau) \to (Y, \sigma)$  and ideals I and J, the following properties hold:

(1) if f is surjective and I is an ideal on X, then  $f(I) = \{f(A) : A \in I\}$ is an ideal on Y,

(2) if f is injective and J is an ideal on Y, then  $f^{-1}(J) = \{f^{-1}(B) : B \in I\}$ J is an ideal on X.

**Lemma 5.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space,  $f : (X, m, \mathcal{H}) \to (Y, n)$ a function and  $J_H = \{B \subset Y : f^{-1}(B) \in \mathcal{H}\}$ . Then the following properties hold:

(1)  $J_H$  is a hereditary class on Y,

(2) if f is injective, then  $\mathcal{H} \subset f^{-1}(J_H)$ ,

(3) if f is surjective, then  $J_H \subset f(\mathcal{H})$ ,

(4) if f is bijective, then  $J_H = f(\mathcal{H})$ .

*Proof.* (1) Let  $A \subset B$  and  $B \in J_H$ , then  $f^{-1}(A) \subset f^{-1}(B) \in \mathcal{H}$ . Hence  $f^{-1}(A) \in \mathcal{H}$  and  $A \in J_H$ . Therefore,  $J_H$  is a hereditary class on Y.

(2) Since f is injective, for any  $A \in \mathcal{H}$ ,  $f^{-1}(f(A)) = A \in \mathcal{H}$  and  $f(A) \in \mathcal{H}$  $J_H$ . Therefore,  $A \in f^{-1}(J_H)$  and  $\mathcal{H} \subset f^{-1}(J_H)$ . (3) For any  $B \in J_H, f^{-1}(B) \in \mathcal{H}$ . Since f is surjective,  $B = f(f^{-1}(B)) \in \mathcal{H}$ .

 $f(\mathcal{H})$  and hence  $J_H \subset f(\mathcal{H})$ .

(4) The proof is obvious by (2) and (3).

**Definition 6.** Let (X, m) be an *m*-space. A subset A of X is said to be  $m(\theta)$ -compact relative to X if for each cover  $\{U_{\alpha} : \alpha \in \Delta\}$  of A by  $m(\theta)$ -open sets of X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset \bigcup \{U_\alpha : \alpha \in \Delta_0\}$ .

**Definition 7.** An *m*-space (X, m) is said to be  $m(\theta)$ -compact if the set X is  $m(\theta)$ -compact relative to X.

**Definition 8.** A function  $f: (X, m) \to (Y, n)$  is said to be

(1) quasi  $m(\theta)$ -continuous if  $f^{-1}(V)$  is  $m(\theta)$ -open in (X, m) for every  $n(\theta)$ open set V in (Y, n),

(2) M- $m(\theta)$ -open if f(U) is  $n(\theta)$ -open in (Y, n) for every  $m(\theta)$ -open set U of (X, m).

## 3. $\theta$ - $\mathcal{H}$ -compact sets

**Definition 9.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space.

(1) A subset A of X is said to be  $\theta$ - $\mathcal{H}$ -compact relative to X if for every cover  $\{U_{\alpha} : \alpha \in \Delta\}$  of A by  $m(\theta)$ -open sets of X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ .

(2)  $(X, m \mathcal{H})$  is called a *hereditary m-space* if X is  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Theorem 1.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. For a subset *A* of *X*, the following properties are equivalent:

(1) A is  $\theta$ -H-compact relative to X;

(2) for every family  $\{F_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -closed sets of X such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) = \emptyset$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta_0\}) \in \mathcal{H}$ .

Proof. (1)  $\Rightarrow$  (2): Let  $\{F_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -closed sets of Xsuch that  $A \cap (\bigcap \{F_{\alpha} : \alpha \in \Delta\}) = \emptyset$ . Then  $A \subset X \setminus (\bigcap \{F_{\alpha} : \alpha \in \Delta\}) = \bigcup \{X \setminus F_{\alpha} : \alpha \in \Delta\}$ . Since  $X \setminus F_{\alpha}$  is  $m(\theta)$ -open for each  $\alpha \in \Delta$ , by (1) there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus (\bigcup \{X \setminus F_{\alpha} : \alpha \in \Delta_0\}) \in \mathcal{H}$ . Therefore, we have

$$A \cap (\cap \{F_{\alpha} : \alpha \in \Delta_{0}\}) = A \cap [X \setminus \cup \{(X \setminus F_{\alpha} : \alpha \in \Delta_{0}\})]$$
$$= A \setminus (\cup \{X \setminus F_{\alpha} : \alpha \in \Delta_{0}\}) \in \mathcal{H}.$$

 $(2) \Rightarrow (1)$ : Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any cover of A by  $m(\theta)$ -open sets of X. Then  $A \cap (X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) = \emptyset$ . Since  $X \setminus U_{\alpha}$  is  $m(\theta)$ -closed for each  $\alpha \in \Delta$ , by (2) there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta_0\}) \in \mathcal{H}$ . Therefore, we have

$$A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta_0\}) = A \cap (X \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\})$$
$$= A \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}.$$

This shows that A is  $m(\theta)$ - $\mathcal{H}$ -compact relative to X.

**Corollary 1.** For a hereditary m-space  $(X, m, \mathcal{H})$ , the following properties are equivalent:

(1)  $(X, m, \mathcal{H})$  is  $\theta$ - $\mathcal{H}$ -compact;

(2) for every family  $\{F_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -closed sets of X such that  $\cap\{F_{\alpha} : \alpha \in \Delta\} = \emptyset$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $\cap\{F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ .

**Definition 10.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. A subset *A* of *X* is said to be

196

(1)  $\mathcal{H}\theta g\text{-}closed$  if  $\mathrm{mCl}_{\theta}(A) \subset U$  whenever  $A \setminus U \in \mathcal{H}$  and U is  $m(\theta)$ -open, (2)  $\theta g\text{-}closed$  if  $\mathrm{mCl}_{\theta}(A) \subset U$  whenever  $A \subset U$  and U is  $m(\theta)$ -open.

**Theorem 2.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and A, B subsets of X such that  $A \subset B \subset \mathrm{mCl}_{\theta}(A)$ . Then the following properties hold:

(1) if A is  $\theta$ -H-compact relative to X and H $\theta$ g-closed, then B is  $m(\theta)$ -compact relative to X,

(2) if B is  $\theta$ -H-compact relative to X and  $\theta$ g-closed, then A is  $\theta$ -H-compact relative to X.

Proof. (1): Suppose that A is  $\theta$ - $\mathcal{H}$ -compact relative to X and  $\mathcal{H}\theta g$ -closed. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any cover of B by  $m(\theta)$ -open sets of X. Then  $\{U_{\alpha} : \alpha \in \Delta\}$  is a cover of A by  $m(\theta)$ -open sets of X. Since A is  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Since A is  $\mathcal{H}\theta g$ -closed,  $mCl_{\theta}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Since  $B \subset mCl_{\theta}(A)$ , we have  $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Therefore, B is  $m(\theta)$ -compact relative to X. (2): Suppose that B is  $\theta$ - $\mathcal{H}$ -compact relative to X and  $\theta g$ -closed. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any cover of A by  $m(\theta)$ -open sets of X. Since A is  $\theta g$ -closed, we have  $B \subset Cl_{\theta}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$ . Since B is  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Now  $A \subset B$  implies  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Therefore, A is  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Corollary 2.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space. If A is  $\mathcal{H}\theta g$ -closed and  $A \subset B \subset \mathrm{mCl}_{\theta}(A)$ , then the following properties are equivalent:

(1) A is  $\theta$ - $\mathcal{H}$ -compact relative to X;

(2) B is  $\theta$ -H-compact relative to X.

**Theorem 3.** Let  $(X, m, \mathcal{H})$  be an ideal *m*-space. If subsets *A* and *B* of *X* are  $\theta$ - $\mathcal{H}$ -compact relative to *X*, then  $A \cup B$  is  $\theta$ - $\mathcal{H}$ -compact relative to *X*.

Proof. Let  $\mathcal{U} = \{U_{\alpha} : \alpha \in \Delta\}$  be any cover of  $A \cup B$  by  $m(\theta)$ -open sets of X. Then  $\mathcal{U}$  is a cover of A and B by  $m(\theta)$ -open sets of X. Since A and B are  $\theta$ - $\mathcal{H}$ compact relative to X, there exist finite subsets  $\Delta_A$  and  $\Delta_B$  of  $\Delta$  and subsets  $H_A$  and  $H_B$  of  $\mathcal{H}$  such that  $A \subset \cup \{U_{\alpha} : \alpha \in \Delta_A\} \cup H_A$  and  $B \subset \cup \{U_{\alpha} : \alpha \in \Delta_B\} \cup H_B$ . Hence we have  $A \cup B \subset \cup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \cup (H_A \cup H_B)$ . Since  $\mathcal{H}$  is an ideal, we have  $(A \cup B) \setminus \cup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \in \mathcal{H}$ . This shows that  $A \cup B$  is  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Theorem 4.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space, and *A*, *B* be subsets of *X*. If *A* is  $\theta$ - $\mathcal{H}$ -compact relative to *X* and *B* is  $m(\theta)$ -closed, then  $A \cap B$ is  $\theta$ - $\mathcal{H}$ -compact relative to *X*.

*Proof.* Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be a cover of  $A \cap B$  by  $m(\theta)$ -open sets of X. Then  $A \setminus B \subset X \setminus B$  and  $X \setminus B$  is  $m(\theta)$ -open. Then  $\{U_{\alpha} : \alpha \in \Delta\} \cup \{X \setminus B\}$  is a cover of A by  $m(\theta)$ -open sets of X. Since A is  $\theta$ - $\mathcal{H}$ -compact relative to X, there

exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset (\cup \{U_\alpha : \alpha \in \Delta_0\}) \cup \{X \setminus B\} \cup H_0$ , where  $H_0 \in \mathcal{H}$ . Then we have

 $(A \cap B) \subset (\cup \{U_{\alpha} \cap B : \alpha \in \Delta_0\}) \cup (H_0 \cap B) \subset \cup \{U_{\alpha} : \alpha \in \Delta_0\} \cup H_0.$ 

Therefore,  $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \subset H_0 \in \mathcal{H}$ . This shows that  $A \cap B$  is  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Corollary 3.** If a hereditary m-space  $(X, m, \mathcal{H})$  is  $\theta$ - $\mathcal{H}$ -compact and B is  $m(\theta)$ -closed, then B is  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Theorem 5.** If  $f : (X, m, \mathcal{H}) \to (Y, n, f(\mathcal{H}))$  is a surjective quasi  $m(\theta)$ continuous function and A is  $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A) is  $\theta$  $f(\mathcal{H})$ -compact relative to Y.

Proof. Suppose that A is  $\theta$ - $\mathcal{H}$ -compact relative to X. Let  $\{V_{\alpha} : \alpha \in \Delta\}$  be any cover of f(A) by  $n(\theta)$ -open sets of Y. Since f is quasi  $m(\theta)$ -continuous,  $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$  is a cover of A by  $m(\theta)$ -open sets of X. Since A is  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ . Hence we have  $A \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \cup H_0$ , where  $H_0 \in \mathcal{H}$  and  $f(A) \subset \cup \{V_{\alpha} : \alpha \in \Delta_0\} \cup f(H_0)$ . Therefore, we have  $f(A) \setminus \cup \{V_{\alpha} : \alpha \in \Delta_0\} \in f(\mathcal{H})$ . This shows that f(A) is  $\theta$ - $f(\mathcal{H})$ compact relative to Y.

**Corollary 4.** If  $f : (X, m, \mathcal{H}) \to (Y, n, f(\mathcal{H}))$  is a surjective quasi  $m(\theta)$ -continuous function and  $(X, m, \mathcal{H})$  is  $\theta$ - $\mathcal{H}$ -compact, then  $(Y, n, \mathcal{H})$  is  $\theta$ - $f(\mathcal{H})$ -compact.

**Theorem 6.** Let  $f : (X,m) \to (Y,n,\mathcal{J})$  be an M- $m(\theta)$ -open bijective function. If B is  $\theta$ - $\mathcal{J}$ -compact relative to Y, then  $f^{-1}(B)$  is  $\theta$ - $f^{-1}(J)$ -compact relative to X.

*Proof.* Since  $f^{-1}: (Y, n, \mathcal{J}) \to (X, m)$  is a quasi- $m(\theta)$ -continuous bijection, by Theorem 5 the proof is obvious.

**Corollary 5.** If  $f : (X,m) \to (Y,n,\mathcal{J})$  is an M- $m(\theta)$ -open bijective function and  $(Y,n,\mathcal{J})$  is  $\theta$ - $\mathcal{J}$ -compact, then  $(X,m,f^{-1}(\mathcal{J}))$  is  $\theta$ - $f^{-1}(\mathcal{J})$ -compact.

**Theorem 7.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is an injective quasi  $m(\theta)$ continuous function and A is  $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A) is  $\theta$ - $\mathcal{J}_H$ -compact relative to Y.

Proof. Let  $\{V_{\alpha} : \alpha \in \Delta\}$  be any cover of f(A) by  $n(\theta)$ -open sets of Y. Then  $A \subset f^{-1}(f(A)) \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$  and  $f^{-1}(V_{\alpha})$  is  $m(\theta)$ -open in X for each  $\alpha \in \Delta$ . Since A is  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ . Hence  $A \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \cup H_0$ , where  $H_0 \in \mathcal{H}$ . Therefore, we have  $f(A) \subset \cup \{f(f^{-1}(V_{\alpha})) : \alpha \in \Delta_0\} \cup f(H_0) \subset \cup \{V_{\alpha} : \alpha \in \Delta_0\} \cup f(H_0)$ . Since f is injective,  $f^{-1}(f(H_0)) = H_0 \in \mathcal{H}$  and  $f(H_0) \in \mathcal{J}_H$ . Consequently, we obtain  $f(A) \setminus \bigcup \{V_\alpha : \alpha \in \Delta_0\} \in \mathcal{J}_H$ . This shows that f(A) is  $\theta$ - $\mathcal{J}_H$ -compact relative to Y.

### 4. Strongly $\theta$ - $\mathcal{H}$ -compact sets

**Definition 11.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. A subset *A* of *X* is said to be *strongly*  $\theta$ - $\mathcal{H}$ -compact relative to *X* if for every family  $\{U_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -open sets of *X* such that  $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ .

**Definition 12.** A hereditary *m*-space  $(X, m, \mathcal{H})$  is said to be *strongly*  $\theta$ - $\mathcal{H}$ -compact if X is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X

**Theorem 8.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space. For a subset A of X, the following properties are equivalent:

(1) A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X;

(2) for every family  $\{F_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -closed sets of X such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta_0\}) \in \mathcal{H}$ .

Proof. (1)  $\Rightarrow$  (2): Let  $\{F_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -closed sets of X such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$ . Then  $A \setminus \cup \{X \setminus F_{\alpha} : \alpha \in \Delta\}) = A \setminus (X \setminus \cap \{F_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$ . Since  $X \setminus F_{\alpha}$  is  $m(\theta)$ -open for each  $\alpha \in \Delta$  and A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X by (1), there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \cup \{X \setminus F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . This implies that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta_0\}) = A \setminus (X \setminus (\cap \{F_{\alpha} : \alpha \in \Delta_0\})) = A \setminus \cup \{X \setminus F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ .

 $(2) \Rightarrow (1): \text{ Let } \{U_{\alpha} : \alpha \in \Delta\} \text{ be a family of } m(\theta)\text{-open sets of } X \text{ such that } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}. \text{ Then } \{X \setminus U_{\alpha} : \alpha \in \Delta\} \text{ is a family of } m(\theta)\text{-closed sets of } X \text{ and also } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} = A \cap (X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\}) = A \cap (\cap\{X \setminus U_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}. \text{ Thus by } (2) \text{ there exists a finite subset } \Delta_0 \text{ of } \Delta \text{ such that } A \cap (\cap\{X \setminus U_{\alpha} : \alpha \in \Delta_0\}) \in \mathcal{H}. \text{ Therefore, we have } A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} = A \cap (X \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}) \in \mathcal{H}. \text{ This shows that } A \text{ is strongly } \theta\text{-}\mathcal{H}\text{-compact relative to } X. \square$ 

**Corollary 6.** For a hereditary m-space  $(X, m, \mathcal{H})$ , the following properties are equivalent:

(1)  $(X, m, \mathcal{H})$  is strongly  $\theta$ - $\mathcal{H}$ -compact;

(2) for every family  $\{F_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -closed sets of X such that  $\cap\{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $\cap\{F_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ .

**Theorem 9.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space. If A is  $\mathcal{H}\theta g$ -closed and  $A \subset B \subset \mathrm{mCl}_{\theta}(A)$ , then the following properties are equivalent:

(1) A is strongly  $\theta$ -H-compact relative to X;

(2) B is strongly  $\theta$ -H-compact relative to X.

Proof. (1)  $\Rightarrow$  (2): Suppose that A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -open sets of X such that  $B \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Since A is  $\mathcal{H}\theta g$ -closed,  $\mathrm{mCl}_{\theta}(A) \subset \cup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Since  $B \subset \mathrm{mCl}_{\theta}(A)$ , we have  $B \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\} \subset \mathrm{mCl}_{\theta}(A) \setminus \cup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Since  $B \subseteq \mathcal{H}$ . Therefore, B is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X.

(2)  $\Rightarrow$  (1): Suppose that *B* is strongly  $\theta$ - $\mathcal{H}$ -compact relative to *X*. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any family of  $m(\theta)$ -open sets of *X* such that  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since *A* is  $\mathcal{H}\theta g$ -closed, we have  $B \subset \mathrm{mCl}_{\theta}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$ . Since *B* is strongly  $\theta$ - $\mathcal{H}$ -compact relative to *X*, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Now  $A \subset B$  implies  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Hence, *A* is strongly  $\theta$ - $\mathcal{H}$ -compact relative to *X*.

**Theorem 10.** Let  $(X, m, \mathcal{H})$  be an ideal *m*-space. If subsets A and B of X are strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, then  $A \cup B$  is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X.

Proof. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any family of  $m(\theta)$ -open sets of X such that  $(A \cup B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$  and  $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since A and B are strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, there exist finite subsets  $\Delta_A$  and  $\Delta_B$  of  $\Delta$  and subsets  $H_A$  and  $H_B$  of  $\mathcal{H}$  such that  $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_A\} \cup H_A$  and  $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_B\} \cup H_B$ . Hence we have  $(A \cup B) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \cup (H_A \cup H_B)$ . Since  $\mathcal{H}$  is an ideal, we have  $(A \cup B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\} \in \mathcal{H}$ . This shows that  $A \cup B$  is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Theorem 11.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space and *A*, *B* be subsets of *X*. If *A* is strongly  $\theta$ - $\mathcal{H}$ -compact relative to *X* and *B* is  $m(\theta)$ -closed, then  $A \cap B$  is strongly  $\theta$ - $\mathcal{H}$ -compact relative to *X*.

*Proof.* Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -open sets of X such that  $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $\{U_{\alpha} : \alpha \in \Delta\} \cup \{X \setminus B\}$  is a family of  $m(\theta)$ -open sets of X such that  $A \setminus [(X \setminus B) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] \in \mathcal{H}$ . Since A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset [\bigcup \{U_{\alpha} : \alpha \in \Delta_0\}] \cup \{X \setminus B\} \cup H_0$ , where  $H_0 \in \mathcal{H}$ . Then we have

$$(A \cap B) \subset [\cup \{U_{\alpha} \cap B : \alpha \in \Delta_0\}] \cup (H_0 \cap B) \subset [\cup \{U_{\alpha} : \alpha \in \Delta_0\}] \cup H_0.$$

Therefore,  $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \subset H_0 \in \mathcal{H}$ . This shows that  $A \cap B$  is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Corollary 7.** If a hereditary m-space  $(X, m, \mathcal{H})$  is strongly  $\theta$ - $\mathcal{H}$ -compact and B is  $m(\theta)$ -closed, then B is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X.

200

**Theorem 12.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a bijective quasi  $m(\theta)$ continuous function and A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A)is strongly  $\theta$ - $f(\mathcal{H})$ -compact relative to Y.

Proof. Suppose that A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X. Let  $\{V_{\alpha} : \alpha \in \Delta\}$  be any family of  $n(\theta)$ -open sets in Y such that  $f(A) \setminus \cup \{V_{\alpha} : \alpha \in \Delta\} \in f(\mathcal{H})$ . Then  $f(A) \subset \cup \{V_{\alpha} : \alpha \in \Delta\} \cup f(H_0)$  for some  $H_0 \in \mathcal{H}$ . Since f is bijective,  $A = f^{-1}(f(A)) \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \cup H_0$  and hence  $A \setminus \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \in \mathcal{H}$ . Since f is quasi  $m(\theta)$ -continuous,  $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$  is a family of  $m(\theta)$ -open sets of X. Since A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ . Hence we have  $A \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$  and  $f(A) \subset \cup \{V_{\alpha} : \alpha \in \Delta_0\} \cup f(H_A)$ . Therefore, we have  $f(A) \setminus \cup \{V_{\alpha} : \alpha \in \Delta_0\} \in f(\mathcal{H})$ . This shows that f(A) is strongly  $\theta$ - $f(\mathcal{H})$ -compact relative to Y.

**Corollary 8.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a bijective quasi  $m(\theta)$ -continuous function and  $(X, m, \mathcal{H})$  is strongly  $\theta$ - $\mathcal{H}$ -compact, then  $(Y, n, f(\mathcal{H}))$  is strongly  $\theta$ - $f(\mathcal{H})$ -compact.

**Theorem 13.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a quasi  $m(\theta)$ -continuous injective function and A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A) is strongly  $\theta$ - $J_{\mathcal{H}}$ -compact relative to Y.

Proof. Suppose that A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X. Let  $\{V_{\alpha} : \alpha \in \Delta\}$  be any family of  $n(\theta)$ -open sets in Y such that  $f(A) \setminus \bigcup \{V_{\alpha} : \alpha \in \Delta\} \in J_H$ . Then  $f(A) \subset \bigcup \{V_{\alpha} : \alpha \in \Delta\} \cup J_0$  for some  $J_0 \in J_H$ . Therefore  $A \subset f^{-1}(f(A)) \subset \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \cup f^{-1}(J_0)$  and hence  $A \setminus \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \in \mathcal{H}$ . Since f is quasi  $m(\theta)$ -continuous,  $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$  is a family of  $m(\theta)$ -open sets of X. Since A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \in \mathcal{H}$ . Hence we have  $A \subset \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\} \subset H_0$ , where  $H_0 \in \mathcal{H}$  and  $f(A) \subset \bigcup \{V_{\alpha} : \alpha \in \Delta_0\} \cup f(H_0)$ . Since f is injective, we have  $f(A) \setminus \bigcup \{V_{\alpha} : \alpha \in \Delta_0\} \in J_H$  and thus f(A) is strongly  $\theta$ - $J_H$ -compact relative to Y.  $\Box$ 

**Corollary 9.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a bijective quasi  $m(\theta)$ -continuous function and  $(X, m, \mathcal{H})$  is strongly  $\theta$ - $\mathcal{H}$ -compact, then (Y, n) is strongly  $\theta$ - $J_H$ -compact.

# 5. Super $\theta$ - $\mathcal{H}$ -compact sets

**Definition 13.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. A subset *A* of *X* is said to be super  $\theta$ - $\mathcal{H}$ -compact relative to *X* if for every family  $\{U_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -open sets of *X* such that  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ .

**Definition 14.** A hereditary *m*-space  $(X, m, \mathcal{H})$  is said to be super  $\theta$ - $\mathcal{H}$ -compact if the set X is super  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Theorem 14.** Let  $(X, m, \mathcal{H})$  be a hereditary m-space. For a subset A of X, the following properties are equivalent:

(1) A is super  $\theta$ -H-compact relative to X;

(2) for every family  $\{F_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -closed sets of X such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta_0\}) = \emptyset$ .

Proof. (1)  $\Rightarrow$  (2): Let  $\{F_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -closed sets of Xsuch that  $A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$ . Then  $\{X \setminus F_{\alpha} : \alpha \in \Delta\}$  is a family of  $m(\theta)$ -open sets of X. Then  $A \setminus \cup \{(X \setminus F_{\alpha}) : \alpha \in \Delta\} = A \cap [X \setminus (X \setminus \cap \{F_{\alpha} : \alpha \in \Delta\})] = A \cap (\cap \{F_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}$ . Since  $A \setminus \cup \{(X \setminus F_{\alpha}) : \alpha \in \Delta\} \in \mathcal{H}$ , by (1) there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset \cup \{(X \setminus F_{\alpha}) : \alpha \in \Delta_0\}$ . This implies that  $A \cap (\{F_{\alpha} : \alpha \in \Delta_0\}) = \emptyset$ .

 $\begin{array}{ll} (2) \Rightarrow (1): \text{ Let } \{U_{\alpha} : \alpha \in \Delta\} \text{ be a family of } m(\theta) \text{-open sets of } X \text{ such that } A \setminus \cup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}. \text{ Then } \{X \setminus U_{\alpha} : \alpha \in \Delta\} \text{ is a family of } m(\theta) \text{-closed sets of } X \text{ and } A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta\}) = A \cap (X \setminus \cup \{U_{\alpha} : \alpha \in \Delta\}) \in \mathcal{H}. \text{ Thus by } (2) \text{ there exists a finite subset } \Delta_0 \text{ of } \Delta \text{ such that } A \cap (\cap \{X \setminus U_{\alpha} : \alpha \in \Delta_0\}) = \emptyset; \text{ hence } A \subset \cup \{U_{\alpha} : \alpha \in \Delta_0\}. \text{ This shows that } (X, m, \mathcal{H}) \text{ is super } \theta \text{-}\mathcal{H}\text{-compact.} \end{array}$ 

**Corollary 10.** For a hereditary m-space  $(X, m, \mathcal{H})$ , the following properties are equivalent:

(1)  $(X, m, \mathcal{H})$  is super  $\theta$ - $\mathcal{H}$ -compact;

(2) for every family  $\{F_{\alpha} : \alpha \in \Delta\}$  of  $m(\theta)$ -closed sets of X such that  $\cap\{F_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ , there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $\cap\{F_{\alpha} : \alpha \in \Delta_0\} = \emptyset$ .

**Theorem 15.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space and *A*, *B* be subsets of *X* such that  $A \subset B \subset \mathrm{mCl}_{\theta}(A)$ . Then the following properties hold:

(1) if A is super  $\theta$ -H-compact relative to X and  $\theta$ g-closed, then B is super  $\theta$ -H-compact relative to X,

(2) if A is strongly  $\theta$ -H-compact relative to X and H $\theta$ g-closed, then B is super  $\theta$ -H-compact relative to X,

(3) if B is  $m(\theta)$ -compact relative to X and A is  $\mathcal{H}\theta g$ -closed, then A is super  $\theta$ - $\mathcal{H}$ -compact relative to X.

Proof. (1): Suppose that A is super  $\theta$ - $\mathcal{H}$ -compact relative to X and  $\theta g$ closed. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -open sets of X such that  $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since A is super  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Since A is  $\theta g$ -closed,  $\mathrm{mCl}_{\theta}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Since  $B \subset \mathrm{mCl}_{\theta}(A)$ , we have  $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Therefore, B is super  $\theta$ - $\mathcal{H}$ -compact relative to X. (2): Suppose that A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X and  $\mathcal{H}\theta g$ closed. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -open sets of X such that  $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since A is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta_0\} \in \mathcal{H}$ . Since A is  $\mathcal{H}\theta g$ -closed,  $\mathrm{mCl}_{\theta}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Since  $B \subset \mathrm{mCl}_{\theta}(A)$ , we have  $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Therefore, B is super  $\theta$ - $\mathcal{H}$ -compact relative to X.

(3): Suppose that B is  $m(\theta)$ -compact relative to X and A is  $\mathcal{H}\theta g$ -closed. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any family of  $m(\theta)$ -open sets of X such that  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since A is  $\mathcal{H}\theta g$ -closed, we have  $B \subset \mathrm{mCl}_{\theta}(A) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta\}$ . Since B is  $m(\theta)$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Now  $A \subset B$  implies  $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . Therefore, A is super  $\theta$ - $\mathcal{H}$ -compact relative to X.  $\Box$ 

**Corollary 11.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. If A is  $\mathcal{H}\theta g$ -closed and  $A \subset B \subset \mathrm{mCl}_{\theta}(A)$ , then the following properties are equivalent:

(1) A is super  $\theta$ -H-compact relative to X;

(2) B is super  $\theta$ -H-compact relative to X.

**Theorem 16.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space. If subsets A and B of X are super  $\theta$ - $\mathcal{H}$ -compact relative to X, then  $A \cup B$  is super  $\theta$ - $\mathcal{H}$ -compact relative to X.

Proof. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be any family of  $m(\theta)$ -open sets of X such that  $(A \cup B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $A \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$  and  $B \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Since A and B are super  $\theta$ - $\mathcal{H}$ -compact relative to X, there exist finite subsets  $\Delta_A$  and  $\Delta_B$  of  $\Delta$  such that  $A \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_A\}$  and  $B \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_B\}$ . Hence we have  $(A \cup B) \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_A \cup \Delta_B\}$ . This shows that  $A \cup B$  is super  $\theta$ - $\mathcal{H}$ -compact relative to X.  $\Box$ 

**Theorem 17.** Let  $(X, m, \mathcal{H})$  be a hereditary *m*-space and *A*, *B* be subsets of *X*. If *A* is super  $\theta$ - $\mathcal{H}$ -compact relative to *X* and *B* is  $m(\theta)$ -closed, then  $A \cap B$  is super  $\theta$ - $\mathcal{H}$ -compact relative to *X*.

Proof. Let  $\{U_{\alpha} : \alpha \in \Delta\}$  be a family of  $m(\theta)$ -open sets of X such that  $(A \cap B) \setminus \bigcup \{U_{\alpha} : \alpha \in \Delta\} \in \mathcal{H}$ . Then  $\{U_{\alpha} : \alpha \in \Delta\} \cup \{X \setminus B\}$  is a family of  $m(\theta)$ -open sets of X such that  $A \subset [(X \setminus B) \cup (\bigcup \{U_{\alpha} : \alpha \in \Delta\})] \cup H_0$ , where  $H_0 \in \mathcal{H}$ . Since A is super  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset [\bigcup \{U_{\alpha} : \alpha \in \Delta_0\}] \cup \{X \setminus B\}$ . Then we have  $(A \cap B) \subset \bigcup \{U_{\alpha} \cap B : \alpha \in \Delta_0\} \subset \bigcup \{U_{\alpha} : \alpha \in \Delta_0\}$ . This shows that  $A \cap B$  is super  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Corollary 12.** If a hereditary m-space  $(X, m, \mathcal{H})$  is super  $\theta$ - $\mathcal{H}$ -compact and B is  $m(\theta)$ -closed, then B is super  $\theta$ - $\mathcal{H}$ -compact relative to X.

**Theorem 18.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a bijective quasi  $m(\theta)$ continuous function and A is super  $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A)is super  $\theta$ - $f(\mathcal{H})$ -compact relative to Y.

Proof. Suppose that A is super  $\theta$ - $\mathcal{H}$ -compact relative to X. Let  $\{V_{\alpha} : \alpha \in \Delta\}$  be any family of  $n(\theta)$ -open sets in Y such that  $f(A) \setminus \cup \{V_{\alpha} : \alpha \in \Delta\} \in f(\mathcal{H})$ . Then  $f(A) \subset \cup \{V_{\alpha} : \alpha \in \Delta\} \cup f(H_0)$  for some  $H_0 \in \mathcal{H}$ . Since f is bijective,  $A = f^{-1}(f(A)) \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \cup H_0$  and hence  $A \setminus \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \in \mathcal{H}$ . Since f is quasi  $m(\theta)$ -continuous,  $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$  is a family of  $m(\theta)$ -open sets of X. Since A is super  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset \cup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\}$ . Hence we have  $f(A) \subset \cup \{V_{\alpha} : \alpha \in \Delta_0\}$  and thus f(A) is super  $\theta$ - $f(\mathcal{H})$ -compact relative to Y.  $\Box$ 

**Corollary 13.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a bijective quasi  $m(\theta)$ continuous function and  $(X, m, \mathcal{H})$  is super  $\theta$ - $\mathcal{H}$ -compact, then  $(Y, n, f(\mathcal{H}))$ is super  $\theta$ - $f(\mathcal{H})$ -compact.

**Theorem 19.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a quasi  $m(\theta)$ -continuous function and A is super  $\theta$ - $\mathcal{H}$ -compact relative to X, then f(A) is super  $\theta$ - $\mathcal{J}_H$ compact relative to Y.

Proof. Suppose that A is super  $\theta$ - $\mathcal{H}$ -compact relative to X. Let  $\{V_{\alpha} : \alpha \in \Delta\}$  be any family of  $n(\theta)$ -open sets in Y such that  $f(A) \setminus \bigcup \{V_{\alpha} : \alpha \in \Delta\} \in \mathcal{J}_H$ . Then  $f(A) \subset \bigcup \{V_{\alpha} : \alpha \in \Delta\} \cup J_0$  for some  $J_0 \in \mathcal{J}_H$ . Therefore  $A \subset f^{-1}(f(A)) \subset \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \cup f^{-1}(J_0)$  and hence  $A \setminus \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta\} \subset f^{-1}(J_0) \in \mathcal{H}$ . Since f is quasi  $m(\theta)$ -continuous,  $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$  is a family of  $m(\theta)$ -open sets of X. Since A is super  $\theta$ - $\mathcal{H}$ -compact relative to X, there exists a finite subset  $\Delta_0$  of  $\Delta$  such that  $A \subset \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\}$ . Hence we have  $f(A) \subset \bigcup \{f(f^{-1}(V_{\alpha})) : \alpha \in \Delta_0\} \subset \bigcup \{V_{\alpha} : \alpha \in \Delta_0\}$ . Therefore, f(A) is super  $\theta$ - $\mathcal{J}_H$ -compact relative to Y.

**Corollary 14.** If  $f : (X, m, \mathcal{H}) \to (Y, n)$  is a surjective quasi  $m(\theta)$ continuous function and  $(X, m, \mathcal{H})$  is super  $\theta$ - $\mathcal{H}$ -compact, then (Y, n) is
super  $\theta$ - $\mathcal{J}_H$ -compact.

*Remark* 1. We have the following relationships:



Remark 2. The following examples show that " $m(\theta)$ -compact relative to X" and "strongly  $\theta$ - $\mathcal{H}$ -compact relative to X" are independent of each other.

**Example 1.** Let  $\mathcal{R}$  be the set of real numbers with the usual topology, X = [1,2] and  $m = \{X \cap (a,b) : a < b, a, b \in \mathcal{R}\}$ . Then it is clear that (X,m) is a regular space. Let  $\mathcal{H} = \{\emptyset, \{1\}, \{2\}\}$ . Observe that (X,m) is  $m(\theta)$ -compact relative to X but  $(X,m,\mathcal{H})$  is not strongly  $\theta$ - $\mathcal{H}$ -compact relative to X. In fact if  $U_n = (1 + \frac{1}{n}, 2]$  for all integer number n > 1, then  $X \setminus \bigcup_{n>1} U_n = \{1\} \in \mathcal{H}$ . If we take  $N = \max\{n_1, n_2, \cdots, n_k\}, k \in \mathbb{Z}$ , and  $n_1, n_2, \cdots, n_k$  are integers then  $X \setminus \bigcup_{i=1}^k U_{n_i} = X \setminus (1 + \frac{1}{N}, 2] = [1, 1 + \frac{1}{N}] \notin \mathcal{H}$ .

**Example 2.** Let  $\mathcal{R}$  be the set of real numbers with the usual topology  $\tau$ . Let X = (0, 1), m be the relative topology of  $\tau$  on X and  $\mathcal{H} = \{A : A \subseteq (0, 1)\}$ . Then  $(X, m, \mathcal{H})$  is strongly  $\theta$ - $\mathcal{H}$ -compact relative to X but (X, m) is not  $m(\theta)$ -compact relative to X. Because an  $m(\theta)$ -open cover  $\{(\frac{1}{n+1}, 1 - \frac{1}{n+1}) : n \in \mathbb{Z}^+\}$  of X has no finite subcover.

# Acknowledgements

The authors are highly grateful to editor and referees for their valuable comments and suggestions for improving the paper.

### References

- A. Al-Omari and T. Noiri, Properties of γH-compact spaces with hereditary classes, Atti Accad. Pelor. Peric. Cl. Sci. Fis. Mat. Natur. 98 (2020), No. 2, A4, 11 pp.
- [2] A. Al-Omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientie Math. 13 (2021), 281–291.
- [3] Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar. 115 (2007), 29–36.
- [4] T. R. Hamlett and D. Janković, Compactness with respect to an ideal, Boll. Unione Mat. Ital. 7 (4-B) (1990), 849–861.
- [5] S. Jafari, T. Noiri, and V. Popa, On θ-compactness in ideal topological spaces, Ann. Univ. Sci. Budapest 52 (2009), 123–130.
- [6] D. Janković, and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- [7] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [8] H. Maki, K. C. Rao, and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci. 49 (1999), 17–29.
- [9] R. L. Newcomb, Toplogies which are compact modulo an ideal, Ph. D. Dissertation, Univ. Cal. at Santa Barbara, 1967.
- [10] V. Popa and T. Noiri, On M-continuous functions, An. Univ. Dunarea de Jos Galati, Ser. Mat. Fiz. Mec. Teor. II 18 (2000), 31–41.
- [11] V. Popa and T. Noiri, A unified theory of weak continuity for functions, Rend. Circ. Mat. Palermo (2) 51 (2002), 439–464.
- [12] D. V. Rančin, Compactness modulo an ideal, Soviet Math. Dokl. 13 (1972), 193-197.
- [13] R. Vaidyanathaswani, *The localization theory in set-topology*, Proc. Indian Acad. Sci. 20 (1945), 51–62.

AL AL-BAYT UNIVERSITY, FACULTY OF SCIENCES, DEPARTMENT OF MATHEMATICS, P.O. BOX 130095, MAFRAQ 25113, JORDAN *E-mail address*: omarimutah1@yahoo.com

*URL*: https://orcid.org/0000-0002-6696-1301

2949-1 SHIOKITA-CHO, HINAGU, YATSUSHIRO-SHI, KUMAMOTO-KEN, 869-5142 JAPAN *E-mail address:* t.noiri@nifty.com *URL:* https://orcid.org/0000-0002-0862-5297

206