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Specht’s ratio and logarithmic mean in
time scale dynamic inequalities and

their retrospective variants

Deeba Afzal and Muhammad Jibril Shahab Sahir

Abstract. In this research article, we investigate reverse Radon’s in-
equality, reverse Bergström’s inequality, the reverse weighted power mean
inequality, reverse Schlömilch’s inequality, reverse Bernoulli’s inequality,
and reverse Lyapunov’s inequality with Specht’s ratio on time scales. We
also present reverse Rogers–Hölder’s inequality with logarithmic mean
and Specht’s ratio on time scales. The time scale dynamic inequalities
unify and extend some continuous inequalities and their corresponding
discrete and quantum versions.

1. Introduction

Specht’s ratio [7, 17] is defined by

S(h) =
h

1
h−1

e log h
1

h−1

,

where h > 0, h 6= 1.
Here, we present some properties of Specht’s ratio (see [7, 17, 18] for the

proofs and details):

(i) S(1) = 1 and S(h) = S
(

1
h

)
> 1 for all h > 0;

(ii) S(h) is a monotone increasing function on (1,∞) and monotone de-
creasing function on (0, 1).

The logarithmic mean L(m,M) (cf. [10]) is defined by

L(m,M) =
M −m

logM − logm
,
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where m and M are real numbers with 0 < m < M .
We state here some reverse integral inequalities (cf. [19]) with Specht’s

ratio.
Let f(x) and g(x) be positive and continuous functions. If β > 0, then(∫ b

a S
(

Ωfβ+1(x)
Λgβ+1(x)

)
f(x)dx

)β+1

(∫ b
a g(x)dx

)β ≥
∫ b

a

fβ+1(x)

gβ(x)
dx, (1)

where

Λ =

∫ b

a

fβ+1(x)

gβ(x)
dx and Ω =

∫ b

a
g(x)dx.

Inequality (1) is called reverse Radon’s integral inequality.

Let f(x) and w(x) be positive continuous functions with
∫ b
a w(x)dx = 1.

If 0 < δ1 < δ2, then(∫ b

a
S

(
f δ2(x)

Λ

)
w(x)f δ1(x)dx

) 1
δ1

≥
(∫ b

a
w(x)f

δ2
(x)dx

) 1
δ2

, (2)

where

Λ =

∫ b

a
w(x)f δ2(x)dx.

We will prove the results given in (1) and (2) on time scales. The calculus
of time scales was initiated by Stefan Hilger, as given in [9]. A time scale is
an arbitrary nonempty closed subset of the real numbers. The theory of time
scales is applied to combine results in one comprehensive form. The three
most popular examples of calculus on time scales are differential calculus,
difference calculus, and quantum calculus, i.e., when T = R, T = N, and
T = qN0 = {qt : t ∈ N0} where q > 1. The time scales calculus is studied as
delta calculus, nabla calculus, and diamond-α calculus. This hybrid theory
is also widely applied on dynamic inequalities, see [1, 6, 12, 13, 14, 15].
The basic work on dynamic inequalities is done by Ravi Agarwal, George
Anastassiou, Martin Bohner, Allan Peterson, Donal O’Regan, Samir Saker,
and many other authors.

In this paper, it is assumed that all integrals considered exist and are finite,
T is a time scale, a, b ∈ T with a < b, and [a, b]T denotes the intersection of
the real interval [a, b] with the time scale T.

2. Preliminaries

We need the basic concepts of delta calculus here. The results of delta
calculus are adopted from monographs [4, 5].

For t ∈ T, the forward jump operator σ : T→ T is defined by

σ(t) := inf{s ∈ T : s > t}.
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The mapping µ : T → R+
0 = [0,+∞) such that µ(t) := σ(t) − t is called

the forward graininess function. The backward jump operator ρ : T → T is
defined by

ρ(t) := sup{s ∈ T : s < t}.
The mapping ν : T → R+

0 = [0,+∞) such that ν(t) := t − ρ(t) is called
the backward graininess function. If σ(t) > t, then we say that t is right-
scattered, while if ρ(t) < t, then we say that t is left-scattered. Also, if
t < supT and σ(t) = t, then t is called right-dense, and if t > inf T and
ρ(t) = t, then t is called left-dense. If T has a left-scattered maximum M ,
then Tk = T− {M}, otherwise Tk = T.

For a function f : T→ R, the delta derivative f∆ is defined as follows.
Let t ∈ Tk. If there exists f∆(t) ∈ R such that, for all ε > 0, there is a

neighborhood U of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called
the delta derivative of f at t.

A function f : T→ R is said to be right-dense continuous (rd-continuous),
if it is continuous at each right-dense point and there exists a finite left-
sided limit at every left-dense point. The set of all rd-continuous functions
is denoted by Crd(T,R).

The next definition is given in [4, 5].

Definition 1. A function F : T → R is called a delta antiderivative of
f : T→ R, provided that F∆(t) = f(t) holds for all t ∈ Tk. Then the delta
integral of f is defined by∫ b

a
f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [2, 4, 5].
If T has a right-scattered minimum m, then Tk = T − {m}, otherwise

Tk = T. Further, Tkk = Tk ∩ Tk.
A function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla

derivative f∇(t), if there exists f∇(t) ∈ R such that, given any ε > 0, there
is a neighborhood V of t such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ε|ρ(t)− s|

for all s ∈ V .
A function f : T→ R is said to be left-dense continuous (ld-continuous),

provided it is continuous at all left-dense points in T and its right-sided
limits exist (finite) at all right-dense points in T. The set of all ld-continuous
functions is denoted by Cld(T,R).

The next definition is given in [2, 4, 5].
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Definition 2. A function G : T → R is called a nabla antiderivative of
g : T→ R, provided that G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla
integral of g is defined by∫ b

a
g(t)∇t = G(b)−G(a).

Now we present a short introduction to the diamond-α derivative as given
in [1, 16].

Definition 3. Let T be a time scale and let f(t) be differentiable on T
in the ∆ and ∇ senses. For t ∈ T, the diamond-α dynamic derivative f�α(t)
is defined by

f�α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

Thus f is diamond-α differentiable if and only if f is ∆ and ∇ differentiable.

The diamond-α derivative reduces to the standard ∆-derivative for α = 1,
or the standard ∇-derivative for α = 0. It represents a weighted dynamic
derivative for α ∈ (0, 1).

Theorem 1 (see [16]). Let f, g : T → R be diamond-α differentiable
at t ∈ T. Write fσ(t) = f(σ(t)), gσ(t) = g(σ(t)), fρ(t) = f(ρ(t)), and
gρ(t) = g(ρ(t)). Then

(i) f ± g : T→ R is diamond-α differentiable at t ∈ T, with

(f ± g)�α(t) = f�α(t)± g�α(t);

(ii) fg : T→ R is diamond-α differentiable at t ∈ T, with

(fg)�α(t) = f�α(t)g(t) + αfσ(t)g∆(t) + (1− α)fρ(t)g∇(t);

(iii) if g(t)gσ(t)gρ(t) 6= 0, then f
g : T → R is diamond-α differentiable at

t ∈ T, with(
f

g

)�α
(t) =

f�α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)fρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.

Definition 4 (see [16]). Let a, t ∈ T and h : T→ R. Then the diamond-α
integral from a to t of h is defined by∫ t

a
h(s) �α s = α

∫ t

a
h(s)∆s+ (1− α)

∫ t

a
h(s)∇s, 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 2 (see [16]). Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s)
are �α-integrable functions on [a, b]T. Then

(i)
∫ t
a [f(s)± g(s)] �α s =

∫ t
a f(s) �α s±

∫ t
a g(s) �α s;

(ii)
∫ t
a cf(s) �α s = c

∫ t
a f(s) �α s;

(iii)
∫ t
a f(s) �α s = −

∫ a
t f(s) �α s;
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(iv)
∫ t
a f(s) �α s =

∫ b
a f(s) �α s+

∫ t
b f(s) �α s;

(v)
∫ a
a f(s) �α s = 0.

We need the following results.
The famous reverse Young’s inequality (cf. [18]) with Specht’s ratio can

be written as

S
(a
b

)
a

1
p b

1
q ≥ a

p
+
b

q
(3)

for positive numbers a, b, and 1
p + 1

q = 1 with p > 1.

Now we present reverse Rogers–Hölder’s inequality (cf. [6]) with Specht’s
ratio on time scales in the following result.

Theorem 3. Let a, b ∈ Tkk and w, f, g ∈ C
(
[a, b]T,R+

0 − {0}
)

such that

fp and gq are �α-integrable on [a, b]T. If 1
p + 1

q = 1 with p > 1, then∫ b

a
S

(
Ωfp(x)

Λgq(x)

)
w(x)f(x)g(x) �α x

≥
(∫ b

a
w(x)fp(x) �α x

) 1
p
(∫ b

a
w(x)gq(x) �α x

) 1
q

, (4)

where

Λ =

∫ b

a
w(x)fp(x) �α x and Ω =

∫ b

a
w(x)gq(x) �α x,

and S(·) is Specht’s ratio.

For a, b > 0, the logarithmic mean and Specht’s ratio are used in a converse
difference inequality of Young’s inequality (cf. [18]) as

L(a, b) logS
(a
b

)
≥ 1

p
a+

1

q
b− a

1
p b

1
q (5)

holds for 1
p + 1

q = 1 with p > 1.

3. Main results

In order to present our main results, we first give the following extension
of reverse Radon’s inequality with Specht’s ratio on time scales.

Theorem 4. Let w, f, g ∈ C ([a, b]T,R− {0}) be �α-integrable functions.
If β > 0 and γ ≥ 1, then(∫ b

a S
(

Ω|f(x)|β+γ
Λ|g(x)|β+γ

)
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

(∫ b
a |w(x)||g(x)|γ �α x

)β+γ−1

≥
∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x, (6)
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where Λ =
∫ b
a
|w(x)||f(x)|β+γ
|g(x)|β �α x and Ω =

∫ b
a |w(x)||g(x)|γ �α x.

Proof. Let p = β + γ and q = β+γ
β+γ−1 . Then, similar to inequality (4), we

have that∫ b

a
S

(
Ω1|f(x)|β+γ

Λ1|g(x)|
β+γ
β+γ−1

)
|w(x)||f(x)g(x)| �α x

≥
(∫ b

a
|w(x)||f(x)|β+γ �α x

) 1
β+γ

(∫ b

a
|w(x)||g(x)|

β+γ
β+γ−1 �α x

)β+γ−1
β+γ

, (7)

where Λ1 =
∫ b
a |w(x)||f(x)|β+γ �α x and Ω1 =

∫ b
a |w(x)||g(x)|

β+γ
β+γ−1 �α x.

Replacing |f(x)| and |g(x)| by F (x) and G(x), respectively, and letting

F (x) = |f(x)|

|g(x)|
β+γ−1
β+γ

and G(x) = |g(x)|
β+γ−1
β+γ in (7), we have

∫ b

a
S

(
Ω2|f(x)|β+γ

Λ2|g(x)|β+γ

)
|w(x)||f(x)| �α x

≥
(∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β+γ−1
�α x

) 1
β+γ

(∫ b

a
|w(x)||g(x)| �α x

)β+γ−1
β+γ

, (8)

where Λ2 =
∫ b
a
|w(x)||f(x)|β+γ
|g(x)|β+γ−1 �α x and Ω2 =

∫ b
a |w(x)||g(x)| �α x. Taking both

sides of inequality (8) to the power β + γ, we get(∫ b

a
S

(
Ω2|f(x)|β+γ

Λ2|g(x)|β+γ

)
|w(x)||f(x)| �α x

)β+γ

≥
(∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β+γ−1
�α x

)(∫ b

a
|w(x)||g(x)| �α x

)β+γ−1

. (9)

Replacing |w(x)| by |w(x)||g(x)|γ−1 in inequality (9), we get(∫ b

a
S

(
Ω|f(x)|β+γ

Λ|g(x)|β+γ

)
|w(x)||f(x)||g(x)|γ−1 �α x

)β+γ

≥
(∫ b

a

|w(x)||f(x)|β+γ

|g(x)|β
�α x

)(∫ b

a
|w(x)||g(x)|γ �α x

)β+γ−1

, (10)

where Λ =
∫ b
a
|w(x)||f(x)|β+γ
|g(x)|β �αx and Ω =

∫ b
a |w(x)||g(x)|γ�αx. Inequality (10)

directly yields inequality (6). This completes the proof. �

Remark 1. If T = R, γ = 1, w ≡ 1, and f(x) and g(x) are positive
functions, then inequality (6) reduces to inequality (1).
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Remark 2. Let α = 1, T = Z, a = 1, b = n + 1, γ = 1, w ≡ 1, f(k) =
xk > 0, and g(k) = yk > 0 for k = 1, 2, . . . , n. Then a discrete version of the
inequality (6) reduces to(

n∑
k=1

S

(
Ωxβ+1

k

Λyβ+1
k

)
xk

)β+1

(
n∑
k=1

yk

)β ≥
n∑
k=1

xβ+1
k

yβk
, (11)

where Λ =
n∑
k=1

xβ+1
k

yβk
and Ω =

n∑
k=1

yk.

Inequality (11) is given in [19].

Next, we give the following extension of reverse Bergström’s inequality
with Specht’s ratio on time scales.

Corollary 1. Let w, f, g ∈ C ([a, b]T,R− {0}) be �α-integrable functions.
Then (∫ b

a S
(

Ω|f(x)|2
Λ|g(x)|2

)
|w(x)||f(x)| �α x

)2

∫ b
a |w(x)||g(x)| �α x

≥
∫ b

a

|w(x)||f(x)|2

|g(x)|
�α x, (12)

where Λ =
∫ b
a
|w(x)||f(x)|2
|g(x)| �α x and Ω =

∫ b
a |w(x)||g(x)| �α x.

Proof. If we put β = γ = 1, then (12) follows by Theorem 4. �

Remark 3. Let α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk ∈ R−{0},
and g(k) = yk > 0 for k = 1, 2, . . . , n. Then a discrete version of the
inequality (12) reduces to(

n∑
k=1

S
(

Ωx2k
Λy2k

)
xk

)2

n∑
k=1

yk

≥
n∑
k=1

x2
k

yk
, (13)

where Λ =
n∑
k=1

x2k
yk

and Ω =
n∑
k=1

yk.

Inequality (13) is obtained with Specht’s ratio, which is a reverse discrete
version of classical Bergström’s inequality [3, 11]. Bergström’s inequality is
also called Titu Andreescu’s inequality or Engel’s inequality in literature.

Next, we present the following extension of the reverse weighted power
mean inequality with Specht’s ratio on time scales.

Corollary 2. Let w, f ∈ C ([a, b]T,R− {0}) be �α-integrable functions. If
0 < δ1 < δ2, then
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(

Ω|f(x)|δ2
Λ

)
|w(x)||f(x)|δ1 �α x∫ b

a |w(x)| �α x


1
δ1

≥

(∫ b
a |w(x)||f(x)|δ2 �α x∫ b

a |w(x)| �α x

) 1
δ2

, (14)

where Λ =
∫ b
a |w(x)||f(x)|δ2 �α x and Ω =

∫ b
a |w(x)| �α x.

Proof. Since 0 < δ1 < δ2, we have δ2
δ1
> 1. Putting g ≡ 1 in Theorem 4,

we obtain(∫ b
a S

(
Ω|f(x)|

δ2
δ1

Λ1

)
|w(x)||f(x)| �α x

) δ2
δ1

(∫ b
a |w(x)| �α x

) δ2
δ1
−1

≥
∫ b

a
|w(x)||f(x)|

δ2
δ1 �α x,

where Λ1 =
∫ b
a |w(x)||f(x)|

δ2
δ1 �α x and Ω =

∫ b
a |w(x)| �α x. Replacing, in the

preceding inequality, |f(x)| by |f(x)|δ1 and taking both sides of the inequality
to the power 1

δ2
> 0, we deduce the desired result (14). �

Now, we state the following extension of reverse Schlömilch’s inequality
with Specht’s ratio on time scales.

Corollary 3. Let w, f ∈ C ([a, b]T,R− {0}) be �α-integrable functions. If
0 < δ1 < δ2, then(∫ b

a
S

(
|f(x)|δ2

Λ

)
|w(x)||f(x)|δ1 �α x

) 1
δ1

≥
(∫ b

a
|w(x)||f(x)|δ2 �α x

) 1
δ2

, (15)

where Λ =
∫ b
a |w(x)||f(x)|δ2 �α x.

Proof. Without loss of generality, we may suppose that
∫ b
a |w(x)|�αx = 1.

Therefore, by inequality (14), we have inequality (15). �

Remark 4. If T = R, and w(x) and f(x) are positive functions, then
inequality (15) reduces to inequality (2).

Remark 5. Let α = 1, T = Z, a = 1, b = n + 1, w(k) = pk > 0 and
f(k) = xk > 0 for k = 1, 2, . . . , n. Then a discrete version of inequality (15)
reduces to (

n∑
k=1

S

(
xδ2k
Λ

)
pkx

δ1
k

) 1
δ1

≥

(
n∑
k=1

pkx
δ2
k

) 1
δ2

, (16)
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where Λ =
n∑
k=1

pkx
δ2
k .

Inequality (16) is given in [19]. Inequality (16) is obtained with Specht’s
ratio, which is a reverse discrete version of classical Schlömilch’s inequality
[8, p. 26]. Further, if we put δ2 = 2δ1, then (16) takes the form of an
inequality given in [19, Remark 3.3].

Now, we present the following reverse Bernoulli’s inequality with Specht’s
ratio on time scales.

Theorem 5. Let f ∈ C ([a, b]T,R− {0}). If 0 < ξ < 1, then

S (|f(x)|) |f(x)|ξ ≥ 1 + ξ (|f(x)| − 1) . (17)

Proof. If we put p = 1
ξ for p > 1 in (3), then we get the desired claim. �

Remark 6. Inequality (17) is just an inverse of the following well-known
Bernoulli’s inequality [8, pp. 40–41]:

xξ ≤ 1 + ξ(x− 1)

for x ≥ 0 and 0 < ξ < 1.

Next, we present the following extension of reverse Lyapunov’s inequality
with Specht’s ratio on time scales.

Theorem 6. Let w, f, g ∈ C ([a, b]T,R− {0}) be �α-integrable functions.
If 0 < δ1 < δ2 < δ3 <∞, then(∫ b

a
S

(
Ω|g(x)|δ1
Λ|g(x)|δ3

)
|w(x)||f(x)||g(x)|δ2 �α x

)δ3−δ1
≥
(∫ b

a
|w(x)||f(x)||g(x)|δ1 �α x

)δ3−δ2
×
(∫ b

a
|w(x)||f(x)||g(x)|δ3 �α x

)δ2−δ1
, (18)

where

Λ =

∫ b

a
|w(x)||f(x)||g(x)|δ1 �α x and Ω =

∫ b

a
|w(x)||f(x)||g(x)|δ3 �α x,

and S(·) is Specht’s ratio.

Proof. Let us consider

p = δ3−δ1
δ3−δ2 and q = δ3−δ1

δ2−δ1 .

Then clearly 1
p + 1

q = 1 and δ1
p + δ3

q = δ2. Applying reverse Rogers–Hölder’s

inequality similar to (4) with Specht’s ratio on time scales, we get



14 DEEBA AFZAL AND MUHAMMAD JIBRIL SHAHAB SAHIR(∫ b
a S
(

Ω|g(x)|δ1
Λ|g(x)|δ3

)
|w(x)||f(x)||g(x)|δ2 �α x

)δ3−δ1
=

(∫ b
a S
(

Ω|g(x)|δ1
Λ|g(x)|δ3

)
|w(x)||f(x)|

1
p

+ 1
q |g(x)|

δ1
p

+
δ3
q �α x

)δ3−δ1
=
(∫ b

a S
(

Ω|g(x)|δ1
Λ|g(x)|δ3

)
|w(x)|

(
|f(x)||g(x)|δ1

) 1
p
(
|f(x)||g(x)|δ3

) 1
q �α x

)δ3−δ1
≥
(∫ b

a |w(x)||f(x)||g(x)|δ1 �α x
) δ3−δ1

p
(∫ b

a |w(x)||f(x)||g(x)|δ3 �α x
) δ3−δ1

q

=
(∫ b

a |w(x)||f(x)||g(x)|δ1 �α x
)δ3−δ2 (∫ b

a |w(x)||f(x)||g(x)|δ3 �α x
)δ2−δ1

.

This completes the proof. �

Remark 7. Let α = 1, T = Z, a = 1, b = n+1, w ≡ 1, f(k) = xk > 0, and
g(k) = yk > 0 for k = 1, 2, . . . , n. Then a discrete version of inequality (18)
reduces to(

n∑
k=1

S

(
Ωyδ1k
Λyδ3k

)
xky

δ2
k

)δ3−δ1
≥

(
n∑
k=1

xky
δ1
k

)δ3−δ2 ( n∑
k=1

xky
δ3
k

)δ2−δ1
, (19)

where Λ =
n∑
k=1

xky
δ1
k and Ω =

n∑
k=1

xky
δ3
k .

Inequality (19) is just an inverse of the following classical Lyapunov’s
discrete inequality [8, p. 27](

n∑
k=1

xky
δ2
k

)δ3−δ1
≤

(
n∑
k=1

xky
δ1
k

)δ3−δ2 ( n∑
k=1

xky
δ3
k

)δ2−δ1
.

Next, we give the following extension of reverse Rogers–Hölder’s inequality
with the logarithmic mean and Specht’s ratio on time scales.

Theorem 7. Let w, f, g ∈ C ([a, b]T,R− {0}) be �α-integrable on [a, b]T.
If 1

p + 1
q = 1 with p > 1, then∫ b

a
|w(x)||f(x)g(x)| �α x

≥
[
1−

∫ b

a
L

(
|w(x)||f(x)|p

Λ
,
|w(x)||g(x)|q

Ω

)
logS

(
Ω|f(x)|p

Λ|g(x)|q

)
�α x

]

×
(∫ b

a
|w(x)||f(x)|p �α x

) 1
p
(∫ b

a
|w(x)||g(x)|q �α x

) 1
q

, (20)

where Λ =
∫ b
a |w(x)||f(x)|p �α x, Ω =

∫ b
a |w(x)||g(x)|q �α x, L(·, ·) is the

logarithmic mean, and S(·) is Specht’s ratio.
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Proof. Let Φ(x) = |w(x)||f(x)|p
Λ and Ψ(x) = |w(x)||g(x)|q

Ω on [a, b]T. Inequality
(5) takes the form

L

(
|w(x)||f(x)|p

Λ
,
|w(x)||g(x)|q

Ω

)
logS

(
Ω|f(x)|p

Λ|g(x)|q

)
≥ 1

p

|w(x)||f(x)|p

Λ
+

1

q

|w(x)||g(x)|q

Ω
− |w(x)||f(x)g(x)|

Λ
1
pΩ

1
q

. (21)

By integrating both sides with respect to x from a to b, inequality (21)
becomes∫ b

a
L

(
|w(x)||f(x)|p

Λ
,
|w(x)||g(x)|q

Ω

)
logS

(
Ω|f(x)|p

Λ|g(x)|q

)
�α x

≥ 1−
∫ b

a

|w(x)||f(x)g(x)|

Λ
1
pΩ

1
q

�α x. (22)

Inequality (20) follows from (22). This completes the proof. �

Remark 8. If we set α = 1, then we get delta versions, and if we set
α = 0, then we get nabla versions of diamond-α integral operator inequalities
presented in this article. Also, if we set T = Z, then we get discrete versions,
and if we set T = R, then we get continuous versions of diamond-α integral
operator inequalities presented in this article.
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