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Unique common fixed points through a unified
condition

Hakima Bouhadjera

Abstract. Fixed point theory is a crucial branch in mathematics with
a colossal number of applications in countless subjects. It furnishes pre-
eminent tools and resources for elucidating varied problems which at
first glance do not look like a fixed point problem. Since and even before
1912 till now several authors launched the existence and uniqueness of
common fixed points for pairs of single and set-valued maps satisfying
certain compatibilities on different spaces. This paper proves existence
and uniqueness of a common fixed point for pairs of occasionally weakly
biased maps. This unique common fixed point is guaranteed under the
concept of modified contractive modulus function. Our theorems im-
prove some results existing in the fixed point literature.

1. Introduction and preliminaries

In 1986, Jungck [8] introduced the concept of compatible maps as follows:

Definition 1 ([8]). Two self-maps f and g of a metric space (X , d) are
called compatible if and only if

lim
n→+∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that lim
n→+∞

fxn = lim
n→+∞

gxn = t for

some t ∈ X .

After ten years, in [9], the same author weakened the compatibility con-
dition by giving the weak compatibility concept.

Definition 2 ([9]). Two self-maps f and g of a metric space (X , d) are
called weakly compatible if ft = gt for some t ∈ X implies that fgt = gft.
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In 2008, Al-Thagafi and Shahzad [2] generalized the weak compatibility
condition by the notion of occasionally weakly compatible maps.

Definition 3 ([2]). Let f and g be self-maps of a subset D of a metric
space (X , d). Then f and g are called occasionally weakly compatible if
fgx = gfx for some x ∈ C(f, g) where C(f, g) is the set of coincidence points
of f and g.

On the other hand, in 1995, Jungck and Pathak [10] introduced the con-
cept of biased maps, a very general notion of compatible maps. In the same
paper, they also gave the concept of weakly biased maps which generalizes
the notion of biased maps.

Definition 4 ([10]). The pair (f, g) is g-biased and f-biased, respectively,
if and only if whenever {xn} is a sequence in X and fxn, gxn → t ∈ X , then

ζd(gfxn, gxn) ≤ ζd(fgxn, fxn),

ζd(fgxn, fxn) ≤ ζd(gfxn, gxn),

respectively, if ζ = lim inf and if ζ = lim sup.

If the pair (f, g) is compatible, then, it is both f and g-biased (see [10]).
However, the converse is not true in general.

Definition 5 ([10]). The pair (f, g) is weakly g-biased and f-biased, re-
spectively, if and only if fp = gp implies

d(gfp, gp) ≤ d(fgp, fp),

d(fgp, fp) ≤ d(gfp, gp),

respectively.

Clearly, all biased maps are weakly biased maps (see Proposition 1.1 in
[10]) but the converse is false in general.

In the paper [6] submitted in October 2009 and published in 2012, we in-
troduced the concept of occasionally weakly biased maps which represented a
generalization of weakly biased maps. Further, we used this concept to show
the existence and uniqueness of common fixed points for maps satisfying
different contractive conditions in a normed as well as a metric space.

Definition 6 ([6]). Let f and g be self-maps of a set X . The pair (f, g)
is said to be occasionally weakly f-biased and g-biased, respectively, if and
only if there exists a point p in X such that fp = gp implies

d(fgp, fp) ≤ d(gfp, gp),

d(gfp, gp) ≤ d(fgp, fp),

respectively.
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Of course, weakly f-biased maps and g-biased, respectively, are occasion-
ally weakly f-biased and g-biased, respectively. However, the converses are
not true in general. Also, occasionally weakly compatible maps are both oc-
casionally weakly f-biased and g-biased but the converses are false in general.
To this end, consider the following example.

Example 1. Let X = [0,+∞) with the usual metric d(x, y) = |x − y|.
Define f, g : X → X by

fx =

{
3x2, if x ∈ [0, 1],
8/x, if x ∈ (1,+∞),

gx =

{
1, if x ∈ [0, 1],
4x, if x ∈ (1,+∞).

We have fx = gx if and only if x = 1/
√
3 or x =

√
2 and

3
√
2 = d

(
fg
(√

2
)
, f
(√

2
))

≤ d
(
gf
(√

2
)
, g
(√

2
))

= 12
√
2;

that is, the pair (f, g) is occasionally weakly f-biased. But

2 = d

(
fg

(
1√
3

)
, f

(
1√
3

))
≰ d

(
gf

(
1√
3

)
, g

(
1√
3

))
= 0;

i.e., the pair (f, g) is not weakly f-biased.

On the other hand we have

0 = d

(
gf

(
1√
3

)
, g

(
1√
3

))
≤ d

(
fg

(
1√
3

)
, f

(
1√
3

))
= 2;

i.e., the pair (f, g) is occasionally weakly g-biased. But, as

12
√
2 = d

(
gf
(√

2
)
, g
(√

2
))

≰ d
(
fg
(√

2
)
, f
(√

2
))

= 3
√
2,

then f and g are not weakly g-biased.

Remark 1. Note that from the preceding example we have

fg

(
1√
3

)
= 3 ̸= 1 = gf

(
1√
3

)
and

fg
(√

2
)
=

√
2 ̸= 16

√
2 = gf

(√
2
)
.

That is, f and g are not occasionally weakly compatible maps.

In 2017, Krishnakumar and Mani [12] proved the existence of unique com-
mon fixed point of contractive maps on a complete metric space through a
weakly compatible maps and contractive modulus.

Recently in 2021, Kumari and Kumar [13] proved common fixed point
theorems for four weakly compatible maps using contractive modulus.

Our objective here is to improve the results of [12] and [13] using the
occasionally weakly biased notion and the concept of modified contractive
modulus function via an implicit relation.
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Before giving our main results, recall that a function M : [0,+∞) →
[0,+∞) is said to be a contractive modulus if M(0) = 0 and M(t) < t for
t > 0.

2. Main results

Now, we are ready to present our main results.

2.1. A modified contractive modulus function.

Definition 7. A function M : [0,+∞) → [0,+∞) is said to be a modified
contractive modulus if M is non-decreasing, M(0) = 0 and M(t) < t for
t > 0.

2.2. Implicit relations. According to [5], in his papers [18] and [19] Popa
unified several explicit contractive conditions by initiating the implicit con-
traction type condition. Several authors used this direction to prove the
existence and uniqueness of common fixed points in the settings of single
and set-valued maps, in different spaces (see for example [2, 3, 4, 7, 16, 17,
20, 22, 23, 24]). Motivated by Popa, we will introduce a new type of implicit
relations.

Let Ξ be a family of all functions ξ : R5
+ → R satisfying the following

conditions:

• (ξ1): ξ is non-increasing in variables t2, t3 and t5,
• (ξ2): ξ(t, 0, 0, 0, t) > 0 ∀t > 0,
• (ξ3): ξ(t, 2t, 0, 0, t) > 0 ∀t > 0,
• (ξ4): ξ(t, 0, 2t, 0, t) > 0 ∀t > 0.

Example 2. ξ(t1, t2, t3, t4, t5) = t1−ν(t2+ t3+ t4+ t5), where ν ∈
(
0,

1

3

)
.

• (ξ1): It is clear that ξ is non-increasing in variables t2 and t5,
• (ξ2): ξ(t, 0, 0, 0, t) = t(1− ν) > 0 ∀t > 0,
• (ξ3): ξ(t, 2t, 0, 0, t) = t(1− 3ν) > 0 ∀t > 0,
• (ξ4): ξ(t, 0, 2t, 0, t) = t(1− 3ν) > 0 ∀t > 0.

Example 3. ξ(t1, t2, t3, t4, t5) = t1−θmax{t2, t3, t4, t5}, where θ ∈
(
0,

1

2

)
.

• (ξ1): Obviously,
• (ξ2): ξ(t, 0, 0, 0, t) = t(1− θ) > 0 ∀t > 0,
• (ξ3): ξ(t, 2t, 0, 0, t) = t(1− 2θ) > 0 ∀t > 0,
• (ξ4): ξ(t, 0, 2t, 0, t) = t(1− 2θ) > 0 ∀t > 0.

Example 4. ξ(t1, t2, t3, t4, t5) = t1−ζt2−ϑt3−ρt4−υt5, where ζ, ϑ, ρ, υ > 0
and 2ζ + 2ϑ+ ρ+ υ < 1.

• (ξ1): Clearly,
• (ξ2): ξ(t, 0, 0, 0, t) = t(1− υ) > 0 ∀t > 0,
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• (ξ3): ξ(t, 2t, 0, 0, t) = t(1− 2ζ − υ) > 0 ∀t > 0,
• (ξ4): ξ(t, 0, 2t, 0, t) = t(1− 2ϑ− υ) > 0 ∀t > 0.

2.3. A unique common fixed point theorem for four maps. We start
by formulating and proving our first result.

Theorem 1. Let f, g, h and k be four self-maps of a metric space (X , d)
satisfying the following condition:

ξ(d2(fx, gy),M(d(hx, ky))M(d(fx, hx)),M(d(hx, ky))M(d(gy, ky)),

M(d(fx, hx))M(d(gy, ky)),M(d(hx, gy))M(d(fx, ky))) ≤ 0, (1)

for all x, y in X , where M is a modified contractive modulus function and ξ ∈
Ξ. If f and h are occasionally weakly h-biased, and g and k are occasionally
weakly k-biased, then f, g, h and k have a unique common fixed point.

Proof. By hypotheses, there are two points u and v in X such that fu = hu
implies d(hfu, hu) ≤ d(fhu, fu) and gv = kv implies d(kgv, kv) ≤ d(gkv, gv).

First, we are going to prove that fu = gv. Suppose that fu ̸= gv. From
inequality (1) we have

ξ(d2(fu, gv),M(d(hu, kv))M(d(fu, hu)),M(d(hu, kv))M(d(gv, kv)),

M(d(fu, hu))M(d(gv, kv)),M(d(hu, gv))M(d(fu, kv)))

= ξ(d2(fu, gv), 0, 0, 0,M2(d(fu, gv))) ≤ 0,

since ξ is non-increasing in t5, we get

0 ≥ ξ(d2(fu, gv), 0, 0, 0,M2(d(fu, gv))) ≥ ξ(d2(fu, gv), 0, 0, 0, d2(fu, gv))

which contradicts (ξ2). Thus fu = gv.

Now, we assert that ffu = fu. If not, then the use of condition (1) gives

ξ(d2(ffu, gv),M(d(hfu, kv))M(d(ffu, hfu)),M(d(hfu, kv))M(d(gv, kv)),

M(d(ffu, hfu))M(d(gv, kv)),M(d(hfu, gv))M(d(ffu, kv))) ≤ 0;

i.e.,

ξ(d2(ffu, fu),M(d(hfu, hu))M(d(ffu, hfu)), 0, 0,M(d(hfu, hu))M(d(ffu, fu)))≤0.

By the triangle inequality we have d(ffu, hfu) ≤ d(ffu, fu)+d(fu, hfu). Since f
and h are occasionally weakly h-biased we get d(ffu, hfu) ≤ 2d(ffu, fu) and by
the definition of M we obtain M(d(ffu, hfu)) ≤ M(2d(ffu, fu)) < 2d(ffu, fu).
As ξ is non-increasing in variables t2 ant t5, we find

0 ≥ ξ(d2(ffu, fu),M(d(hfu, hu))M(d(ffu, hfu)), 0, 0,M(d(hfu, hu))M(d(ffu, fu)))

≥ ξ(d2(ffu, fu), 2d2(ffu, fu), 0, 0, d2(ffu, fu))

which contradicts (ξ3). Hence ffu = fu and consequently hfu = fu.
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Now, suppose that ggv ̸= gv. Using inequality (1) we obtain

ξ(d2(fu, ggv),M(d(hu, kgv))M(d(fu, hu)),M(d(hu, kgv))M(d(ggv, kgv)),

M(d(fu, hu))M(d(ggv, kgv)),M(d(hu, ggv))M(d(fu, kgv))) ≤ 0;

i.e.,

ξ(d2(gv, ggv), 0,M(d(gv, kgv))M(d(ggv, kgv)),

0,M(d(gv, ggv))M(d(gv, kgv))) ≤ 0.

Similarly, by the triangle inequality we have d(ggv, kgv)≤d(ggv, gv)+d(gv, kgv).
Since g and k are occasionally weakly k-biased we get d(ggv, kgv) ≤ 2d(ggv, gv)
and by the definition of M we obtain M(d(ggv, kgv)) ≤ M(2d(ggv, gv)) <
2d(ggv, gv). As ξ is non-increasing in variables t3 ant t5 we find

0 ≥ ξ(d2(gv, ggv), 0,M(d(gv, kgv))M(d(ggv, kgv)),

0,M(d(gv, ggv))M(d(gv, kgv)))≥ξ(d2(gv, ggv), 0, 2d2(gv, ggv), 0, d2(gv, ggv))

which contradicts (ξ4). Hence ggv = gv and consequently kgv = gv. Put
fu = hu = gv = kv = w, then w is a common fixed point of maps f, g, h and
k.

For the uniqueness, let w and z be two distinct common fixed points of
maps f, g, h and k. Then, w = fw = gw = hw = kw and z = fz = gz = hz =
kz. The use of (1) gives

ξ(d2(fw, gz),M(d(hw, kz))M(d(fw, hw)),M(d(hw, kz))M(d(gz, kz)),

M(d(fw, hw))M(d(gz, kz)),M(d(hw, gz))M(d(fw, kz))) ≤ 0;

i.e.,

0 ≥ ξ(d2(w, z), 0, 0, 0,M2(d(w, z))) ≥ ξ(d2(w, z), 0, 0, 0, d2(w, z))

which contradicts (ξ2). So z = w. □

2.4. Illustrative example.

Example 5. Let X = [0, 11) with the metric d(x, y) = |x− y|. Define

fx =

{
0, if x ∈ [0, 1],
1

4
, if x ∈ (1, 11),

gx =


x

2
, if x ∈ [0, 1],

1

3
, if x ∈ (1, 11),

and

hx =

{
x2/6, if x ∈ [0, 1],
6, if x ∈ (1, 11),

kx =

{
10x, if x ∈ [0, 1],
9, if x ∈ (1, 11).

First it is easy to see that f and h are occasionally weakly h-biased and g
and k are occasionally weakly k-biased.

Taking M(t) =
1

2
t and ξ(t1, t2, t3, t4, t5) = t1 −

1

3
max{t2, t3, t4, t5} we get:
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(1) for x, y ∈ [0, 1], we have fx = 0, gy =
y

2
, hx =

x2

6
, ky = 10y and

ξ(d2(fx, gy),M(d(hx, ky))M(d(fx, hx)),M(d(hx, ky))M(d(gy, ky)),

M(d(fx, hx))M(d(gy, ky)),M(d(hx, gy))M(d(fx, ky)))

= ξ(
y2

4
,M

(∣∣∣∣10y − x2

6

∣∣∣∣)M

(
x2

6

)
,M

(∣∣∣∣10y − x2

6

∣∣∣∣)M

(
19y

2

)
,

M

(
x2

6

)
M

(
19y

2

)
,M

(∣∣∣∣y5 − x2

6

∣∣∣∣)M(10y))

= ξ

(
y2

4
,
x2

24

∣∣∣∣10y − x2

6

∣∣∣∣ , 19y8
∣∣∣∣10y − x2

6

∣∣∣∣ , 19x2y48
,
5y

2

∣∣∣∣y2 − x2

6

∣∣∣∣)
=

y2

4
− 1

3
max

{
x2

24

∣∣∣∣10y − x2

6

∣∣∣∣ , 19y8
∣∣∣∣10y − x2

6

∣∣∣∣ , 19x2y48
,
5y

2

∣∣∣∣y5 − x2

6

∣∣∣∣}
≤ 0,

(2) for x, y ∈ (1, 11), we have fx =
1

4
, gy =

1

3
, hx = 6, ky = 9 and

ξ(d2(fx, gy),M(d(hx, ky))M(d(fx, hx)),M(d(hx, ky))M(d(gy, ky)),

M(d(fx, hx))M(d(gy, ky)),M(d(hx, gy))M(d(fx, ky)))

= ξ

(
1

144
,M (3)M

(
23

4

)
,M (3)M

(
26

3

)
,M

(
23

4

)
M

(
26

3

)
,M

(
17

3

)
M

(
35

4

))
= ξ

(
1

144
,
69

16
,
13

2
,
299

24
,
595

48

)
=

1

144
− 1

3
max

{
69

16
,
13

2
,
299

24
,
595

48

}
≤ 0,

(3) for x ∈ [0, 1], y ∈ (1, 11), we have fx = 0, gy =
1

3
, hx =

x2

6
, ky = 9

and

ξ(d2(fx, gy),M(d(hx, ky))M(d(fx, hx)),M(d(hx, ky))M(d(gy, ky)),

M(d(fx, hx))M(d(gy, ky)),M(d(hx, gy))M(d(fx, ky)))

= ξ(
1

9
,M

(
9− x2

6

)
M

(
x2

6

)
,M

(
9− x2

6

)
M

(
26

3

)
,

M

(
x2

6

)
M

(
26

3

)
,M

(∣∣∣∣13 − x2

6

∣∣∣∣)M(9))

= ξ

(
1

9
,
x2

24

(
9− x2

6

)
,
13

6

(
9− x2

6

)
,
13x2

36
,
9

4

∣∣∣∣13 − x2

6

∣∣∣∣)
=

1

9
− 1

3
max

{
x2

24

(
9− x2

6

)
,
13

6

(
9− x2

6

)
,
13x2

36
,
9

4

∣∣∣∣13 − x2

6

∣∣∣∣}
≤ 0,
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(4) for x ∈ (1, 11), y ∈ [0, 1], we have fx =
1

4
, gy =

y

2
, hx = 6, ky = 10y

and

ξ(d2(fx, gy),M(d(hx, ky))M(d(fx, hx)),M(d(hx, ky))M(d(gy, ky)),

M(d(fx, hx))M(d(gy, ky)),M(d(hx, gy))M(d(fx, ky)))

= ξ(

(
1

4
− y

2

)2

,M (|6− 10y|)M
(
23

4

)
,M (|6− 10y|)M

(
19y

2

)
,

M

(
23

4

)
M

(
19y

2

)
,M

(
6− y

2

)
M

(∣∣∣∣14 − 10y

∣∣∣∣))
= ξ

((
1

4
− y

2

)2

,
23

16
|6− 10y| , 19y

8
|6− 10y| , 437y

32
,
1

4

(
6− y

2

) ∣∣∣∣14 − 10y

∣∣∣∣
)

=

(
1

4
− y

2

)2

−1

3
max

{
23

16
|6− 10y| , 19y

8
|6− 10y| , 437y

32
,
1

4

(
6− y

2

) ∣∣∣∣14 − 10y

∣∣∣∣}
≤ 0.

So, all hypotheses of the above Theorem 1 are satisfied and 0 is the unique
common fixed point of maps f, g, h and k.

Remark 2. Note that the main results of [12] and [13] are not applicable

because the space is not complete and gX =

[
0,

1

2

]
⫅̸
[
0,

1

6

]
∪ {6} = hX .

2.5. A unique common fixed point for a sequence of maps. Now,
we give a generalization of Theorem 1.

Theorem 2. Let h, k and {fn}n=1,2,... be maps from a metric space (X , d)
into itself such that the pairs (fn, h) and (fn+1, k) are occasionally weakly
h-biased and occasionally weakly k-biased, respectively. Suppose that the in-
equality

ξ(d2(fnx, fn+1y)M(d(hx, ky))M(d(fnx, hx)), (2)

M(d(hx, ky))M(d(fn+1y, ky)),

M(d(fnx, hx))M(d(fn+1y, ky)),

M(d(hx, fn+1y))M(d(fnx, ky))) ≤ 0

holds for all x, y in X , where M is a modified contractive modulus function
and ξ ∈ Ξ. Then h, k and {fn}n=1,2,... have a unique common fixed point.

Proof. Putting n = 1, we get that maps f1, f2, h and k satisfy the hypothe-
ses of Theorem 1. Then they have a unique common fixed point w.
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Now, letting n = 2, we get that maps f2, f3, h and k have a unique common
fixed point z. Suppose that z ̸= w. The use of inequality (2) gives

ξ(d2(f2w, f3z),M(d(hw, kz))M(d(f2w, hw)),M(d(hw, kz))M(d(f3z, kz)),

M(d(f2w, hw))M(d(f3z, kz)),M(d(hw, f3z))M(d(f2w, kz))) ≤ 0;

i.e.,

0 ≥ ξ(d2(w, z), 0, 0, 0,M2(d(w, z))) ≥ ξ(d2(w, z), 0, 0, 0,M2(d(w, z)))

which contradicts (ξ2). Hence z = w.
Continuing in this way, we certify that w is the required point; i.e., w is

the unique common fixed point of h, k and {fn}n=1,2,.... □
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