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On dominions of certain ample monoids

Sohail Nasir and Abdullahi Umar

Abstract. A semigroup S is called left ample if it can be embedded in
the symmetric inverse semigroup IX of partial bijections of a non-empty
set X such that the image of S is closed under the unary operation
α 7−→ αα−1, where α−1 is the inverse of α in IX . Right ample semi-
groups are defined dually. A semigroup is called ample if it is both left
and right ample. A monoid is (left, right) ample if it is (left, right) ample
as a semigroup. We observe that the dominion of an ample subsemigroup
of IX coincides with the inverse subsemigroup of IX generated by it. We
then determine the dominions of certain submonoids of In, the symmet-
ric inverse semigroup over a finite chain 1 < 2 < · · · < n.

1. Introduction and preliminaries

We know from the Wagner–Preston representation theorem that any in-
verse semigroup can be embedded in the symmetric inverse semigroup IX of
partial bijections of a non-empty set X (see, for instance, [7] Theorem 5.1.7).
A semigroup S is called left ample if it can be embedded in some IX (or in
any inverse semigroup, for that matter) such that the image of S is closed
under the unary operation α 7−→ αα−1 = Idomα, where we are identifying S
with its isomorphic copy in IX , the maps are written to the right of their
arguments, α−1 ∈ IX is the inverse of α ∈ S and Idomα denotes the identity
map on the domain of α. We shall call IX a symmetric inverse semigroup
associated with S. Right ample semigroups are defined dually. A semigroup
is called ample if it is both left and right ample. A monoid is (left, right)
ample if it is (left, right) ample as a semigroup. Let S be a left (respec-
tively, right) ample semigroup with associated symmetric inverse semigroup
IX (respectively, IY ). Then the problem of finding a set Z such that IZ (as
an associated symmetric inverse semigroup) makes S into a left as well as
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right ample semigroup is, in general, undecidable [5]. A subsemigroup S of
a semigroup T is called full if it contains all idempotents of T . In particular,
every full subsemigroup of an inverse semigroup is ample. Notwithstanding,
(N, ·) is an ample submonoid of (R, ·) that is not full. In this article we
shall study the dominions of certain ample submonoids of In, the symmetric
inverse semigroup over a finite chain 1 < 2 < · · · < n of natural numbers
(see Figure 1).

For standard concepts in semigroup theory we refer the reader to Howie
[7] or Higgins [6]. For further details about ample semigroups (monoids) the
reader is referred to [4] and the references contained therein.

Recall that a morphism f : A −→ B in a category C is called an epimor-
phism, shortly epi, if for all C ∈ Ob(C) and for all g, h ∈ HomC(B,C)

fg = fh =⇒ g = h.

In concrete categories surjective morphisms are always epis. The converse
is, however, not true. Particularly, there exist non-surjective epis in the
categories of all semigroups and all monoids and their homomorphisms, see
for instance [8].

2. Dominions

A semigroup S is called an oversemigroup of a semigroup U if the latter
is a subsemigroup of the former. Overmonoids are defined similarly. Given
an oversemigroup S of a semigroup U , an element d ∈ S is said to be in the
dominion of U if for all pairs of semigroup homomorphisms f, g : S −→ T
we have:

f |U = g |U =⇒ (d)f = (d)g. (1)

The set of all elements of S satisfying implication (1) is called the dominion
of U in S; we denote it by DomSU . Dominions of monoids are defined
similarly. A semigroup (respectively, monoid) is said to be absolutely closed
if DomSU = U for every oversemigroup (respectively, overmonoid) S of U .

Theorem 1 (Theorem 8.3.6 of [7]). Inverse semigroups are absolutely
closed.

Note that a morphism f : S −→ T in the category of semigroups (monoids)
is an epi if and only if DomT Imf = T . In this case we say that S is epimor-
phically embedded in T .

Remark 1. The following statements can be easily verified.

(1) Let U be a subsemigroup of a semigroup S. Then DomSU is an
oversemigroup of U and a subsemigroup of S.

(2) If U1 and U2 are subsemigroups of a semigroup S with U1 ⊆ U2 then
DomSU1 ⊆ DomSU2.
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(3) DomS(DomSU) = DomSU for every subsemigroup U of S.

Conditions (1)–(3) imply that DomS is a ‘closure operator’ in the sense of
universal algebra [2].

Proposition 1. Let U be an ample semigroup with associated symmet-
ric inverse semigroup IX (that makes it both left and right ample). Then
DomIXU = ⟨U⟩INV, where ⟨U⟩INV is the inverse subsemigroup of IX gener-
ated by U .

Proof. If U is an inverse semigroup, then, by Theorem 1, there is nothing
to prove. So, assume that U is an ample semigroup that is not inverse. By
Remark 1 part (2) and Theorem 1, we have:

DomIXU ⊆ DomIX ⟨U⟩INV = ⟨U⟩INV.

To prove the reverse inclusion, let us make the following observations.
By Remark 1 part (1), U ⊆ DomIXU . Also, since U is not inverse, there
exists x ∈ U such that x−1 ∈ ⟨U⟩INV ∖ U , where x−1 is the inverse of x in
IX . Now, because U is left and right ample with respect to IX , we have
xx−1, x−1x ∈ U .

Let f, g : IX −→ T be semigroup homomorphisms with f |U = g |U .
Then, we may calculate

(x−1)f = (x−1xx−1)f = (x−1)f(xx−1)f

= (x−1)f(xx−1)g = (x−1)f(x)g(x−1)g

= (x−1)f(x)f(x−1)g = (x−1x)f(x−1)g

= (x−1x)g(x−1)g = (x−1xx−1)g

= (x−1)g.

(2)

Hence, x−1 ∈ DomIXU . Now, because the generating set of ⟨U⟩INV is
contained in DomIXU , it follows that ⟨U⟩INV ⊆ DomIXU . □

Corollary 1. If U is a left and right ample semigroup with respect to the
same associated symmetric inverse semigroup IX then U is epimorphically
embedded in ⟨U⟩INV.

Proof. It suffices to prove that ⟨U⟩INV ⊆ Dom⟨U⟩INV
U . Let x ∈ ⟨U⟩INV.

Then x = u1u2 · · ·un, where u1, u2, . . . , un ∈ IX are such that ui or u−1
i

belongs to U for all i ∈ {1, 2, . . . , n}. Let f, g : ⟨U⟩INV −→ T be semigroup
homomorphisms with f |U = g |U . Then, by virtue of calculation (2), we
have (ui)f = (ui)g for all i ∈ {1, 2, . . . , n}. Thus (x)f = (x)g, whence
x ∈ Dom⟨U⟩INV

U , as required. □

3. Subsemigroups of In

Let In denote the symmetric inverse semigroup over a chain

1 < 2 < · · · < n (3)
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of natural numbers. In this section we shall determine the dominions of
certain submonoids of In, henceforth called special submonoids. We shall
omit parenthesis around the arguments of partial transformations, whenever
they are not necessary.

(1) Let Sn denote the symmetric group of all bijections of chain (3). We
define I ′

n := (In ∖ Sn) ∪ {ι}, where ι denotes the identity of Sn. It
is an easy exercise to prove that I ′

n is an inverse submonoid of In.
The elements of I ′

n are called strict partial bijections.

(2) We call α ∈ In order-decreasing if xα ≤ x for all x ∈ Dom α. We
denote by DIn the special submonoid of all order-decreasing partial
bijections. The special submonoidDI+

n of all order-increasing partial
bijections is defined dually [10].

(3) A partial bijection α ∈ In is said to be order-preserving or monotone
if

∀x, y ∈ Dom α, x < y implies that xα < yα.

We denote by OIn the special submonoid of all monotone partial
bijections [3].

(4) An element α of In is called a contraction (respectively, expansion)
if for all x, y ∈ Dom α we have |xα − yα| ≤ |x − y| (respectively,
|xα − yα| ≥ |x − y|). The special submonoid of all contractions
(respectively, expansions) is denoted by CIn (respectively, CI∗

n) [1].

(5) We say that α ∈ In is order-reversing or antitone if

∀x, y ∈ Dom α, x < y implies that yα < xα.

Note that the only order-reversing full transformation of (3) is

e :

(
1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
.

Let RIn denote the subset of I ′
n comprising all monotone as well as

all antitone partial bijections. Then it is an easy exercise to show that
RIn is a (special) submonoid of In. (Indeed, RIn = ORIn ∖ {e},
where ORIn denotes the submonoid of In containing all monotone
and all antitone partial bijections, see [3]).

The special submonoid of In comprising all partial bijections that are
both order-preserving and order-decreasing is denoted byODIn. The special
submonoids OCIn, RDIn, RCIn, DCIn, ODCIn, RDCIn etc. are defined
analogously, see the following lattice diagram.

The study of these submonoids is not only motivated by their natural
occurrence, but also by their elegant use in the enumerative combinatorial
problems [1, 9, 10, 11]. The aim of this section is find the dominions of
certain special submonoids, see Remark 3.
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Figure 1. The lattice of special submonoids.

Let S be a special submonoid and let α ∈ S. Then it can be easily
verified that αα−1 = Idomα and α−1α = Idomα−1 belong to S. Thus we have
the following lemma.

Lemma 1. The special submonoids of In are all ample (with In being
their associated symmetric inverse semigroup).

Lemma 2. OIn, DIn, DI+
n and RIn are submonoids of I ′

n.

Proof. Let α ∈ OIn. Suppose on the contrary that α ∈ Sn ∖ {ι}. Then
Dom α = Im α = {1, 2, . . . , n}. Because α ̸= ι, there exists j ∈ Dom α such
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that jα = k ̸= j. Let us consider the case when k < j (the other case,
wherein k > j, can be dealt with similarly). Since α is a monotone bijection,
it must map {1, 2, . . . , j−1} to {1, 2, . . . , k−1} in a one-to-one fashion. This
gives a contradiction, because k − 1 < j − 1. Similarly, we can show that
DIn and DI+

n are submonoids of I ′
n.

Lastly, RIn is a submonoid of I ′
n because OIn ⊆ I ′

n and the only order-
reversing full bijection, viz. e, does not belong to RIn. □

Let f be a bijective mapping from a semigroup S to a semigroup T . We
call f an anti-isomorphism if (xy)f = (y)f(x)f , for all x, y ∈ S.

Proposition 2. The map α 7−→ α−1 is an anti-isomorphism from

(1) OIn to OIn,

(2) RIn to RIn,

(3) DIn to DI+
n ,

(4) CIn to CI∗
n,

(5) DCIn to DI+
n ∩ CI∗

n (:= DCI+∗
n ) and

(6) ODCIn to ODI+
n ∩ OCI∗

n (:= ODCI+∗
n ).

Proof. Obviously, α is order-preserving (respectively, order-reversing) if
and only if α−1 is order-preserving (respectively, order-reversing). It is also
clear that α is order-increasing (respectively, expansion) if and only if α−1 is
order-decreasing (respectively, contraction). Moreover, the map (α)ψ = α−1

is a bijection with

(αβ)ψ = (αβ)−1 = β−1α−1 = (β)ψ(α)ψ. (4)

Thus α 7−→ α−1 is an anti-isomorphism in all the above-mentioned cases. □

Remark 2. Clearly α 7−→ α−1 is also an anti-isomorphism from DI+
n to

DIn, from CI∗
n to CIn, from DCI+∗

n to DCIn and from ODCI+∗
n to ODCIn.

The following corollary immediately follows from Proposition 2.

Corollary 2. OIn and RIn are inverse submonoids of I ′
n.

Remark 3. Because In, I ′
n, RIn, OIn and {ι} are inverse monoids, they

coincide, by Theorem 1, with their dominions in In. On the contrary, it also
follows from Proposition 2 that the remaining submonoids in Figure 1 are
all non-inverse. We shall use Proposition 1 to find the dominions for 12 of
the remaining 24 submonoids. To avoid somewhat cumbersome notations,
such as DomInODCI+∗

n = OIn, the dominions will always be described in
terms of Corollary 1, see Theorems 2, 3, 4, and Corollary 3.

Remark 4. Each α ∈ In can be pictured as a digraph G whose set of
vertices is Domα ∪ Imα. We have an edge from vertex u to vertex v if
uα = v. The in- (respectively, out-) degree of every v ∈ Dom α ∖ Imα is 0
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(respectively, 1). Dually, the in- (respectively, out-) degree of every vertex
v ∈ Imα ∖ Dom α is 1 (respectively, 0). On the other hand, both the in-
and out-degrees of v ∈ Dom α ∩ Imα are 1. This implies that each of the
connected components of G either consists of

• a unique path: (y1, . . . , yk), where yiα = yi+1, i = 1, . . . , k − 1,

• or, a unique cycle: (x1, . . . , xr), such that xiα = xi+1, i = 1, . . . , r−1,
xrα = x1,

• or, a unique fixed point z = zα.

Note that a path π̂ = (y1, . . . , yk) may be treated as an element of I ′
k (and

hence of I ′
n) because y1 ̸∈ Imα (equivalently, yk ̸∈ Dom α). Similarly, a cycle

µ̂ = (x1, . . . , xr) may be viewed as an element of Sr ⊆ In.

Remark 5. Let the digraph α ∈ In have component paths π̂1, π̂2 . . . , π̂r
and component cycles µ̂1, µ̂2, . . . , µ̂s. Define πi, µj ∈ In, 1 ≤ i ≤ r, 1 ≤ j ≤ s
by

(x)πi =

{
(x) π̂i, if x ∈ Dom π̂i,
x, if x ∈ Dom α∖Dom π̂i ,

(x)µj =

{
(x) µ̂j , if x ∈ Dom µ̂j ,
x, if x ∈ Dom α∖Dom µ̂j .

Then α = π1 ◦ · · · ◦πr ◦µ1 ◦ · · · ◦µs (with the product on the right hand side
being commutative).

Proof. Straightforward verification. □

To keep the notations simple, the component paths π̂1, π̂2, . . . , π̂r and
component cycles µ̂1, µ̂2, . . . , µ̂s for any α ∈ In will be identified, respectively,
with the partial bijections π1, . . . , πr and µ1, . . . , µs defined in Remark 5.

Lemma 3. Let π : (y1, . . . , yk) be a path in the digraph of α ∈ In. Then,
for any 1 < m < k, π = ρ1 ◦ ρ2, where ρ1, ρ2 ∈ I ′

n are defined below.

ρ1 :

(
y1 y2 . . . ym−1 ym ym+1 . . . yk−1

y1 y2 . . . ym−1 ym+1 ym+2 . . . yk

)
,

ρ2 :

(
y1 y2 . . . ym−1 ym+1 ym+2 . . . yk
y2 y3 . . . ym ym+1 ym+2 . . . yk

)
.

Proof. Straightforward. □

In fact one can easily prove the following generalized version of the above
lemma.

Lemma 4. Let π : (y1, . . . , yk) be a path in the digraph of α ∈ In and
let 1 = m0 < m1 < m2 < · · · < mr−1 < mr = k. Then, there exists a
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factorization π = ρ1 ◦ ρ2 ◦ · · · ◦ ρr, where ρ1, ρi, 2 < i < r − 1, and ρr are
the elements of I ′

n defined below.

ρ1 :

(
y1 y2 . . . ymr−1−1 ymr−1 ymr−1+1 . . . ymr−1

y1 y2 . . . ymr−1−1 ymr−1+1 ymr−1+2 . . . ymr

)
,

ρi :

(
y1 . . . ymr−i−1 ymr−i . . . ymr−i+1−1 ymr−i+1+1 . . . ymr

y1 . . . ymr−i−1 ymr−i+1 . . . ymr−i+1 ymr−i+1+1 . . . ymr

)
,

ρr :

(
y1 y2 . . . ym1−1 ym1+1 ym1+2 . . . ymr

y2 y3 . . . ym1 ym1+1 ym1+2 . . . ymr

)
.

Proof. Recursively apply Lemma 3. □

Lemma 5. Let α ∈ OIn. Then the digraph of α does not contain any
cycles. Moreover, if π = ρ1 ◦ ρ2 ◦ · · · ◦ ρr is a factorization of a component
path of α, as given by Lemma 4, then ρi ∈ OIn for all i ∈ {1, 2, . . . , r}.

Proof. Let α ∈ OIn. Suppose on the contrary that the digraph of α
contains a cycle:

µ : (x1, x2, . . . , xk), k ≥ 2.

If x1 < x2 then x2 = (x1)α < (x2)α = x3, since α is monotone. Iterating
the argument we get

x1 < x2 < · · · < xk < x1,

a contradiction. Similarly, x1 > x2 gives a contradiction. Thus the digraph
of α does not contain any cycles.

To prove the second part, consider a path π = (y1, . . . , yk) in the digraph
of α. Let ρ1, ρi, 2 < i < r−1, and ρr be the components of a decomposition
of α given by Lemma 4. Because α is monotone, we have either

y1 < y2 < · · · < yk

or

y1 > y2 > · · · > yk.

In the former (respectively, latter) case both the rows in ρi, 1 < i < r,
are written in ascending (respectively, descending) order, going from left to
right. This implies that ρi, 1 < i < r, are all monotone. □

Lemma 6. Let µ : (x1, . . . , xk) be a cycle in the digraph of α ∈ I ′
n ∖ {ι}.

Then we have µ = σ ◦ π such that σ is the path (x1, x
′) and π is the path

(x′, x2, x3, . . . , xk−1, xk, x1) for some x′ ∈ {1, 2, . . . , n}∖ Imµ.

Proof. Let α ∈ I ′
n ∖ {ι} be a cycle. Then note that Imµ = Domµ and

there exists x′ ∈ {1, 2, . . . , n}∖ Imµ. Now, it is a routine to verify that

σ =

(
x1 x2 . . . xk−1 xk
x′ x2 . . . xk−1 xk

)
and



DOMINIONS OF CERTAIN AMPLE MONOIDS 25

π =

(
x′ x2 . . . xk−1 xk
x2 x3 . . . xk x1

)
satisfy the requirements of the lemma. □

Theorem 2. DIn and DI+
n are epimorphically embedded in I ′

n.

Proof. By Corollary 1, Proposition 2 and Remark 2, it suffices to show
that I ′

n is the inverse submonoid of In generated by DIn (equivalently,
DI+

n ). Indeed, we need to prove that any element of I ′
n can be expressed as

a product of elements belonging to DIn ∪ DI+
n .

Let α be an arbitrary element of I ′
n and let ξ = (y1, . . . , yk) be a com-

ponent path in the digraph of α. If k = 2 then ξ is either order-decreasing
or order-increasing. If k ≥ 3, then, applying Lemma 4 with appropriate
division points m1, . . . ,mr−1, we may write ξ = ξ1 ◦ ξ2 ◦ · · · ◦ ξr such that
ξi ∈ DIn ∪ DI+

n , 1 ≤ i ≤ r.
Also, if µ is a component cycle in the digraph of α then there exists

a decomposition µ = σ ◦ π, as described in Lemma 6. It is clear that
σ ∈ DIn ∪ DI+

n , whereas π, being a path, can be further factorized into
ρ1 ◦ ρ2 ◦ · · · ◦ ρk with ρi ∈ DIn ∪ DI+

n , 1 ≤ i ≤ k, as discussed above.
Lastly, ι ∈ DIn ∩ DI+

n . Hence, I ′
n is the inverse subsemigroup of In

generated by DIn (equivalently, DI+
n ). □

Theorem 3. The special submonoids ODCIn, ODCI+∗
n , ODCI∗

n and
ODCI+

n are all epimorphically embedded in OIn.

Proof. Recall from Lemma 2 that OIn is contained in I ′
n. Let

α = α1 ◦ α2 ◦ · · · ◦ αk

be a factorization of α ∈ OIn as given by Theorem 2. By Lemma 5, we have
αi ∈ ODIn ∪ ODI+

n , 1 ≤ i ≤ k. Let γ ∈ ODIn be defined by

γ :

(
x1 x2 . . . xk
y1 y2 . . . yk

)
, xi, yi ∈ {1, 2, . . . , n}, 1 ≤ i ≤ k < n.

We may assume, without loss of generality, that

x1 < x2 < · · · < xk−1 < xk.

Then

y1 < y2 < · · · < yk−1 < yk,

because γ is order-preserving. We also have

y1 ≤ x1, y2 ≤ x2, . . . , yk ≤ xk,
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as γ is order-decreasing. Now, define δ, ξ ∈ I ′
n by

δ :

(
x1 x2 . . . xk
y1 y1 + 1 . . . y1 + k − 1

)
,

ξ :

(
y1 y1 + 1 . . . y1 + k − 1
y1 y2 . . . yk

)
.

Then, clearly γ = δ ◦ ξ. Also, it can be easily verified that δ ∈ ODCIn and
ξ ∈ ODCI+∗

n . Using a similar argument, one can show that every β ∈ ODI+
n

can be factorized in ODCIn∪ODCI+∗
n . Thus the inverse subsemigroup OIn

is generated by ODCIn, as well as ODCI+∗
n .

To prove that each of ODCI∗
n and ODCI+

n also generate OIn consider
again α ∈ OIn with a factorization

α = α1 ◦ α2 ◦ · · · ◦ αk

and γ ∈ ODIn both as defined above. Define

δ′ :

(
x1 x2 . . . xk−1 xk

xk − k xk − (k − 1) . . . xk − 1 xk

)
,

ξ′ :

(
xk − k xk − (k − 1) . . . xk − 1 xk
y1 y2 . . . yk−1 yk

)
.

Then γ = δ′ ◦ ξ′, where δ′ ∈ ODCI+
n and ξ′ ∈ ODCI∗

n. Also, any β ∈ ODI+
n

can be factorized in ODCI+
n ∪ ODCI∗

n by using a similar argument. □

Corollary 3. ODIn, ODI+
n , OCIn and OCI∗

n are epimorphically em-
bedded in OIn.

Proof. Let ODCIn = U , ODIn = V , OIn = S, In = T . Then U ⊆ V ⊆
S ⊆ T . Now, observe that DomTV = S:

S = DomTU , by Theorem 3 and Corollary 1,

⊆ DomTV , by part(2) of Remark 1,

⊆ S, by Proposition 1, for S is an inverse monoid.

This implies by Corollary 1 that ODIn is epimorphically embedded in OIn.
That the remaining three submonoids epimorphically embed in OIn can be
shown similarly. □

Theorem 4. RCIn and RCI∗
n are epimorphically embedded in RIn.

Proof. Let α ∈ RIn. If α is order-preserving, i.e. α ∈ OIn, then we may
write by Corollary 3

α = α1 ◦ α2 ◦ · · · ◦ αk,
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where αi ∈ OCIn ∪ OCI∗
n ⊆ RCIn ∪RCI∗

n, 1 ≤ i ≤ k. So, assume that

α :

(
x1 x2 . . . xk
y1 y2 . . . yk

)
, xi, yi ∈ {1, 2, . . . , n}, 1 ≤ i ≤ k < n

is an order-reversing bijection. We may suppose, without loss of generality,
that x1 < x2 < · · · < xk. This also necessitates: yk < yk−1 < · · · < y1. We
shall need the following chain to define the factors of α,

z1 < z1 + 1 < · · · < zp,

where z1 = min{x1, yk}, zp = max{xk, y1}. Let us define

ξ1:

(
x1 x2 . . . xk−1 xk
z1 z1 + 1 . . . z1 + k − 2 z1 + k − 1

)
,

ξ2:

(
z1 z1 + 1 . . . z1 + k − 2 z1 + k − 1
y1 y2 yk−1 yk

)
.

Then, clearly, α = ξ1 ◦ ξ2, with ξ1 ∈ RCIn, ξ2 ∈ RCI∗
n (indeed ξ1 is order-

preserving and ξ2 is order-reversing). Thus RIn is the inverse submonoid
of In generated by RCIn (equivalently, RCI∗

n), and the theorem follows by
Corollary 1. □

Conclusion. The authors wonder as to what are the inverse submonoids
of In generated by the remaining 12 submonoids in Figure 1.
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