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Implicit-implicit and parametric-implicit surface
intersections in Euclidean n-space

MUSTAFA DULDUL AND BEDIA MERIH OZCETIN

ABSTRACT. In this paper, we study the intersection problem of two sur-
faces in which at least one surface is given by its implicit equation in
Euclidean n-space. We first obtain the curvatures of the transversal in-
tersection curve of two implicit surfaces. Later, we study the transversal
intersection of parametric-implicit surfaces in n-dimensional Euclidean
space. Finally, we present examples as applications of the given methods.

1. Introduction

The analysis of surface-surface intersection problems is an important topic
in CAGD. In most instances, determining the parametric equation of an
intersection curve of two surfaces is difficult. Because of this, there ex-
ist some studies in literature to determine the intersection curve by using
not only numerical techniques but also some differential geometric meth-
ods. The intersection problem of two surfaces has three types which are
called implicit-implicit, implicit-parametric and parametric-parametric in-
tersection depending on the equations of the intersecting surfaces. These
intersection issues have been explored in 3-space using various techniques
[2,10,13,19,21,22] and have been expanded and generalized to high dimen-
sional spaces for the intersection of (n — 1) hypersurfaces in n-space [1,3—
9,14,15,17,20]. Recent research [11] has also investigated the parametric-
parametric surface intersection problem in n-dimensional Euclidean space.
However, parametric-implicit and implicit-implicit intersection problems of
two surfaces in n-space have not been studied. The linear dependence or lin-
ear independence of the normal vectors of the surfaces determines whether
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these intersection problems involve tangential intersection or transversal in-
tersection. Due to the fact that the normal space of a surface is constructed
by (n — 2) vectors and the vector product is described for (n — 1) vectors
in E™ it is more difficult to investigate these problems in n-space than in
3-space, even for the transversal intersection.

In this paper, we consider the transversal intersection problem of two
implicit surfaces as well as of a parametric surface and an implicit surface
in n-dimensional Euclidean space. We obtain the curvatures and Frenet
vectors of the transversal intersection curve. Finally, we give applications
for implicit-implicit intersection problem in E* and for implicit-parametric
intersection problem in ES.

2. Basic concepts
Definition 1. Let {e,eo, .. en} be the standard bas&s of R™. The vec-

tor product of the vectors Q; = Z e, Oy = Z Myj€j,..., Qg =
j= j=

> Q1 5€; is determined by (see [16])
j=1

el e2 P en
Q1 Qg - Qi
QX QXX Qg = Qo1 Qo -+ Qon ’
Q11 Q12 - Quoin

and its norm is given by the formula (see [16])

€20 % Qo - X Q|| = ||| - [120] - [[ Q] - K
where
1/2
1 Tz - YT /
Tgl 1 te TZ,nfl
K = ) . .
Tr-11 Tno12 - 1
. (9, 9;5) o
with T;; = (the generalization of the vector product to the

[1€2:1] - [1€2;1]
case of an n-dimensional Euclidean space is also given by [18]).

Let us consider a regular surface M in n-dimensional Euclidean space and
let {V17 Vo, ..., Vn} denote the Frenet frame of an arc-length parametrized
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curve B : I C R — M. The Frenet formulas are given by [12]

Vi =kiVs,
Vi=—ki1Vis1 +kiViy, 2<i<n-—1,
V;Z = _kn—lvn—la
where k;, 1 < i < n — 1, indicates the ith curvature of 5. The higher order
derivatives of 3 are given by
B/ = V17
B” = k1V27
BNI = —k%Vl + ]{J/1V2 =+ kileVg,
B = 3k K\ V1 + (=3 + K — k1k3) Vo + (2K, ko + kikb) Vi + ki1koks V,

Bl — {...}V1 n {...}V2 Fo {...}VM ¥ krkoks.. k1 V.
In addition to these, if the surface M is defined by its implicit equation
Gi(.%'l,.l‘g,...,wn):(), 1 Sign—2,

then for the curve 5(s) = (z1(s), z2(s), ..., zn(s)), we may write G;(8(s)) =0
which yields

(vG:,8) =0, (1)
(v6:,8") = ~(VG,.8), (2)
(v6i,8") = -2(vG,,8") - (V6[, '), (3)
(V6,89 = -3(VG,,8") —3(VG!,8") - (VG 3'), (4)

<VGi,ﬁ(5)> - f4<vcg,5<4>> — 6<VG;/, 5> — 4<VG;“, ﬂ“> _ <VG§.4),5’> (5)

or in general
r—1 ) -
(V6Gi, 807 = - ; <::i> (V6 ,80), r=2. (6)

3. Transversal intersection curve of two surfaces in E"

3.1. Implicit-implicit surface intersection. Let M; and M be transver-
sally intersecting regular surfaces which are given by their implicit equations

G,-(xlja:Q, 7$n) =0, Hi(xl,xg, ,xn) =0, 1<i<n—2,

respectively, in E™. Then the normal spaces of M; and My are spanned
by {VGl,VGg,...,VGn_g} and {VHl,VHQ,...,VHn_Q}, respectively. It is
assumed that these surfaces intersect throughout a regular curve [B(s) =
(z1(s), 2(s), ..., (s)) with arc-length parameter s.
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Let us consider the set of vector fields
8§ ={VG,VGy,...,VG,_3, VHi, VHy, ...,VHn,g}
and let D be the dimension of the subspace span{S} at an intersection point
B(s).
i. If D = n, then 3(s) is an isolated point.
ii. If D = n—2, then the surfaces intersect tangentially at the point S(s) .

iii. If D = n—1, then the surfaces intersect transversally at the point 5(s).

Since we focus on transversal intersection in our study, we assume that
D =n—1. Let {V1,Va,...,V,} represent the Frenet frame of 8 at the in-
tersection point Py = f(s). We suppose that {VGl,VGg, ...,VGn,g,VHV},
v e {l,2,...,n— 2}, is linearly independent at Py.

3.1.1. Tangent vector. Since the unit tangent vector V; of the intersection
curve (3 is perpendicular to the vectors given in § and the set

{VGl,VGQ,...,VGn_Q,VHV}, 1 SI/STL—Q,

is linearly independent at Fp, the unit tangent vector can be obtained by

VGy x VGy X ... x VG,,_9 x VH,,

Vi = . 7
! [VG1 x VG X ... x VGp_o X VH, || (7)

Since f is unit-speed, it is clear that Vi = ' = (2},2%,...,2},). Thus,
x),ab, ...,z can be found by using (7).

3.1.2. Second order derivative vector. For the second order derivative of 3,
B" =& VG + VG + ...+ £,.9VG,_9 + &,_1VH, (8)

can be written. To find 3”, we must compute the scalars &, i = 1,2,...,
n — 1. By taking the inner product of both sides of (8) with VG;, VGa,...,
VG,,_2, VH,, respectively, we have

(VG1,VG1)& +(VG2, VG )&+ ... 4+ {VGro2,VG1 )én—2 + (VH,, VG )én1 = (B, VG1)
(VG1,VG2)&1 +(VG2, VG2 )&z + ... 4+ {VGr2, VG2 )én—2 + (VH,, VG2 )én—1 = (B, VG2)

<VGl7 VGn72>£1 + <VG2, VGn72>§2 + ...+ <VHV, VGn72>£n71 = <5N, VGn72>
<VG17 VHV>€1+<VG27 VHV>£2+ . '+<VG71727 VHV>€7L72+<VHV7 VHV>§7L71 = <6”, VHV>
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The coefficient matrix R of above linear equation system has nonzero
determinant. Then, by applying Cramer’s method, we get

n—2
& =det (R™) ¢ (8", VG))Rji + (8", VH,)Rn_1yi ¢ » (9)
j=1

where R j; indicates the (j,¢) cofactor of the matrix R, 1 <i <n — 1. Here
(8”,VH,) and (", VG;) can be computed by using (2). Then, substitution
of & into (8) gives B”. Thus, zf,24,...,z) can be obtained by using £”.
Besides, using the Gram—Schmidt orthogonalization method, we get

102"

Hence, the first curvature of the intersection curve at the intersection point
Py is determined by using the formula k1 = (8", V).

Uy =" = (8", V1)V, Vo (10)

3.1.3. Third order derivative vector. We may write
B" = —k{Vi+kVa+ kikaV3
= —k¥V1 + p1VGy + paVGo + ... + pyoVGy o+ p 1 VH,.  (11)

Likewise, if we take the dot product of both sides of (11) with VG;, VGa, ...,
VGp—2, VH,, respectively, then we get a system of linear equations depend-
ing on p;, t =1,2,...,n — 1. The solution of this system is given by

n—2

pi=det (R ¢ > (8", VG))Rji+ (8", VH)Rn_ryi p» (12)
j=1

1 <i<n—1, where (8”,VH,) and (8”,VG;) can be computed by using
(3). Then, if we substitute p; into (11), we find "”. Thus, =}’ 27, ..., 2

can be obtained by using ”. Besides, by applying the Gram-Schmidt or-
thogonalization method, we obtain

Us = 8" = (3" V)Vi = (8" Vo) Vo, Vo=t (13)
3
Also, if k1 # 0, then the second curvature of the intersection curve at Py is
"
,V
obtained by kg = <Bk‘°’> and k| = (8", V).
1

3.1.4. Higher order derivative vector. Similarly, we may write the rth order
derivative vector of the intersection curve as

ﬁ(r) =c1Vi+eVo+ ... +c¢-1Ve_1+ kikoks...k,—1V,
=c1V1+01VG +09VGy + ... +0,_2VG,_9 + 0,_1VH,, (14)
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where
n—2
oi =det (R™) (B, VG Rys + (87, VH)R(yi ¢, (15)
j=1

1 <i<n-—1. Here <B(T),VHV> and <B("),VG]-> can be computed by
using (6). While calculating the derivative vector (") given by (14), it is
difficult to calculate the coefficient ¢; in high dimensional spaces. Therefore,
this coefficient can be calculated using the MATLAB code given in [11].

Thus we get 3") and :Ugr),xgr), ...,:rg). Besides, using the Gram—Schmidt
orthogonalization method, we get

r—1
Z IB(T VT: UT 4§’I"§n71, (16)
i=1

and V, = Vi Xx Vg x --- x V1. If k; # 0,7 > 2, is assumed, then the
curvatures are derived by

(B, V,)

kq =
Y ke ko

4<r<n. (17)

3.2. Parametric-implicit surface intersection. Let M; be a regular
surface with its implicit equation Gi(azl,xg, ,xn) =0,i=1,2,....,n — 2,
and My be a regular surface given by its parametric equation X (u,v) =

<91 (u, v) , 92 (u, v), vy On (u, v)) in E™. It is obvious that the normal space of

the surface M is spanned by {VGl, VGo, ..., VGn,Q}. On the other hand,
as expressed in [11], the normal space {Nl, No, ..., Nn_g} of the surface My
can be obtained by

N, =X, x X, Xe xXxeyX..Xe, 3,
Ny =X, x Xy, xN; Xe| X...Xe,_4,
N3 =X, x Xy, XxN; xN3 xe; X... Xe,_s,

N, o =X, x X, x Ny xNyx..xN,_s.

Let us consider the set {VGl,VGg, ..., VG _9, N1, No, ...,Nn,g}. Since we
consider transversal intersection at an intersection point Py, we assume that
the dimension of the subspace spanned by this set is n — 1. For this purpose,
let {VGl, VG, ..., VG, _o, Nq}, q € {1,2,...,n— 2}, be linearly independent
at Py. Then the unit tangent vector can be obtained via
VGl X VGQ X ... X VGn_g X Nq
HVGl X VGQ X ... X VGn_g X NqH ’

Vi = (18)
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By taking the dot product of both sides of V| = X, u' + X,ov' with X, and
Xy, respectively, yields (see [11])
/ g<V17Xu> _f<V1aXv> / 5<V1aXv> _F<V1yXu>

EG — F? ’ EG — F? ’
where &, F, G are the coefficients of the first fundamental form of Ms. Also,
by using (18), we get 2, z}, ..., x},. It is possible to write

"= AMVGE +AVGy + ...+ A\—2VG,_o + )\n—qu (19)

for the second order derivative vector. Taking the dot product of both sides
of (19) with VGy, VG, ..., VG, _2, Ny, respectively, gives us a system of linear
equations whose solution is

1

n—2
i = e (8" No)Reuoyi + ) (8" VG)Ryi o, 1<i<n—1, (20)

J=1

where R j; represents the (j,7) cofactor of the coefficient matrix R. By using
(20), we can find 7,24, ...,z and u”,v”. Then we get
W,
Wy =p"— (", V1)Vi, Vo= 0, (21)
Wy Wl

and ]{21 = <,8”,V2> .
If we continue in the same manner, in order to get the rth order derivative
of the intersection curve, we may write

BT = 0V 4+ Vo + oo+ by Vq + kikoks...kp_ 1V,
=0 Vi+ VG + p2VGay + o+ 1,2V Gy + 1Ny, (22)

where
1 n—2
Hi= det R (B, Ng)R-1yi + 2<B(T)vVGJ>Rﬁ , 1<i<n-L
]:
(23)
Using Gram—Schmidt orthogonalization method, we get
r—1 W
W, =81 =" (" Vi)V, V, = m 3<r<n-—1 (24)

=1

Finally, V,, = V1 x Vo x .- - x 'V, _1 gives the last Frenet vector V,,. Conse-
quenty, if k; # 0,4 > 2, is assumed, the curvatures of the intersection curve
are derived by using

ke = :
U ko Ko

3<r<n. (25)
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4. Illustrative examples

4.1. Example of implicit-implicit surface intersection in E*. Let us
apply our method to the intersection of the torus surface M; given by

2 2 2 2
Gy ($17$27$377$4) =T +T3= 2, G2(£L'1,£L'2,.%'3, ,$4) =x3+x) = 4
and the torus surface My given by
H =a23+a23=3, H =a2l+a5=3
1(£B1,$27$3,,$4) = x5+ Ty =9, 2(161,962,953”964) =]+ 3=

in E4.
Since VGy = (221, 222,0,0), VGa = (0,0,2x3,2x4), VHy = (0, 222,0, 224),
VH, = (2:1:1,07 2x3,0), we have

VGl X VGQ X VHl = (8:1:2x3x4, —8%1%31’4, —81’1:62334,81’1:62%3),
where |[VGy x VGo x VHi|| = 8y/2z3x7 + 4zfx3. Thus, it is clear that

these surfaces intersect transversally at the points with nonzero components.
Then, the tangent vector is obtained as

VGl X VGQ X VHl

Vi =
”VGl X VGQ X VH1H
ol
= T2X3L4, —T1X3X4, —T1X2X4, T1XT2X3 ),
) 2.2
2x3wy + 4x{rs
which yields
;o T2T3T4 ;o —X1T3%4 o —T1T2T4
= ) 75 T2 7.2 75 T3 ) 2.2’
\2x5x] + 4xiTs V2x530y + 4xis \2x3w5 + 4x{rs
T1T2T3

and 2/ .
4 2.2 2.9
V2x3ry + dxixs

For the second order derivative vector, we may write
,8// =6 VG + & VG 4+ E3VH,.
If we use (9) and (2), we get

32
= det R(fUQHCQ + 2x2x2) ($§$g - 125”%:’3421 - 21‘%1‘%:6421 + 61’%1‘%1‘%),
374 142
32
& = Goraa? 7 27ay) (2eied — 12070] — ajafad + ofaad).
34 142
128
€3 (32327 — 3xi3),

~ det R (2323 + 22323)

where det R = 128(12 — 223 — x1). Thus, by substituting these coefficients
into 8", we have

B = 2(5@1’ (&1 4 &3) w2, E223, (§2 + 53)934).
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This gives .Tlll = 251.%'1, l'g = 2(51—}—53)1’2, a:g’ = 252.%3, :L'Z = 2(52—!—{3):(}4
Then, if we use (10), we obtain
1
V267 4+ 4€2 + 383 + 263(6143 + Ex)

Thus, the first curvature of the intersection curve is calculated by

2(&121)% + 2(& + &3)%a3 + 2(Sowz)? + 2(& + 53)23«“3.
V263 + 483 + 383 + 4&3(&12% + &)

For the third order derivative vector, we may write
B" = —kiVi + p1VGy + paV Gy + p3VHi.
If we use (12), we find

Vy =

(§1 x1, (& + &3)w2, Sox3, (§2 + 53)334)

ki = (8", Va) =

192z 20374 4 2 2 2
1= 1283 — &3y — §3wowy — 4(&2 — §1)73),
g det R+/2232% + 4a3a3 ( ! i~ 4 )2)
192x1:1:2x3x4
p2 = ( sr3a] — 665 + &3a5 — 2(&p — 51)1’4)
det R+/2232% + 4a323
384x1x2x3x4 2
3= — 26373 + E327 + 4(& — &1)).
P det R+/22322% + 4a323 ( 2 (. )
Then, we get

pg" =2 (Pl:ﬂh (p1 + p3)x2, p23, (P2 + P3)$4)
ki

— ToX3X4, —TX1X3X4, —T1X2X4, T1T2X3 ).
2:6%1’2—}—41’%33%(234’ 14344, 14244, 125)

This yields

k2xoxsx 2z z3z
" 1424304 m 141434
ry = 2p1r1 — , xhy =2(p1 4 p3)w2 +
V2z3x3 + 4ot V2233 + 4.1‘11'2
k1x1x2x4 " klxlxgmg

xg’ = 2pox3 +

5 Ty = 2(P2 + p3)334 -
\/2 x3x4 + 4x1 4 \/2 3564 + 41‘1332

From (13), since Uz = 3" —T'1' V1 — '3 V3, we obtain

Uz =2 <p1$1, (p1 + p3)x2, p2w3, (p2 + P3)$4)
V26T 46 + 363 + 2656103 + Eax))

where I'y = —k? and

4&1p1 4 8&2p2 + 6&3p3 + 2(E1p3 + E3p1) 23 + 2(E2p3 + E3p2) 2]
V267 + 462 + 383 + 285(6103 + &)

(121, (&2 + &), s, (&2 + €8)aa),

Ty =
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Since

|[Us]| = \/4 {2p% + 4p3 + 3p3 + 2p3(p123 + pox}) } — (I'2)?,

we get the third Frenet vector and the second curvature of the intersection
curve by using

V3 :ﬁ{Q(pl«rla (p1 + p3)x2, p213, (p2 + pg)x4)
Iy
V26 48 138 + 2656023 + o) (Em, (&1 4 €3)a0, S, (€2 + 53)564) }
and
b — <5W,V3>
2= " 7

k1

respectively. We also obtain kf = (8", V3) =T.
Similarly, the fourth order derivative can be written as

BW = —3k1 K,V + 01V Gy + 03V Gy + 03 VH,

where

1 k2
S {(192 ~1642) [16:1;33:4( i N )

det R 2z5x] + dxixs 22323 + 4323

— 246222 — 24(&, + &,)%3]

3L3L4 2]€2IL‘1LU2
—1636%:6?1 16z122 52 = T 5.2 21 5 5
2zird + datxs  2w3xy +4dwyas

+ 248525 4+ 24(& + §3>2xi]

2(p1 — 3k?
—6495%[83:1373( (p1 — p2)xamy T 12123 >

V2iRal + ala] | 2030 + 473
}7

2
P3T1T2 kixszy )

1
o9 = ——< 162222 | 16237 +
27 Qet 7?,{ 2 [ o ( V2z557 + daias 2z3z% + 4a?ad

— 248222 — 24(&) + 53)23;5]

— 24(€} + &3)%2 — 24(& + €3)%a}
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2k2
— (96 — 1623) [16961902( i N 17172 )

23] + a2 + A3

+ 24€222 4 24(&y + £3)% a2

2(p1 — 3k?
—329@21[8@3;3( (Pl P2)$21‘4 i 1L1L3 )

V2x3x9 + daias 22323 + o33
}7

1 P3T1X2 k%:cgm
o3 = — 64232 | 1623z +
37 QetR { 2 [ s ( 2z3x] + dxixs 22323 + 433

— 246222 — 24(&) + &3)%a3

— 24(&] + &3)%23 — 24(& + &)}

3T 2k2xx
+ 3222 | 162125 B0 AR
2zixd 4 datxs  2w3xy +4wias

+ 24222 + 24(&y + £3)%a2

8:(:1903( 2(p1 — p2)T2T4 n 3kx23 )

V2x3x9 + daias 2x3x] + dxix3

5(4) = -3k I'sa V1 + 2(011'1, (01 + 03)1'2, 093, ((72 + 03)1'4)

+ 128

— 24(€} + &3)%23 — 24(& + &)

Hence

Finally, the fourth Frenet vector V4 is obtained by V4 = V| x V3 x V3

. . . . . (4)
and the third curvature function is obtained by using k3 = %

If we use the obtained formulas for the intersection point P = (1, 1,v/2, \/Q)
(Figure 1), we find the Frenet vectors of the intersection curve as

1 1 1 1 2 2 V2 V2
Vi< % ) VF(‘s’—g’—va)
v V6 V6 V3 V3 vV, — V2 V2 22

3 = 67_6737_6 y 4 — - 67_67§7§
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The curvatures of the intersection curve at P are

T

=

e point P

»

FIGURE 1. Perspective projections of the intersecting sur-
faces M1 and My

4.2. Example of parametric-implicit surface intersection in ES. Let
us consider the intersection of the surface M given by

Gy (xl,azg, ...,x6) =29 —x3=0
Gg(xl,a:Q, ...,x6)
G3(l’1,$2, ...,336) = x5 — :L'Z =0
G4(£L‘1,l‘2, ...,:c6)
and the surface My given by X(u, v) = (u5, u,v,v?, ul, u3) in ES.
The normal space of the surface M is spanned by
{VG; =(0,1,-1,0,0,0), VG, = (1,0, —5m§,0,0,0),
VGs = (0,0,0,—224,1,0), VGy= (0, —323,0,0,0, 1)}.
The tangent vector fields of the surface My are X, = (5u4, 1,0,0,4u3, 3u2),

X, = (0,0,1,2v,0,0). Then, since {Xy, Xy, e1,es5,€s} is linearly indepen-
dent, we obtain the basis vectors of the normal space of My as [11]
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N; =X, x X, X ej X e5 X eg,
:(0,0,211, 71,0,0),
Ny =X, x X, x N7} X e; X e,
=(0, —16u*v* — 4u*,0,0,4v + 1,0),
N3 =X, x X, x N7 x N3 x ey,
=(40? 4+ 1) (O, —12u20? — 3u?,0,0, —48u’v? — 12u°, 64uSv? 4 16u° + 40v% + 1),
Ny =X, x X, x N7 x Ny x N3

—(40? + 1)4( — 256u'2 — 14440 — 32u° — 36u* — 1,804 + 5u, 0,0,
32003 + 2007, 240u'? + 15u6).
Also, we have
VG x VGy x VG3 x VGy x Ny = (5:L‘§, 1, 1,2v,4vx4,3x§)

which means that the set {VGl, VGo, VG3, VGy, Nl} is linearly independent
along the intersection curve. Thus, we compute the unit tangent vector field
of the intersection curve as

VGl X VGQ X VGg X VG4 X N1 1 4 2
V) = = —(523,1,1,20,4
L7 [VGy x VGy x VGs x VGy x Ny | 7(5“"3’ 1,20, dvzg, 323),

where

7= VG x VGg x VGg x VGy x Ny|| = \/2 + 4v? + 160223 + 923 + 2528.

4
o5r3

2v 4vxy 3x
So, we have zf = —, zf, = —, 2§ = 2

/
— y Lg = —
v v 8Ty

1
— =
Y
, 25utad +16udvrs + 9Pl +1 1
= v = —.
v(25u® + 16ub + 9ut +1) v
The second order partial derivatives of the surface My are obtained as
Xuu = (20u3,0,0,0,12u?,6u), X4 = (0,0,0,0,0,0), X,, = (0,0,0,2,0,0).
For the second order derivative of the intersection curve, we may write

ﬁ” =A\1VG] + X\aVGy + A3VG3 + MV Gy + ANy
= (A2, A1 — 32304, 20X5 — A1 — Bx5Ae, —224A3 — A5, A3, M)

where
) .
A :¥{(9x3 +1) (102 + 160°24 + 20(422 + 1)) — 923(160%22 + 402 + 2525 + 1)},

1023 ( f
Ao = 7{53 {2(16u2xi + 40 + 928 + 2) — 160° w3y — 9 — 20ws(4a? + 1)},

—4 .
A3 :¥{100vx§x4 — 202(40? + 923 + 2528 + 2) + 18vadey — x4(92d + 2525 + 2)},
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*6%2

Ay = - {50332;6; + 160322024 — 160227 — 4v? — 2525 — 2 + 20wy (423 + 1)},

2 (
A5 = ?{(4503 +1)(100vz] + 18vxi — 923 — 2525 — 2) — 8v?z4(923 + 2525 + 2)}.

The curvature vector 4" yields zf = Ao, 2§ = A\; — 3\423, 74§ = 2 50 — A1 —
5loxi, ¥ = —2\3w4 — X5, 70 = X3, zf = A\ and u” = A\; — 3\2d, 0" =
3)\4.73% — 2)\1 — 5)\21’% + 2)\51).

In this case, since (8", V1) = 0, the second Frenet vector of the intersection
curve is obtained by

B 5// B 1
18I 118

and the first curvature is given by

ey = 118" :{2A% + A3+ A3+ AL+ A2 — 33 (201 — 3Ag) + 25032

Vg ()\2, /\1 — 3)\4%%, —/\1 — 5)\233;,1 +2)\5’U, —2)\3564 — )\5, )\3, )\4),

1/2
+ 4)\5’0()\51) — )\1) + 10)\226%()\1 — 2)\5’0) + 4)\3264()\31’4 + )\5)} .

Similarly, for the third order derivative of the intersection curve, we can
write

B" = —k¥V1 4+ c1VG) + aVGy + c3VG3 4+ ¢4 VGy + 5Ny
k2
= ——1(523,1,1, 2v, dvzy, 373)
Y
+ (CQ, c1 — 3;1:%04, 2vcs — ¢ — 5x§cz, —2x4c3 — c5, 03,04) ,

where

= 712{(9521 + 1){ — b

+ 48021'4(2)\3%4 + /\5)}

18
+ 22(480%22 + 120 + 7525 + 3)( 2
S

(80x§ 60:c§)

(=A1 — BAozh + 2X50) + 3

6
J— 2 J—

()\1 3)\4x2) + 73>

— 120(422 + 1)(923 + 1)(=2\1 — Sozd + 2050 + 3@;3)},

1
2

803 6023
¢ {(16v2w2‘i+4v2+9x3+2)(%(—h—5A2x§+m5u)+ 7§3)

18%2

6
+ 2400% 24 (2hgws + As) — 152304 (—2 (A — 3aaf) + $>

— 60vzd(dz? + 1)(—2\1 — 5oz + 2250 + 3A4x§)},
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1 3 2
c3 = —{ - 201)37%354(80933 (=A1 — BAazh + 2\50) + 60933)
72 g ok

181‘2

6
— 12’01’%1’4( (A — 3)\4335) + —3)
0
— 120(2X\324 + A5)(4v? + 925 + 2525 + 2)

41224923 + 2522 + 2)(da? + 1)(—2\1 — 5oz + 2250 + 3A4x§)},

1 o 4803 4 603

642—{—15:1756 (— —A — Dhoxs + 2A5v) + )
72 243 ~y ( 3 ) 73

+ 1441)256%1‘4(2)\3554 +A5)

181‘2

6
+ (16v%23 + 40° + 2525 + 2)( (A1 — 3\423) + 5)

— 36vz3(da? + 1)(—2\1 — 5hezd + 2)50 + 3A4x§)},

3
807 (=M1 — BAazh + 2\s50) +

60&0%)

1
c5 = 7{1()@9;;*(4:@21 + 1)( -

Y
+ 120(2\324 + \5)(18x45 + 50425 + 4x4)
18$2

6
+ 6oz (4af + 1) (<2 (0 — 3Aazd) + $>

— 6(dx? + 1)(924 + 2522 + 2)(—2)\1 — Hhoad + 220 + 3A4x3)}.

If we use (8", V1) = —k? and

1
(6///7 Vo) ZW{CQ)\Q + (1 — 3$%C4)()\1 — 3$%)\4)

+ (2ues — 1 — Bracs) (20X — A\ — 5xado)

+ (2w4¢3 + ¢5) (2423 4+ As5) + c3A3 + C4/\4};

W3

we obtain the third Frenet vector V3 = ———— via
[[W3]|

W3 — ,B”/ _ <,8/”,V1>V1 _ <5,H7V2>V2.

If we continue in the same manner, by using (24) we can find the Frenet
vectors V4 and V5. Finally, Vg can be computed by the vector product of
obtained Frenet vectors. Thus, the curvatures of the intersection curve are
obtained by using (25).
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If we use the obtained formulas for the intersection point P = X(0,0) =
(0,0,0,0,0 0) we find the Frenet vectors of the intersection curve as

vV, = ( 000) ng(0,0,0,—l,0,0), ng(o,o,o,o,o,l),

V2 V2
V4=(0,0,0,0,1,0), V5:<1,0,0,0,0,0), Vﬁz(o, \f\[ooo).

The curvatures are

ki =1, kgzi ks =22, kyi=——, kys=0.

Sl e
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