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Asymmetric response of inelastic circular plates to
blast loading

Jaan Lellep and Annely Mürk

Abstract. The dynamic behaviour of clamped circular plates subjected
to the concentrated blast loading is studied. The load is applied at a
non-central point of the plate, non-axisymmetric deflections are taken
into account. An approximate theoretical procedure developed earlier is
applied for the evaluation of residual maximal deflections. The solution
technique is based on the idea of equality of the power of the internal
and external work, respectively. As it was shown earlier this concept
leads to results which are close to exact ones in the case of axisymmetric
loading of circular plates, also in the case of circular cylindrical shells.

1. Introduction

The response of beams and axisymmetric plates to quasi-static and dy-
namic loadings has been studied by many researchers making use of the con-
cept of a rigid plastic body. The first papers on this topic were published by
Hopkins and Prager [6]. In these studies the motion of ideal rigid-perfectly
plastic plates simply supported at the edge is prescribed in the case of the
material obeying the Tresca yield hexagon. Wang and Hopkins [27] extended
the solution by Hopkins and Prager to the case of plates clamped at the edge
and subjected to the impulsive loading. The dynamic plastic response of cir-
cular and annular plates due to the central pressure loading was examined by
Florence [2] – [5]. Evidently, the distributions of stresses and strains in the
plates subjected to the transverse pressure loading depend on the shape of
the dynamic pressure pulse. The influence of the pressure pulse on the resid-
ual deflections of circular and annular plates was investigated by Youngdahl
[30] and Krajcinovic [10, 11], also by Shen and Jones [25], Wen et al. [29],
Ma [18], Mazalov and Nemirovski [19], Micallef et al. [20], Salupere [23].
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The solutions to the problems of dynamic loading of axisymmetric plates
accounting for the transverse shear effects are developed by Li and Jones
[16], Chung Kim Yuen et al. [1], Nurick and Martin [21], Jones [6, 7], Lellep
and Torn [15], Wierzbicki and Jones [28], Oliviera and Jones [22]. The case
of a rectangular impulse distributed over a central region of the plate was
investigated by Liu and Stronge [16]. In the mentioned papers circular and
annular plates subjected to axisymmetric loadings are considered. In this
case it is reasonable to expect that the plastic response to loading is also ax-
isymmetric. Asymmetric loading of rigid-plastic circular plates is studied by
Lellep and Mürk [12] – [14] in the cases of rectangular and impulsive pressure
loadings. In the present paper the case of asymmetrical loading of inelastic
circular plates is studied under the assumption that the load intensity is ex-
ponentially decaying in time. An approximate method suggested by Jones
[7] is used for evaluation of maximal residual deflections.

2. Formulation of the problem

Let us consider the plastic response of an eccentrically loaded circular
plate to the blast loading. It is assumed that the intensity of the external
loading is defined as

P (r, θ, t) = p(t)f(r, θ), (1)

where t stands for the time whereas r and θ are the polar coordinates (the
polar radius and the polar angle, respectively). Here the function f(r, θ) is
assumed to be a piecewise continuous function of polar coordinates and p(t)
is a decaying function of time. In the case of blast loading one can take

p(t) =

{
p0e

−βt, t ∈ [0, t1],

0, t > t1,
(2)

where p0 and β, also t1 are given constants. The approximate method of
mode form motions will be employed in the current paper. Thus, one can
state that the deflection rate at each point of the plate is defined as

Ẇ (r, θ, t) = Ẇ0(t)ϕ(r, θ), (3)

where (see Lellep and Mürk [12] – [14])

ϕ(r, θ) = 1− r

r∗(θ)
. (4)

In (4) the function r∗(θ) presents the right-hand part of the equation of the
boundary of the plate r = r∗(θ). The plate under consideration has piecewise
constant thickness

h = hj , j = 1, . . . , n (5)



ASYMMETRIC RESPONSE OF INELASTIC CIRCULAR PLATES 295

for r ∈ (rj , rj+1). In principle, rj = rj(θ) are given smooth functions of
the angle θ. For the sake of simplicity, in the present study we confine our
attention to the case where rj(θ) = const; j = 1, . . . , n. The contour of the
plate is denoted by rn+1 = r∗. As the contour of the plate is a circle of
radius R one has

rn+1 = a cos θ +
√
R2 − a2 sin2 θ, (6)

where a stands for the distance between the centre of the plate O and the
origin of the polar coordinates O1. Evidently, in the cartesian coordinates
the points lying at the boundary of the plate have the form:

x = r∗ cos θ,

y = r∗ sin θ.
(7)

It is assumed that the plate is fully clamped at the contour, e.g. at
r = r∗. The aim of the study is the determination of residual deflections of
the circular plate of stepped thickness (5) subjected to the blast loading (2).
In this paper we confine our attention to the case of the concentrated load
applied asymmetrically.

3. Determination of residual deflections

It is assumed that the continuous yield line fan is formed by internal
forces. The internal energy dissipation corresponding to (3), (4) can be
calculated as (see Save et al. [24], Skrzypek and Hetnarski [26], Lellep and
Mürk [12] – [14])

Ḋi = Ẇ0

n∑
j=0

M0j

rj+1∫
rj

2π∫
0

1

r∗

(
1 +

r
′
∗
2

r2∗

)
dθdr, (8)

where M0j is the yield moment for h = h0j ,

M0j =
σ0h

2
0j

4
, (9)

and σ0 stands for the yield stress of the material. In (8), the following
notation is used:

Ẇ0 =
∂W0

∂t
,

r
′
∗ =

∂r∗
∂θ

.

(10)

Making use of (6) one can define
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r
′
∗ = −a sin θ − a2 sin 2θ

2
√
R2 − a2 sin2 θ

. (11)

The external power (the power of inertial forces and of the loading (1)) is

Ḋe = PẆ0 −
∫∫
(S)

µẆẄ dS, (12)

where −µ Ẅ stands for the inertial force of the element dS, µ being the
density of the material.

Following the approach presented by Jones [7] we assume that Ḋi = Ḋe.
This equality together with (1) – (4) yields the result

Ẅ0(t) = const, (13)

provided P (t) = const. However, if P = P (t), then Ẅ0 = Ẅ0(t). The
equation (13) can be easily integrated to give:

Ẇ0 = Ẅ0 · t+ C1 (14)

and

W0 =
1

2
Ẅ0 t

2 + C1t+ C2, (15)

where C1 and C2 are arbitrary constants of integration. Making use of the
initial conditions

Ẇ0(0) = v0,

W0(0) = w00,

(16)

in the particular case when v0 = 0, w00 = 0 one obtains C1 = C2 = 0. Thus,
according to (14) – (16) one has

Ẇ0(t) = Ẅ0 · t+ v0 (17)

and

W0(t) =
1

2
Ẅ0 t

2 + v0t+ w00. (18)

Equalizing the internal power and the power of external forces according
to (8), (12) one obtains
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n∑
j=0

M0j

rj+1∫
rj

2π∫
0

(
1

r∗
+
r
′
∗
2

r3∗

)
dθdr =

= P − µẄ0

n∑
j=0

2π∫
0

rj+1∫
rj

hj

(
1− r

r∗

)2

rdrdθ −
2π∫
0

M0n

r∗
dθ.

(19)

It easily follows from (19) that

Ẅ0 =

P −
2π∫
0

M0n

r∗
dθ −

n∑
j=0

M0j

rj+1∫
rj

2π∫
0

(
1

r∗
+
r
′
∗
2

r3∗

)
dθdr

µ
n∑
j=0

rj+1∫
rj

2π∫
0

hj

(
1− r

r∗

)2

rdrdθ

. (20)

It is worthwhile to mention that the acceleration of the plate is defined by
(20) during the active stage of loading. In the unloading phase the accelera-
tion can be obtained from (20), taking P = 0. In this case according to (20),

Ẅ0 < 0, as might be expected. In the unloading phase Ẅ0(t) = const. In
the case of the exponential loading (1), (2) it is reasonable to present (20)
as

Ẅ0 =
1

A

(
Ṗ0e

−βt −B
)
, (21)

where

A = µ

n∑
j=0

2π∫
0

rj+1∫
rj

hj

(
1− r

r∗

)2

rdrdθ (22)

and

B =

2π∫
0

M0n

r∗
dθ −

n∑
j=0

M0j

rj+1∫
rj

2π∫
0

(
1

r∗
+
r
′
∗
2

r3∗

)
dθdr. (23)

Integration with respect to time in (21) yields
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Ẇ0 = −P0e
−βt

Aβ
− B

A
t+ C1,

W0 =
P0e

−βt

Aβ2
− B

2A
t2 + C1t+ C2,

(24)

where C1, C2 stand for arbitrary constants. The relations (24) corresponding
to the initial conditions (16) with v0 = 0, w00 = 0 have the forms

Ẇ0 =
P0

Aβ

(
1− e−βt

)
− B

A
t (25)

and

W0 =
P0

Aβ2

(
e−βt − 1 + βt

)
− B

2A
t2. (26)

Evidently, (25) and (26) hold for the first phase for t ∈ [0, t0], provided
t0 ≤ t1. The case t1 < t0 will be studied later. During the second stage of
motion p(t) = 0; t > t1. For t > t1, the relations (25), (26) are not valid.
The acceleration for this stage of motion can be obtained from (20) taking
P = 0. Thus, the subsequent motion takes place with the acceleration

Ẅ0 =

−
2π∫
0

M0n

r∗
dθ −

n∑
j=0

M0j

rj+1∫
rj

2π∫
0

1

r∗

(
1 +

r
′
∗
2

r2∗

)
dθdr

µ
n∑
j=0

rj+1∫
rj

2π∫
0

hj

(
1− r

r∗

)2

rdrdθ

. (27)

The motion ceases at the time instant t2 when the velocity vanishes. Thus

Ẇ0(t2) = 0. (28)

Evidently

Ẇ0 = Ẅ0 (t− t1) + Ẇ0 (t1) , (29)

where Ẇ0(t1) is calculated with the help of (25) taking t = t1. In the similar
way one can define

W0 =
Ẅ0

2
(t− t1)2 + Ẇ0(t1) (t− t1) +W0(t1), (30)

where Ẇ0(t1) is defined by (26) at t = t1. Making use of (28), (29) one can
define the terminal time of motion
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t2 = t1 −
1

AẄ0

(
P0

β

(
1− e−βt1

)
−Bt1

)
(31)

where the acceleration Ẅ0 is defined by (27). The maximal permanent de-
flection can be calculated from (30), (31) as

W1 =
P0

Aβ2

(
e−βt1 − 1 + βt1

)
− B

2A
t21

+

3

(
P0

β

(
1− e−βt1

)
−Bt1

)2

A (P0e−βt1 −B)
.

(32)

4. Numerical results

The residual deflections at the final instant t2 are calculated numerically
after the determination of quantities A and B. The results of calculations
are presented in Figures 1 – 4 for the case of the plate subjected to the
concentrated force applied at the distance a = 0.5R and a = 0.1R from the
centre of the plate.

The permanent maximal deflections in Figures 1 – 4 are depicted for β =
0.2. It is assumed that

h =

{
h0, r ∈ [0, r1],

h1, r ∈ [r1, r∗],

where r1 = const and r∗ is defined by (6).
In Figure 1 the permanent deflections of circular plates of constant thick-

ness are presented.

Figure 1. Maximal permanent deflection of the plate of con-
stant thickness.
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The curves depicted in Figure 1 correspond to the loading times t1 =
0.1, . . . , t1 = 1.6. Here β = 0.2, a = 0.1R. It can be seen from Figure 1
that the larger is the load intensity the larger is the residual permanent
deflection as might be expected. The maximal permanent deflections of the
plate versus the duration of the loading phase are depicted in Figure 2 for
different values of the duration of the external loading.

Figure 2. Maximal permanent deflection of the stepped plate.

The curves presented in Figure 2 correspond to the loading duration t1 =
0.1, . . . , t1 = 1.6. Here a = 0.1R and h1 = 0.8h0. It can be seen from Figure 2
that the longer is the loading phase the larger are residual deflections. In
Figure 3 and Figure 4 the maximal residual deflections are presented in the
cases where a = 0.5R, r = 0.2R and a = 0.1R, r = 0.5R, respectively. Here,
as previously β = 0.2 and h1 = 0.8h0.

Figure 3. Maximal permanent deflection of the stepped plate.
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Comparing the residual deflections depicted in Figure 2 and Figure 4 one
can see that the larger is the mass of the plate the smaller is the residual
deflection. Maximal permanent deflections of simply supported and fully

Figure 4. Maximal permanent deflection of the stepped plate.

clamped circular plates are shown in Figure 5 for different values of the
length of the loading period.

Figure 5. Maximal permanent deflections of simply sup-
ported (t1S) and clamped plates (t1C).

It can be seen from Figure 5 that the permanent deflections of clamped plates
are smaller than those corresponding to simply supported plates calculated
by the authors in [13].
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5. Concluding remarks

An approximate theoretical method developed earlier is applied to the
clamped circular plate subjected to the asymmetrically loaded circular plate
clamped at the edge. Numerical results are obtained for fully clamped cir-
cular plates of piecewise constant thickness subjected to the concentrated
loading whose intensity is exponentially decaying. It is shown that the max-
imal residual displacements depend on the time of the active loading and
directly on the intensity of the transverse loading. In this sense the similar-
ity of the current case and the case of rectangular impulse can be observed.
Naturally, the relationship between the length of the loading stage and the
maximal permanent deflection is not a linear one. Nevertheless, the higher
is the load level the larger is the maximal permanent deflection, as might be
expected.
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