
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA

Volume 26, Number 2, December 2022
Available online at https://ojs.utlib.ee/index.php/ACUTM

Tensor product of partial acts

Heleen Saarse and Kristo Väljako

Abstract. In this article we define the tensor product of partial acts
over a semigroup and prove several properties of this tensor product. We
also define the notion of a polite partial biact, which is needed to define
partial actions on the tensor product of partial acts. Finally, we prove
that a certain tensor functor of partial acts is a left adjoint of a certain
hom-functor of partial acts.

1. Introduction

Partial structures arise very naturally in many fields of mathematics. In
fact children in elementary school already encounter them, while learning
about the subtraction of natural numbers or division of integers. Yet still
partial structures are undeservedly not covered in almost any algebra course
and are studied far too little compared to how often they appear.

In the last decades several authors have studied partial actions. For in-
stance, Exel in [6] and Kellendok and Lawson in [8] have studied partial
actions on groups. Their results have been used in several applications.
Also, Megrelishvili and Schröder in [12] and Hollings in [7] have studied par-
tial actions on monoids. So the study of partial actions has become a field
of active research. A recent overview of this area is [5].

In this article we study partial actions on semigroups and so obtain so-
called partial acts. In Section 2, we define partial acts, give examples and
define homomorphisms of partial acts. Lastly we introduce the notion of po-
lite partial biacts, which will become important to define partial actions on
the tensor product later. In Section 3 we define the tensor product of partial
acts and prove several properties of it. We also show that this construction
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induces tensor functors between categories of partial acts. Finally, in Sec-
tion 4, we study a certain hom-functor of partial acts. Then we prove that
there exists an adjunction between these tensor functors and hom-functors
under some assumptions.

The authors assume basic familiarity with semigroup theory, for which
one can reference [10], and category theory, for which one can reference [1].

2. Definition of partial acts

In this section we will give the definition of partial (right) acts and give
some examples of them. The following definition of a partial act is inspired
by [7], Definition 2.2.

Definition 2.1. Let (S, ∗) be a semigroup and A a set. A partial mapping

· : A× S → A, (a, s) 7→ a · s

is called a partial right S-action if for every a ∈ A and s, s′ ∈ S we have

∃ a · s ∧ ∃ (a · s) · s′ =⇒ ∃ a · (s ∗ s′) ∧ (a · s) · s′ = a · (s ∗ s′).

(Here ∃a·s means that (a, s) belongs to the domain of the partial mapping ·.)
The pair (A, ·) is called a partial right S-act and is denoted by AS .

We define partial left S-actions and S-acts dually.
There are many natural examples of partial acts. For instance, every act

is a partial act. Also, every set is a partial act over any semigroup, if the
action is defined as the empty mapping.

Next we will give two non-trivial examples of partial acts.

Example 2.2. The set of integers Z is a partial right act over the semi-
group (N, ·) if the action is division of integers. Indeed, if quotients z

n1
and

( z
n1
)/n2, where z ∈ Z, n1, n2 ∈ N, are integers, then z

n1n2
is also an integer

and (
z
n1

)
n2

=
z

n1n2
.

Example 2.3. The set of rational numbers Q is a partial left act over
the semigroup (N, ·) if the action is extracting roots. Let the roots n1

√
q ∈ Q

and n2
√

n1
√
q ∈ Q exist. This means that if q < 0, then n1 and n2 are odd

numbers. In that case n1n2 is also odd and the root n1n2
√
q ∈ Q exists and

n1n2
√
q = n2

√
n1
√
q. On the other hand, if q ⩾ 0, the parity of n1 and n2 is

not important, therefore always n1n2
√
q = n2

√
n1
√
q, which proves that NQ is

a partial left act.

Similarly to the case of acts, we also define partial (R,S)-biacts, where R
and S are semigroups. This definition can be found in [3] (page 216).
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Definition 2.4. Let S and R be semigroups. A triple (A, ⋆, ·) is called a
partial (R,S)-biact if (A, ⋆) is a partial left R-act, (A, ·) is a partial right
S-act and for every a ∈ A, r ∈ R, s ∈ S we have

∃ a · s ∧ ∃ r ⋆ a =⇒ ∃ r ⋆ (a · s) ∧ ∃ (r ⋆ a) · s ∧ r ⋆ (a · s) = (r ⋆ a) · s.

We will usually omit the symbols of partial actions · and ⋆, if there is no
threat of confusion. The partial (R,S)-biact will be denoted by RAS .

Next we will give two examples of non-trivial partial biacts of matrices.
Let Mat(R) denote the set of all real matrices. Also, let Matm,n(R) and
Matn(R) denote the subsets of Mat(R) of (m × n)-matrices and (n × n)
square matrices, respectively. We consider Matn(R) as a semigroup under
the usual multiplication of matrices. Also, for any semigroup S, let Sop

denote the opposite semigroup of S.

Example 2.5. The set Mat(R) is a partial (Matm(R),Matn(R))-biact,
where m,n ∈ N and both of the semigroup actions are the usual matrix
multiplication.

Example 2.6. The set Matn,m(R) is a partial ((Matn(R))op , (Matm(R))op)-
biact, if the action is multiplication by the inverse matrix. Namely, define
two partial actions (which we denote by the same symbol ⊛) on Matn,m(R):

⊛ : (Matn(R))op ×Matn,m(R) → Matn,m(R), S ⊛M := S−1 ·M,

⊛ : Matn,m(R)× (Matm(R))op → Matn,m(R), M ⊛R := M ·R−1.

Let M ∈ Matn,m(R). If S1, S2 ∈ Matn(R) are invertible, then the products

S1 ⊛M = S−1
1 ·M and S2 ⊛ (S1 ⊛M) = S−1

2 · (S−1
1 ·M)

exist and, moreover,

S2 ⊛ (S1 ⊛M) = S−1
2 · (S−1

1 ·M) = (S−1
2 · S−1

1 ) ·M = (S1 · S2)
−1 ·M =

= (S2 ·op S1)
−1 ·M = (S2 ·op S1)⊛M.

Hence Matn,m(R) is a partial left act over the semigroup ((Matn(R))op, ·op).
Similarly we can show that Matn,m(R) is also a partial right act over the
semigroup ((Matm(R))op, ·op). Finally, it is easy to see, that (S⊛M)⊛R =
S ⊛ (M ⊛ R) holds for any M and invertible S, R. Hence Matn×m(R)
is a ((Matn(R))op, (Matm(R))op)-biact. Here we have essentially defined a
division of matrices.

We note that there are many natural ways of defining homomorphisms of
partial acts that generalize the notion of a homomorphism of acts, but we
have chosen the following, because this works well in the sequel.

Definition 2.7. Let S be a semigroup and AS and A′
S partial right acts.

A mapping f : A → A′ is called a homomorphism of partial right S-acts
if for every a ∈ A and s ∈ S we have
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∃ as =⇒ ∃ f(a)s ∧ f(as) = f(a)s.

We define homomorphims of partial left acts dually.

Definition 2.8. Let R and S be semigroups and RAS and RA
′
S partial

biacts. We call a mapping f : A → A′ a homomorphism of partial biacts
if f : RA → RA

′ is a homomorphism of partial left R-acts and f : AS → A′
S

is a homomorphism of partial right S-acts.

It is easy to see that the following proposition holds.

Proposition 2.9. Partial right (left) S-acts ((R,S)-biacts) with the re-
spective homomorphisms of partial acts form a category.

We denote the category of partial right S-acts by PActS , the category
of partial left S-acts by SPAct and the category of partial (R,S)-biacts by

RPActS .
Next we will introduce the notion of a polite partial biact. Politeness

will become important for defining partial actions on the tensor product of
partial acts.

Definition 2.10. Let R and S be semigroups. We call a partial (R,S)-
biact (A, ⋆, ·) left polite if, for every a ∈ A, r ∈ R, s ∈ S, we have

∃ a · s ∧ ∃ r ⋆ (a · s) =⇒ ∃ r ⋆ a ∧ ∃(r ⋆ a) · s. (2.1)

If a partial (R,S)-biact RAS satisfies the converse implication of (2.1), we
say that RAS is right polite. Additionally, we call an (R,S)-biact RAS

polite, if RAS is both left and right polite, i.e., for every a ∈ A, r ∈ R,
s ∈ S, we have

∃ as ∧ ∃ r(as) ⇐⇒ ∃ ra ∧ ∃(ra)s.

3. Tensor product of partial acts

In this section we will define the tensor product of partial acts and prove
several simple properties of this notion. Tensor product of acts over monoids
was independently introduced by several authors around 1970, see [4], [9] and
[13], generalizing the classical notion of the tensor product of modules over
a ring with an identity. Since then it has been an important tool for study
acts over monoids, in particular it has played a major role in homological
classification of monoids. The monograph [10] gives a good overview of this.
This section and the next section mostly generalize Chapter 2.5 in [10]. First
we must introduce the notion of a tensorial mapping.

Definition 3.1. Let S be a semigroup, AS a partial right S-act, SM a
partial left S-act and Y a set. A mapping

β : A×M → Y

is called S-tensorial if, for every a ∈ A, m ∈ M and s ∈ S, for which the
products as and sm exist, the equality β(as,m) = β(a, sm) holds.
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Now we are ready to define the tensor product of partial acts.

Definition 3.2. Let S be a semigroup, AS a partial right S-act and SM
a partial left S-act. A set T with an S-tensorial mapping τ : A×M → T is
called a tensor product of the partial acts AS and SM , if, for any set Y
and any S-tensorial mapping β : A×M → Y , there exists a unique mapping
β : T → Y such that β = β ◦ τ .

The definition of the tensor product of partial acts is illustrated by the
following commutative diagram.

A×M Y

T

τ

β

β

Let Set denote the category of sets. Similarly to the tensor product of
(usual) acts or modules, the following proposition can be easily verified (see
Proposition 5.3 in [10] or Proposition 19.1 in [2]).

Proposition 3.3. If (T, τ) and (T ′, τ ′) are tensor products of the partial
acts AS and SM , then the sets T and T ′ are isomorphic in Set.

Let AS be a partial right S-act and SM a partial left S-act. Let ν be the
equivalence relation on the setA×M generated by the pairs ((as,m), (a, sm)),
where a ∈ A, m ∈ M , s ∈ S and the products as and sm exist. We call the
relation ν a partial tensor relation and define

A⊗S M := (A×M)/ν, a⊗m := [(a,m)]ν .

Given a semigroup S, denote by S1 the semigroup S with an adjoined
identity, i.e. S1 = (S ⊔ {1}, ∗), where the multiplication ∗ is defined by

a ∗ b =


ab, if a ∈ S ∧ b ∈ S,

a, if b = 1,

b, if a = 1,

where a, b ∈ S ⊔ {1}. In the sequel, we will omit the symbol ∗. If AS is a
partial right S-act, then we can consider A also as a partial right S1-act by
defining a1 = a for every a ∈ A.

Proposition 3.4. Let AS be a partial right S-act and SM a partial left
S-act. Then a⊗m = a′⊗m′, a, a′ ∈ A, m,m′ ∈ M , if and only if there exist
elements s1, . . . , sk, t1, . . . , tk ∈ S1, b1, . . . , bk−1 ∈ A and n1, . . . , nk ∈ M
such that the products sini, tini, biti, bisi+1 exist and the equations
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s1n1 = m
as1 = b1t1 s2n2 = t1n1

b1s2 = b2t2 s3n3 = t2n2

. . . . . .
bk−1sk = a′tk m′ = tknk

(3.1)

hold.

Proof. Let H = {((as,m), (a, sm))|a ∈ A,m ∈ M, s ∈ S,∃ as,∃ sm} and
let ν be the equivalence relation generated by the relation H. We also define
the relation σ ⊆ (A × M)2 such that (a,m)σ(a′,m′), where a, a′ ∈ A and
m,m′ ∈ M , if and only if there exist elements s1, . . . , sk, t1, . . . , tk ∈ S1,
b1, . . . , bk−1 ∈ A and n1, . . . , nk ∈ M such that the products sini, tini, biti,
bisi+1 exist and the equations (3.1) hold. It is easy to see that the relation
σ is an equivalence relation.

We next show that ν ⊆ σ. Let ((as,m), (a, sm)) ∈ H. Then

1m = m
(as)1 = as sm = sm,

therefore (as,m)σ(a, sm). Hence H ⊆ σ. Because ν is the least equivalence
relation which contains the relation H and σ is an equivalence relation, we
have ν ⊆ σ.

Finally, we show that σ ⊆ ν. Let ((a,m), (a′,m′)) ∈ σ. Then there exist
elements s1, . . . , sk, t1, . . . , tk ∈ S1, b1, . . . , bk−1 ∈ A and n1, . . . , nk ∈ M
such that the products sini, tini, biti, bisi+1 exist and the equations (3.1)
hold. Now note that

(a,m) = (a, s1n1)H(as1, n1) = (b1t1, n1)H(b1, t1n1) = . . .

= (a′tk, nk)H(a′, tknk) = (a′,m′).

Since H ⊆ ν and ν is transitive, we have (a,m)ν(a′,m′). Hence σ ⊆ ν. In
conclusion, ν = σ. □

The scheme (3.1) is called an S-tossing between a⊗m and a′ ⊗m′.

Proposition 3.5. The set A⊗S M with the mapping

τ : A×M → A⊗S M, τ(a,m) = a⊗m,

is a tensor product of partial acts AS and SM .

Proof. Let Y be a set and β : A ×M → Y an S-tensorial mapping. For
every b ∈ A and n ∈ M we define

β : A⊗S M → Y, β(b⊗ n) = β(b, n).

We show that β is well defined. Let a ⊗ m = a′ ⊗ m′, where a, a′ ∈ A,
m,m′ ∈ M . Then there exists an S-tossing similar to (3.1). Because β is
S-tensorial, we have
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β(a,m) = β(a, s1n1) = β(as1, n1) = β(b1t1, n1) = . . . = β(a′,m′).

Therefore β(a ⊗m) = β(a,m) = β(a′,m′) = β(a′ ⊗m′), which proves that
β is well defined. Now(

β ◦ τ
)
(a,m) = β(τ(a,m)) = β(a⊗m) = β(a,m),

hence β = β ◦ τ . It is straightforward to check that β is unique. □

Remark 3.6. Clearly a semigroup S can be considered as a left (or right)
act over itself if the action is defined by the multiplication of S. So we may
consider the tensor product A⊗S S. Tensor products of this particular form
appear in Section 3.1 of [11]. They are used for globalizing the partial action
of a firm strong partial act AS .

Now we define tensor product of homomorphisms of partial acts.

Definition 3.7. Let S be a semigroup and f : AS → A′
S , g : SM → SM

′

homomorphisms of partial acts, τ : A × M → A ⊗S M and τ ′ : A′ × M ′ →
A′ ⊗S M ′ the canonical surjections. A unique mapping τ ′ ◦ (f × g), which
makes the diagram

A×M A′ ×M ′

A⊗S M A′ ⊗S M ′

f×g

τ τ ′

τ ′◦(f×g)

commutative, is called the tensor product of the homomorphisms f
and g. We denote the tensor product of the homomorphisms f and g by

f ⊗ g := τ ′ ◦ (f × g).

We will show that the tensor product of homomorphisms is well defined.
Note that

(τ ′ ◦ (f × g))(m,n) = f(m)⊗ g(n).

Let a ∈ A, m ∈ M , s ∈ S be such that the products as and sm exist. Then
the products f(a)s and sg(m) also exist and the equalities f(a)s = f(as),
sg(m) = g(sm) hold. Therefore

(τ ′ ◦ (f × g))(as,m) = f(as)⊗ g(m) = f(a)s⊗ g(m) = f(a)⊗ sg(m)

= f(a)⊗ g(sm) = (τ ′ ◦ (f × g))(a, sm).

Hence, the mapping τ ′◦(f×g) is S-tensorial. Therefore, there exists a unique

mapping τ ′ ◦ (f × g) : A ⊗S M → A′ ⊗S M ′ such, that τ ′ ◦ (f × g) ◦ τ =
τ ′ ◦ (f × g). Now we have

τ ′ ◦ (f × g)(a⊗m)=τ ′ ◦ (f × g)(τ(a,m))=(τ ′ ◦(f×g))(a,m)=f(a)⊗g(m).

Therefore, the tensor product of f and g exists. Note that we have proved
the following lemma.
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Lemma 3.8. Let f : AS → A′
S and g : SM → SM

′ be homomorphisms of
partial acts. Then, for every a ∈ A and m ∈ M , we have

(f ⊗ g)(a⊗m) = f(a)⊗ g(m).

Before the next proposition recall that a morphism is called a retraction
if it has a right inverse and a coretraction if it has a left inverse. It
is straightforward to check that the tensor product of homomorphisms of
partial acts has the following properties.

Proposition 3.9. Let AS be a partial right S-act and SM a partial left
S-act. Then

(1) idA⊗ idM = idA⊗SM ;
(2) if f : AS → A′

S and g : SM → SM
′ are surjective, then f ⊗ g is also

surjective;
(3) if f : AS → A′

S, g : SM → SM
′, f ′ : A′

S → A′′
S and g′ : SM

′ → SM
′′

are homomorphisms of partial acts, then

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) : A⊗S M → A′′ ⊗S M ′′;

(4) if f : AS → A′
S and g : SM → SM

′ are retractions, coretractions or
isomorphisms, then so is f ⊗ g. In the third case one has

(f ⊗ g)−1 = f−1 ⊗ g−1.

Next we show that under certain assumptions we can consider the tensor
product of partial acts itself as a partial biact too.

Proposition 3.10. Let R, S be semigroups, RAS a partial left polite
(R,S)-biact and SM a partial left S-act. Then R(A⊗S M) is a partial left
R-act with a partial action

r(a⊗m) := ra⊗m (3.2)

for all a ∈ A, m ∈ M , r ∈ R such that the product ra exists.

Proof. Define a partial left action as in (3.2). First we show that the
mapping R× (A⊗S M) → A⊗S M is well defined. Let a, a′ ∈ A, m,m′ ∈ M
and r ∈ R be such that the product ra exists and a⊗m = a′ ⊗m′. Due to
Proposition 3.4 there exist elements s1, . . . , sk, t1, . . . , tk ∈ S1, b1, . . . , bk−1 ∈
A and n1, . . . , nk ∈ M such that the products sini, tini, biti, bisi+1 exist and
the equalities

s1n1 = m
as1 = b1t1 s2n2 = t1n1

b1s2 = b2t2 s3n3 = t2n2

. . . . . .
bk−1sk = a′tk m′ = tknk

hold. Now

r(a⊗m) = (ra)⊗m (definition of the R-action)
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= (ra)⊗ (s1n1) (m = s1n1 from the scheme)

= ((ra)s1)⊗ n1 (definition of a partial biact, tensoriality)

= (r(as1))⊗ n1 (definition of a partial biact)

= (r(b1t1))⊗ n1 (as1 = b1t1 from the scheme)

= ((rb1)t1)⊗ n1 (left politeness)

= (rb1)⊗ (t1n1) (tensoriality)

= (rb1)⊗ (s2n2) (t1n1 = s2n2 from the scheme)

= . . .

= (ra′)⊗ (tknk) (tensoriality)

= (ra′)⊗m′ (tknk = m′ from the scheme)

= r(a′ ⊗m′), (definition of the R-action)

therefore, the mapping R× (A⊗S M) → A⊗S M is well defined.
Let r, r′ ∈ R, a ∈ A, m ∈ M and assume that the products ra and

r′(ra) exist. Then the product (r′r)a also exists and (r′r)a = r′(ra) holds.
Furthermore, the product r(a ⊗ m) = (ra) ⊗ m exists and r′((ra) ⊗ m) =
(r′(ra))⊗m holds. Therefore

r′(r(a⊗m)) = r′((ra)⊗m) = (r′(ra))⊗m = ((r′r)a)⊗m = (r′r)(a⊗m).

Hence R(A⊗S M) is a partial left R-act. □

Analogously, the following proposition can be proved.

Proposition 3.11. Let S, T be semigroups, AS a partial right S-act and

SMT a right polite partial (S, T )-biact. Then (A ⊗S M)T is a partial right
T -act with a partial action

(a⊗m)t := a⊗mt (3.3)

for all a ∈ A, m ∈ M and t ∈ T such that the product mt exists.

Next we combine the previous two propositions.

Proposition 3.12. Let R, S, T be semigroups, RAS a left polite partial
(R,S)-biact and SMT a right polite partial (S, T )-biact. Then R(A⊗S M)T
is a partial (R, T )-biact with the left partial action defined in (3.2) and right
partial action defined in (3.3). Moreover, the biact R(A⊗S M)T is polite.

Proof. The set R(A⊗SM)T is both a left partial R-act and a right partial
T -act by Propositions 3.10 and 3.11, respectively.

Let r ∈ R, t ∈ T , a ∈ A,m ∈ M be such that the products ra andmt exist.
Then, there also exist the products r(a⊗m) = (ra)⊗m, (a⊗m)t = a⊗(mt)
and, hence, the products (r(a⊗m))t, r((a⊗m)t) also exist. Note that

(r(a⊗m))t = ((ra)⊗m)t = (ra)⊗ (mt) = r(a⊗ (mt)) = r((a⊗m)t).
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Therefore R(A⊗S M)T is a partial (R, T )-biact.
Now, let the products (a⊗m)t and r((a⊗m)t) exist. Then, the product

mt also exists and r((a⊗m)t) = r(a⊗ (mt)) holds. Hence, also the products
ra and r(a⊗m) exist and

r((a⊗m)t) = r(a⊗ (mt)) = (ra)⊗ (mt) = ((ra)⊗m)t = (r(a⊗m))t.

This means, that R(A⊗S M)T is a left polite partial biact.
Analogously, R(A⊗SM)T is right polite and, hence, a polite partial (R, T )-

biact. □

Next we will introduce tensor functors.

Proposition 3.13. Let AS be a right partial act. Then

A⊗S : SPAct → Set

SM A⊗S M

SM
′ A⊗S M ′

g idA ⊗g

is a covariant functor. Similarly, for a left partial act SM we have a covari-
ant functor

⊗S M : PActS → Set.

Moreover, if RAS is a left polite partial biact, then we have a functor

RA⊗S : SPAct → RPAct

and for a right polite partial biact SMT we have a functor

⊗S MT : PActS → PActT .

Proof. It is easy to see that A⊗S : SPAct → Set and ⊗S M : PActS →
Set are covariant functors. If RAS is a polite partial biact and SM a partial
left act, then R(A⊗S M) is a partial left act according to Proposition 3.10.
Therefore we also have a functor RA⊗S : SPAct → RPAct. Similarly there
exists a functor ⊗S MT : PActS → PActT . □

We call the functors defined in Proposition 3.13 tensor functors. Next
we show that tensor product is associative up to isomorphism.

Theorem 3.14. For every partial right act AS, partial left act RC and
polite partial biact SBR there exists a bijection

νA,B,C : (A⊗S B)⊗R C → A⊗S (B ⊗R C)

νA,B,C((a⊗ b)⊗ c) = a⊗ (b⊗ c).

Moreover, the family ν = (νA,B,C) is a natural transformation in each vari-
able A, B and C.
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Proof. Let AS be a partial right act, RC a partial left act and SBR a
polite partial biact. Note that A⊗S B is a partial right R-act and B ⊗R C
is a partial left S-act with respect to the actions defined in Proposition 3.10
and Proposition 3.11.

Fix c ∈ C and define

βc(a, b) := a⊗ (b⊗ c)

for every a ∈ A and b ∈ B. Let a ∈ A, b ∈ B, s ∈ S be such that the
products as and sb exist. Then

βc(a, sb) = a⊗ ((sb)⊗ c) (the definition of βc)

= a⊗ (s(b⊗ c)) (S-action of the partial biact B ⊗R C)

= (as)⊗ (b⊗ c) (tensoriality and existence of the product as)

= βc(as, b). (the definition of βc)

So βc is S-tensorial and therefore there exists a unique mapping βc :A⊗SB→
A ⊗S (B ⊗R C) such that βc = βc ◦ τ holds, where τ : A × B → A ⊗S B is
the canonical surjection.

Now, consider the mapping µ : (A⊗SB)×C → A⊗S (B⊗RC) defined by

µ(a⊗ b, c) := βc(a⊗ b) = βc(τ(a, b)) = βc(a, b) = a⊗ (b⊗ c).

We show that µ is R-tensorial. Let b ∈ B, c ∈ C, r ∈ R be such that the
products br, rc exist and let a ∈ A. Now

µ(a⊗ b, rc) = a⊗ (b⊗ rc) = a⊗ ((br)⊗ c) = µ(a⊗ (br), c) = µ((a⊗ b)r, c).

Therefore there exists a unique mapping µ : (A⊗SB)⊗RC → A⊗S (B⊗RC)
such that µ = µ◦τ ′, where τ ′ : (A⊗SB)×C → (A⊗SB)⊗RC is the canonical
surjection. Hence we have

µ((a⊗ b)⊗ c) = µ(τ ′(a⊗ b, c)) = µ(a⊗ b, c) = a⊗ (b⊗ c)

for every a ∈ A, b ∈ B, c ∈ C. Similarly, there exists a well-defined mapping
γ : A⊗S (B ⊗R C) → (A⊗S B)⊗R C such that

γ(a⊗ (b⊗ c)) = (a⊗ b)⊗ c.

Clearly γ ◦ µ = id(A⊗SB)⊗RC and µ ◦ γ = idA⊗S(B⊗RC). Hence µ is bijective
and we take νA,B,C := µ.

Let now f : AS → A′
S be a homomorphism of partial acts. Since

((f ⊗ (idB ⊗ idC)) ◦ νA,B,C)((a⊗ b)⊗ c) = (f ⊗ (idB ⊗ idC))(a⊗ (b⊗ c))

= f(a)⊗ ((idB ⊗ idC)(b⊗ c))

= f(a)⊗ (idB(b)⊗ idC(c))

= f(a)⊗ (b⊗ c)
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and (νA′,B,C ◦ ((f ⊗ idB)⊗ idC))((a⊗ b)⊗ c) = f(a)⊗ (b⊗ c), the diagram

(A⊗S B)⊗R C A⊗S (B ⊗R C)

(A′ ⊗S B)⊗R C A′ ⊗S (B ⊗R C)

(f⊗idB)⊗idC

νA,B,C

f⊗(idB ⊗ idC)

νA′,B,C

is commutative. Therefore νA,B,C is natural in the first variable. Similarly
it is natural in the other variables. □

We can make tensor products (A⊗SB)⊗RC and A⊗S (B⊗RC) isomorphic
as partial acts, if AS and RC are also polite biacts.

Proposition 3.15. Let TAS be left polite partial biact, SBR a polite par-
tial biact and RC a partial left act. Then the mapping νA,B,C from Theorem
3.14 is an isomorphism of partial left T -acts.

Proof. Let t ∈ T , a ∈ A, b ∈ B, c ∈ C and assume that the product
t((a⊗ b)⊗ c) exists. Then the products ta and t(a⊗ b) = (ta)⊗ b also exist.
Since

t((a⊗ b)⊗ c) = (t(a⊗ b))⊗ c = ((ta)⊗ b)⊗ c ∈ (A⊗S B)⊗R C,

there exists t(a⊗ (b⊗ c)) and

νA,B,C(t((a⊗ b)⊗ c)) = νA,B,C(((ta)⊗ b)⊗ c) = (ta)⊗ (b⊗ c)

= t(a⊗ (b⊗ c)) = tνA,B,C((a⊗ b)⊗ c).

Hence νA,B,C is an isomorphism of partial left T -acts. □

The following propositions can be proven similarly.

Proposition 3.16. Let RCT be a right polite partial biact, SBR a polite
partial biact and AS a partial right act. Then the mapping νA,B,C from
Theorem 3.14 is an isomorphism of partial right T -acts.

Proposition 3.17. Let TAS be left polite partial biact, RCT a right polite
partial biact, SBR a polite partial biact. Then the mapping νA,B,C from
Theorem 3.14 is an isomorphism of partial (T, P )-biacts.

4. Hom-tensor adjunction

In this section we will study the hom-functor of partial acts and prove that
there exists an adjunction between certain tensor functors and hom-functors
for categories of partial acts.

There exists a hom-functor

Hom(RAS , ) : RPAct → Set,
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which is defined for every RB,RB
′ ∈ Ob(RPAct) by the diagram

RB Hom(RAS ,RB) ∋ g RAS RB

RB
′ Hom(RAS ,RB

′) ∋ f ◦ g RB
′

f f◦

g

f◦g
f .

Proposition 4.1. Let R and S be semigroups and let RAS be a partial
biact. Then Hom(RAS , ) is a covariant functor RPAct → SPAct.

Proof. Let RAS ∈ Ob(RPActS), RB∈Ob(RPAct) and f ∈ Hom(RAS ,RB).
Let s ∈ S be such that for every a ∈ A the product as exists. We define a
partial left S-action on the set Hom(RAS ,RB) by

(sf)(a) := f(as).

Now, let a ∈ A and r ∈ R be such that ra exists. Then f(ra) and (sf)(ra)
also exist and we can compute (sf)(ra) = f(ras) = rf(as) = r(sf)(a).
This means that sf ∈ Hom(RAS ,RB). To reiterate, the product fs ∈
Hom(RAS ,RB) exists exactly for s ∈ S such that the product as exists
for every a ∈ A.

We show that this is indeed a partial left S-action. Let s, s′ ∈ S be such
that homomorphisms s′f and s′(sf) exist. Then products as and as′ exist
for every a ∈ A. Fix a ∈ A. Then there exist the products as and (as)s′.
Therefore, a(ss′) also exists and a(ss′) = (as)s′. This implies that (ss′)f is
defined and for every a ∈ A we have

((ss′)f)(a) = f(a(ss′)) = f((as)s′) = (s′f)(as) = (s(s′f))(a),

which means that (ss′)f = s(s′f).
Hence Hom(RAS ,RB) is a partial left S-act and we have a well-defined

hom-functor Hom(RAS , ) : RPAct → SPAct. □

Note that every (R,S)-biact (in the usual sense) is clearly a polite partial
(R,S)-biact. The symbol RActS will denote the category of (usual) (R,S)-
biacts.

Proposition 4.2. Let R and S be semigroups. For every RAS ∈ Ob(RActS),

SB ∈ Ob(SPAct) and RC ∈ Ob(RPAct) the mapping

χ : Hom(SB, S(Hom(RAS ,RC))) → Hom(R(A⊗S B),RC),

χ(f)(a⊗ b) = f(b)(a)

is a bijection.

Proof. Let RAS ∈ Ob(RActS), SB ∈ Ob(SPAct) and RC ∈ Ob(RPAct).
First, we show that the mapping χ is well defined. Fix a homomorphism of
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partial left S-acts f ∈ Hom(SB, S(Hom(RAS ,RC))). Let β : A×B → C be
a mapping defined by

β(a, b) := f(b)(a)

where a ∈ A, b ∈ B. We show that β is S-tensorial. Let a ∈ A, b ∈ B, s ∈ S
be such that the products as and sb exist. Since f : SB → S(Hom(RAS ,RC))
is a homomorphism of partial left acts and RAS is a biact, there exists the
product sf(b) and sf(b) = f(sb). Now

β(as, b) = f(b)(as) (the definition of β)

= (sf(b))(a) (S-action of the partial act Hom(RAS ,RC))

= f(sb)(a) (equality sf(b) = f(sb))

= β(a, sb). (the definition of β)

Hence there exists a unique mapping β : A ⊗S B → C such that β = β ◦ τ ,
where τ is the canonical surjection. Note that χ(f) = β and so χ(f) is well
defined. Now let r ∈ R, a ∈ A, b ∈ B be such that the product ra is exists.
Due to

χ(f)(r(a⊗ b)) = χ(f)((ra)⊗ b) (action of the partial act R(A⊗S B))

= f(b)(ra) (the definition of χ)

= r(f(b)(a)) (f(b) ∈ Hom(RAS ,RC))

= r(χ(f)(a⊗ b)), (the definition of χ)

we have χ(f) ∈ Hom(R(A⊗S B),RC). In conclusion, χ is well defined.
Now let f1, f2 ∈ Hom(SB, S Hom(RAS ,RC))) be such that χ(f1) = χ(f2),

which means that f1(b)(a) = f2(b)(a). The last equality holds for every
a ∈ A and every b ∈ B and therefore f1 = f2. Hence χ is injective.

Let g ∈ Hom(R(A ⊗S B),RC) and f : SB → S(Hom(RAS ,RC)) be a
mapping defined by f(b)(a) = g(a ⊗ b) for every a ∈ A, b ∈ B. Let r ∈ R
be such that the product ra exists. As g is a homomorphism of partial left
acts, we get

f(b)(ra) = g((ra)⊗ b) = g(r(a⊗m)) = rg(a⊗m) = rf(b)(a).

Hence f(b) is a homomorphism of partial left R-acts, as needed.
Now assume that the product sb exists. For every s ∈ S there exists the

product as, because RAS is a (usual) biact, and, hence, sf(b) also exists and
(sf(b))(a) = f(b)(as) holds for every a ∈ A. Therefore

f(sb)(a) = g(a⊗ sb) = g(as⊗ b) = f(b)(as) = (sf(b))(a).

This means that f is a homomorphism and by the definition χ(f) = g. Hence
χ is surjective. □

Finally, we are ready to prove that the covariant functors Hom(RAS , ) :

RPAct → SPAct and RA⊗S : SPAct → RPAct are adjoint, where RAS is a
biact.
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Theorem 4.3. Let R and S be semigroups and RAS a biact. Then the
tensor functor RA⊗S : SPAct → RPAct is a left adjoint of the hom-functor
Hom(RAS , ) : RPAct → SPAct.

Proof. Let RAS be a biact. We denote a family of homomorphisms

ξ := (ξB,C)B∈Ob(SPAct)
C∈Ob(RPAct)

: Hom(S , S(Hom(RAS , )))⇒Hom(R(A⊗S ),R ),

where for every SB ∈ Ob(SPAct) and RC ∈ Ob(RPAct) we have ξB,C := χ
defined in Proposition 4.2. We know that every component of ξ is a bijection.
We fix SB, SD ∈ Ob(SPAct), RC ∈ Ob(RPAct), f : SB → SD and show that
the diagram

SB Hom(SB, S(Hom(RAS ,RC))) Hom(R(A⊗S B),RC)

SD Hom(SD, S(Hom(RAS ,RC))) Hom(R(A⊗S D),RC)

f

ξB,C

ξD,C

◦f ◦(idA ⊗f)

commutes. Let φ ∈ Hom(SD, S(Hom(RAS ,RC))) and a⊗ b ∈ A⊗S B. Now

(ξB,C ◦ ( ◦ f))(φ)(a⊗ b) = (ξB,C(φ ◦ f))(a⊗ b) = (χ(φ ◦ f))(a⊗ b)

= (φ ◦ f)(b)(a) = φ(f(b))(a)

and

(( ◦ (idA⊗f)) ◦ ξD,C)(φ)(a⊗ b) = ( ◦ (idA⊗f))(ξD,C(φ))(a⊗ b)

= ( ◦ (idA⊗f))(χ′(φ))(a⊗ b)

= (χ′(φ) ◦ (idA⊗f))(a⊗ b)

= χ′(φ)((idA⊗f)(a⊗ b))

= χ′(φ)(a⊗ f(b))

= φ(f(b))(a),

where χ′ is the bijection from Proposition 4.2 for the partial acts RAS , SD
and RC. Therefore ξ is natural in the first variable.

Similarly, ξ is also natural in the second variable. In conclusion, ξ is a
natural isomorphism, which proves the adjunction RA⊗S ⊣ Hom(RAS , ).

□
Every semigroup can be viewed as a biact over itself. Therefore we can

make the following corollary.

Corollary 4.4. Let R be a semigroup. The tensor functor RR ⊗R :

RPAct → RPAct is a left adjoint of the hom-functor Hom(RRR, ) : RPAct →
RPAct.
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[3] I. M. Araújo, M. J. J. Branco, V. H. Fernandes, and G. M. S. Gomes, Semigroups
and Languages, World Scientific Publishing Co Pte Ltd., Singapur, 2004.
DOI: 10.1142/5584

[4] M. Delorme, Sur la platitude des demi-groupes de fractions, C. R. Acad. Sci., 1969.
[5] M. Dokuchaev, Recent developments around partial actions, São Paulo J. Math. Sci.

13 (2019), 195–247, DOI: 10.1007/s40863-018-0087-y.
[6] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer.

Math. Soc. 126 (1998), 3481–3494.
[7] C. Hollings, Partial actions of monoids, Semigroup Forum. 75 (2007), 293–316.

DOI: 10.1007/s00233-006-0665-7
[8] J. Kellendonk and M. V. Lawson, Partial actions of groups, Internat. J. Algebra

Comput. 14 (2004), 87–114, DOI: 10.1142/S0218196704001657.

[9] M. Kilp, Flat polygons, Tartu Riikl. Ül. Toimetised 253 (1970), 66–72. (Russian)
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