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On dominions of certain ample monoids

SOHAIL NASIR AND ABDULLAHI UMAR

ABSTRACT. A semigroup S is called left ample if it can be embedded in
the symmetric inverse semigroup Zx of partial bijections of a non-empty
set X such that the image of S is closed under the unary operation
a — aa” !, where o' is the inverse of a in Zx. Right ample semi-
groups are defined dually. A semigroup is called ample if it is both left
and right ample. A monoid is (left, right) ample if it is (left, right) ample
as a semigroup. We observe that the dominion of an ample subsemigroup
of Tx coincides with the inverse subsemigroup of Zx generated by it. We
then determine the dominions of certain submonoids of Z,,, the symmet-
ric inverse semigroup over a finite chain 1 <2 < --- < n.

1. Introduction and preliminaries

We know from the Wagner—Preston representation theorem that any in-
verse semigroup can be embedded in the symmetric inverse semigroup Zx of
partial bijections of a non-empty set X (see, for instance, [7] Theorem 5.1.7).
A semigroup S is called left ample if it can be embedded in some Zx (or in
any inverse semigroup, for that matter) such that the image of S is closed
under the unary operation o — aa ™! = Ijyma, where we are identifying S
with its isomorphic copy in Zx, the maps are written to the right of their
arguments, o~ € Ty is the inverse of o € S and Igpme denotes the identity
map on the domain of a. We shall call Zx a symmetric inverse semigroup
associated with S. Right ample semigroups are defined dually. A semigroup
is called ample if it is both left and right ample. A monoid is (left, right)
ample if it is (left, right) ample as a semigroup. Let S be a left (respec-
tively, right) ample semigroup with associated symmetric inverse semigroup
Tx (respectively, Zy ). Then the problem of finding a set Z such that Z, (as
an associated symmetric inverse semigroup) makes S into a left as well as
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right ample semigroup is, in general, undecidable [5]. A subsemigroup S of
a semigroup 7' is called full if it contains all idempotents of T'. In particular,
every full subsemigroup of an inverse semigroup is ample. Notwithstanding,
(N,+) is an ample submonoid of (R,-) that is not full. In this article we
shall study the dominions of certain ample submonoids of Z,, the symmetric
inverse semigroup over a finite chain 1 < 2 < --- < n of natural numbers
(see Figure 1).

For standard concepts in semigroup theory we refer the reader to Howie
[7] or Higgins [6]. For further details about ample semigroups (monoids) the
reader is referred to [4] and the references contained therein.

Recall that a morphism f: A — B in a category C is called an epimor-
phism, shortly epi, if for all C' € Ob(C) and for all g,h € Hom¢(B, C)

fg=Ffh=g=h

In concrete categories surjective morphisms are always epis. The converse
is, however, not true. Particularly, there exist non-surjective epis in the
categories of all semigroups and all monoids and their homomorphisms, see
for instance [8].

2. Dominions

A semigroup S is called an oversemigroup of a semigroup U if the latter
is a subsemigroup of the former. Overmonoids are defined similarly. Given
an oversemigroup S of a semigroup U, an element d € S is said to be in the
dominion of U if for all pairs of semigroup homomorphisms f,g : S — T
we have:

flo =glv = (@) f = (d)g. (1)
The set of all elements of S satisfying implication (1) is called the dominion
of U in §; we denote it by DomgU. Dominions of monoids are defined
similarly. A semigroup (respectively, monoid) is said to be absolutely closed
if DomgU = U for every oversemigroup (respectively, overmonoid) S of U.

Theorem 1 (Theorem 8.3.6 of [7]). Inverse semigroups are absolutely
closed.

Note that a morphism f : S — T in the category of semigroups (monoids)
is an epi if and only if Domrlmf = T. In this case we say that S is epimor-
phically embedded in T.

Remark 1. The following statements can be easily verified.

(1) Let U be a subsemigroup of a semigroup S. Then DomgU is an
oversemigroup of U and a subsemigroup of S.

(2) If Uy and U are subsemigroups of a semigroup S with U; C Uy then
DomgU; C DomgUs.
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(3) Domg(DomgU) = DomgU for every subsemigroup U of S.

Conditions (1)—(3) imply that Domg is a ‘closure operator’ in the sense of
universal algebra [2].

Proposition 1. Let U be an ample semigroup with associated symmet-
ric inverse semigroup Lx (that makes it both left and right ample). Then
Domz, U = (U)inv, where (U)inv is the inverse subsemigroup of Ix gener-
ated by U.

Proof. If U is an inverse semigroup, then, by Theorem 1, there is nothing
to prove. So, assume that U is an ample semigroup that is not inverse. By
Remark 1 part (2) and Theorem 1, we have:

DomIXU Q DomIX <U>INV = <U>INV-

To prove the reverse inclusion, let us make the following observations.
By Remark 1 part (1), U € Domz,U. Also, since U is not inverse, there
exists € U such that 27! € (U)ny \ U, where 27! is the inverse of x in
Zx. Now, because U is left and right ample with respect to Zx, we have
ze Lz lz e U.

Let f,g : Zx — T be semigroup homomorphisms with f|y = g|v.
Then, we may calculate

(@ )f

H
H
H

f=@Nf (@™ )f
g =(a” )fl(m)g(m g

= (2~

= (a7

= (z7! x) (27 h)g = (@™ ') f(z7h)g (2)
( 1
= (

H

e ta)g(z g = (z tza g

zh)g.
Hence, x=" € Domz,U. Now, because the generating set of (U)iny is
contained in Domz, U, it follows that (U)inv € Domz, U. O

1

Corollary 1. If U is a left and right ample semigroup with respect to the
same associated symmetric inverse semigroup Lx then U s epimorphically
embedded in (U)Ny .

Proof. Tt suffices to prove that (U)inv € Dompy,U. Let x € (U)iny.
Then * = wjus - - -u,, where uy,us,...,u, € Ix are such that u; or ui_1
belongs to U for all i € {1,2,...,n}. Let f,g: (U)iny — T be semigroup
homomorphisms with f|y = g|y. Then, by virtue of calculation (2), we
have (u;)f = (u;)g for all i € {1,2,...,n}. Thus (z)f = (z)g, whence

x € Dom U, as required. ]
3. Subsemigroups of Z,
Let Z,, denote the symmetric inverse semigroup over a chain

1<2<---<n (3)
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of natural numbers. In this section we shall determine the dominions of
certain submonoids of Z,, henceforth called special submonoids. We shall
omit parenthesis around the arguments of partial transformations, whenever
they are not necessary.

(1) Let S, denote the symmetric group of all bijections of chain (3). We
define 7} := (Z,, \ Sp,) U {¢}, where ¢ denotes the identity of S,. It
is an easy exercise to prove that Z] is an inverse submonoid of Z,.
The elements of Z, are called strict partial bijections.

(2) We call a € Z,, order-decreasing if xa < x for all x € Dom a. We
denote by DZ,, the special submonoid of all order-decreasing partial
bijections. The special submonoid DZ;! of all order-increasing partial
bijections is defined dually [10].

(3) A partial bijection «@ € Z,, is said to be order-preserving or monotone

if

Vz,y € Dom a, x < y implies that za < ya.
We denote by OZ,, the special submonoid of all monotone partial
bijections [3].

(4) An element « of Z,, is called a contraction (respectively, expansion)
if for all z,y € Dom a we have |xa — ya| < |z — y| (respectively,
|lta — ya| > |z — y|). The special submonoid of all contractions
(respectively, expansions) is denoted by CZ,, (respectively, CZy ) [1].

(5) We say that o € Z,, is order-reversing or antitone if
Vz,y € Dom o, x <y implies that ya < za.
Note that the only order-reversing full transformation of (3) is
(1 2 ... n—1 n
“\nmn-1 ... 2 1)
Let RZ,, denote the subset of Z], comprising all monotone as well as
all antitone partial bijections. Then it is an easy exercise to show that
RZ, is a (special) submonoid of Z,,. (Indeed, RZ,, = ORZ, \ {e},

where ORZ,, denotes the submonoid of Z,, containing all monotone
and all antitone partial bijections, see [3]).

The special submonoid of Z, comprising all partial bijections that are
both order-preserving and order-decreasing is denoted by ODZ,,. The special
submonoids OCZ,,, RDZL,, RCL,, DCL,, ODCI,, RDCL, etc. are defined
analogously, see the following lattice diagram.

The study of these submonoids is not only motivated by their natural
occurrence, but also by their elegant use in the enumerative combinatorial
problems [1, 9, 10, 11]. The aim of this section is find the dominions of
certain special submonoids, see Remark 3.
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rRpCL: OCL, OCL,
ODI, ODI;

ODCT, ODCL; oDCT; ODCL,™

{c}
FiGURE 1. The lattice of special submonoids.

Let S be a special submonoid and let « € S. Then it can be easily
verified that aa™! = Ijpma and o ta = I;,,,4-1 belong to S. Thus we have
the following lemma.

Lemma 1. The special submonoids of I, are all ample (with I,, being
their associated symmetric inverse semigroup).

Lemma 2. OZ,, DZ,, DI:{ and RZL, are submonoids of T},.

Proof. Let o € OZ,,. Suppose on the contrary that o € S,, \ {¢}. Then
Dom a =Ima ={1,2,...,n}. Because a # ¢, there exists j € Dom « such
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that ja = k # j. Let us consider the case when k < j (the other case,
wherein k£ > j, can be dealt with similarly). Since « is a monotone bijection,
it must map {1,2,...,7—1} to {1,2,...,k—1} in a one-to-one fashion. This
gives a contradiction, because k — 1 < j — 1. Similarly, we can show that
DI, and DI, are submonoids of Z},.

Lastly, RZ,, is a submonoid of Z], because OZ,, C Z/, and the only order-
reversing full bijection, viz. e, does not belong to RZ,. ]

Let f be a bijective mapping from a semigroup S to a semigroup 1. We
call f an anti-isomorphism if (xy)f = (y)f(z)f, for all x,y € S.

1

Proposition 2. The map a — o™ is an anti-isomorphism from

1) OZ, to O,
) RZ, to R,
) DI, to DI},
4) CZ, to CT;,
5) DCZ, to DI, NCI} (:=DCL}*) and
(6) ODCI,, to ODI; N OCI: (:= ODCL}™).

Proof. Obviously, « is order-preserving (respectively, order-reversing) if
and only if o' is order-preserving (respectively, order-reversing). It is also
clear that « is order-increasing (respectively, expansion) if and only if o' is
order-decreasing (respectively, contraction). Moreover, the map (o) = o~
is a bijection with

(@f)y = (aB)™t = 7 a™ = (B)p(a)y. (4)

! is an anti-isomorphism in all the above-mentioned cases. [J

Thus o — a~

Remark 2. Clearly a — «~! is also an anti-isomorphism from DZ; to

DI, from CZL} to CZ,, from DCI,* to DCI, and from ODCZL;* to ODCL,.
The following corollary immediately follows from Proposition 2.
Corollary 2. OZ,, and RZ,, are inverse submonoids of I},.

Remark 3. Because Z,,, Z,, RZ,, O, and {¢} are inverse monoids, they
coincide, by Theorem 1, with their dominions in Z,. On the contrary, it also
follows from Proposition 2 that the remaining submonoids in Figure 1 are
all non-inverse. We shall use Proposition 1 to find the dominions for 12 of
the remaining 24 submonoids. To avoid somewhat cumbersome notations,
such as Domgz, ODCZ}* = OZ,, the dominions will always be described in
terms of Corollary 1, see Theorems 2, 3, 4, and Corollary 3.

Remark 4. Each « € Z,, can be pictured as a digraph G whose set of
vertices is Doma U Ima. We have an edge from vertex w to vertex v if
ua = v. The in- (respectively, out-) degree of every v € Dom o \ Ima is 0
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(respectively, 1). Dually, the in- (respectively, out-) degree of every vertex
v € Ima . Dom « is 1 (respectively, 0). On the other hand, both the in-
and out-degrees of v € Dom a N Ima are 1. This implies that each of the
connected components of G either consists of

e a unique path: (y1,...,yx), where y;o = yjp1, i =1,...,k — 1,
e or, a unique cycle: (x1,...,x,), such that z;a = x11,i=1,...,r—1,
Tra = T7,

e or, a unique fized point z = za.

Note that a path T = (y1,...,yx) may be treated as an element of Z; (and
hence of 7)) because y; € Ima (equivalently, y, &€ Dom «). Similarly, a cycle
= (x1,...,2,) may be viewed as an element of S, C Z,.

Remark 5. Let the digraph o € 7, have component paths m, 72 ..., 7,
and component cycles fi1, i, . . ., [ls. Define 7, p; € Z,,, 1 <i<r, 1 <j<s

by
(JJ)TF' _ (.73) mi, if € Dom 7,
L x, if x € Dom a~Dom 7; ,

z) i, if z € Dom [i;,
(z)p; = {()N] Hj

x, if x € Dom a~Dom ;.

Then a =7mjo0---omopujo---opug (with the product on the right hand side
being commutative).

Proof. Straightforward verification. O
To keep the notations simple, the component paths 71,79, ..., 7, and
component cycles fi1, [io, . . ., [is for any « € Z,, will be identified, respectively,

with the partial bijections 71, ..., 7 and uq,..., us defined in Remark 5.

Lemma 3. Let 7: (y1,...,yk) be a path in the digraph of o € T,,. Then,
for any 1 <m < k, m = p1 o pa, where pi1, p2 € I, are defined below.

I y Y2 ... Ym-—1 Yn  Ym+1l -+ Yk—1
Yr Y2 oo Ym—1 Ym+1l Ym+2 .- Y )’
Py vy vy2 - Ym—1 Ym+1 Ym+2 .- Yk
Y2 Y3 ... Ynm  Ym+1 Ym+2 --- Yk
Proof. Straightforward. O

In fact one can easily prove the following generalized version of the above
lemma.

Lemma 4. Let 7 : (y1,...,Yk) be a path in the digraph of o € I, and
letl=myg < mi <mg < -+ < mp_1 <m, =k. Then, there exists a



24 SOHAIL NASIR AND ABDULLAHI UMAR

factorization m = p1 o pyo---0p., where p1, p;, 2 < i <r—1, and p, are
the elements of I/, defined below.

e yr Y2 - Ymp_1-1 Ymy_1 Ymp_1+1 -+ Ym,—1
YioY2 - Ymei—1 Ymeoi4l Ymeoi42 oo Yme )
it (YU Ymee s Yme Ymeial Ymeatd e Y
NV Ymesml Yt e Ymeein Ymeogp Al e Yme )
oy : ( Yyi Y2 - Ymi—-1 Yma+1l Ymu+2 oo Ym, )
T o N
Y2 Y3 - Ymy Yma+l Ymu+2 oo Ym,
Proof. Recursively apply Lemma 3. g

Lemma 5. Let a € OZ,. Then the digraph of a does not contain any
cycles. Moreover, if m = pyopao---0p, is a factorization of a component
path of a, as given by Lemma 4, then p; € OL,, for alli € {1,2,...,1}.

Proof. Let a« € OZL,. Suppose on the contrary that the digraph of «
contains a cycle:
w:(xy, @, ... x), k>2.
If 21 < x2 then 2 = (z1) a < (x2) @ = x3, since o is monotone. Iterating
the argument we get
T <2< - <Tf <1,
a contradiction. Similarly, x1 > x2 gives a contradiction. Thus the digraph
of a does not contain any cycles.
To prove the second part, consider a path m = (y1,...,yx) in the digraph
of a. Let py, pi, 2 < i <r—1, and p, be the components of a decomposition
of a given by Lemma 4. Because « is monotone, we have either

Y1 <y2 <--- <Yk
or
Yi>y2 > > Yk
In the former (respectively, latter) case both the rows in p;, 1 < i < 7,

are written in ascending (respectively, descending) order, going from left to
right. This implies that p;, 1 < ¢ < r, are all monotone. g

Lemma 6. Let i : (z1,...,2%) be a cycle in the digraph of o € ), ~ {1}.
Then we have p = o o7 such that o is the path (x1,2') and 7 is the path
(2,29, x3,..., k1, Tk, x1) for some &’ € {1,2,...,n} ~\ Imu.

Proof. Let o € I/, \ {¢} be a cycle. Then note that Imy = Domy and
there exists #’ € {1,2,...,n} ~ Imu. Now, it is a routine to verify that

T1 T2 ... Tp_1 T
U—<,12 k=1 k)and

r Ty ... Tp_1 Tk
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- ¥ xo ... Tp—1 T
o To T3 ... Tp X1
satisfy the requirements of the lemma. ([l

Theorem 2. DI, and DI, are epimorphically embedded in T!,.

Proof. By Corollary 1, Proposition 2 and Remark 2, it suffices to show
that Z], is the inverse submonoid of Z,, generated by DZ, (equivalently,
DIZ;). Indeed, we need to prove that any element of Z/, can be expressed as
a product of elements belonging to DZ, U DI, .

Let « be an arbitrary element of Z], and let £ = (y1,...,yr) be a com-
ponent path in the digraph of a. If £ = 2 then £ is either order-decreasing
or order-increasing. If & > 3, then, applying Lemma 4 with appropriate
division points myq,...,m,_1, we may write £ = £ 0 & 0 --- 0 &, such that
& €DIL,UDLH, 1<i<r.

Also, if p is a component cycle in the digraph of « then there exists
a decomposition © = o o m, as described in Lemma 6. It is clear that
o € DI, UDI/}, whereas 7, being a path, can be further factorized into
pLopyo---opp with p, € DI, U Dlz, 1 <i <k, as discussed above.

Lastly, « € DI, N DZ,. Hence, I/, is the inverse subsemigroup of Z,
generated by DZ,, (equivalently, DZ."). O

Theorem 3. The special submonoids ODCZL,, ODCZ*, ODCI! and
ODCL,} are all epimorphically embedded in OL,, .

Proof. Recall from Lemma 2 that OZ,, is contained in Z/,. Let
=000 -0

be a factorization of a € OZ,, as given by Theorem 2. By Lemma 5, we have
a; € ODI, UODI! 1 <i<k. Let~ye ODI, be defined by

r1 T2 ... Tk .
: Ty €41,2,...,nH 1 <i <k <n.
7 <y1 Y2 ... yk) o4 €4 )

We may assume, without loss of generality, that
T <29 < - < g1 < Tk
Then

v <y2 < - < Yp—1 < Yk,

because v is order-preserving. We also have

Y1 <21, Y2 < X2, oy Yk < T,
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as 7 is order-decreasing. Now, define §, £ € Z) by

S5 I i) T

‘v o yi+l ..oyt k=1 )7
¢ vi yi+1 ... yi+k—1
AN/ S 7 Yk '

Then, clearly v = § 0 £&. Also, it can be easily verified that § € ODCZ,, and
¢ € ODCZ}*. Using a similar argument, one can show that every 8 € ODZ;"
can be factorized in ODCZ,, UODCL,}*. Thus the inverse subsemigroup OZ,,
is generated by ODCZ,,, as well as ODCZ,™.

To prove that each of ODCZ}, and ODCI, also generate OZ,, consider
again o € OZ, with a factorization

Q@ =Q1o0a0- - 0ay

and v € ODZ,, both as defined above. Define

5,‘ T T2 L1 Tk
‘N —Fk zp—(k—=1) ... xp—1 x )’
§/,<33kk xp—(k—=1) ... zp—1 xk)
' (0 Y2 coo Yk—1 Yk )

Then v = §" o¢&’, where &' € ODCZ; and ¢ € ODCZ},. Also, any 3 € ODZ;
can be factorized in ODCZ;} U ODCZ}, by using a similar argument. U

Corollary 3. ODZ,, ODZL;}, OCI, and OCI} are epimorphically em-
bedded in OL,,.

Proof. Let ODCZ, =U,ODIL,=V,0Z,=5,Z,=T. ThenU CV C
S CT. Now, observe that DompV = S
S = DomgU, by Theorem 3 and Corollary 1,
C DomrV, by part(2) of Remark 1,
C S, by Proposition 1, for .S is an inverse monoid.

This implies by Corollary 1 that ODZ,, is epimorphically embedded in OZ,,.
That the remaining three submonoids epimorphically embed in OZ,, can be
shown similarly. O

Theorem 4. RCZ,, and RCZ,, are epimorphically embedded in RZL,,.

Proof. Let a € RZ,,. If « is order-preserving, i.e. a € OZ,, then we may
write by Corollary 3

=1 Q2 0:--- 00,
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where a; € OCZ,, U OCZ; C RCZ,, URCI;, 1 <i<k. So,assume that

vi Y2 .- Yk

is an order-reversing bijection. We may suppose, without loss of generality,
that 1 < 9 < --- < xp. This also necessitates: yp < yp_1 < -+ < y1. We
shall need the following chain to define the factors of «,

a:<x1 2 xk>,xi,yiE{l,2,...,n},1§i§k<n

1<z +1< < 2y,

where z; = min{z1,yx}, 2, = max{zy,y1}. Let us define

€1 T Z2 Tk—1 T

1 z1 s1+1 ... n14+k—-2 z+k-—-1 ’
£ z1 z1+1 ... n1+k—2 x+k-1
Ny v Yk—1 Yk '

Then, clearly, a = & o &, with & € RCI,, & € RCZ;, (indeed & is order-
preserving and & is order-reversing). Thus RZ, is the inverse submonoid
of Z,, generated by RCZ,, (equivalently, RCZ} ), and the theorem follows by
Corollary 1. O

Conclusion. The authors wonder as to what are the inverse submonoids
of Z,, generated by the remaining 12 submonoids in Figure 1.
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