On the distribution of the greatest common divisor of the elements in integral part sets

TEERAPAT SRICHAN

ABSTRACT. It is a classical result that the probability that two positive integers $n, m \leq x$ are relatively prime tends to $1/\zeta(2) = 6/\pi^2$ as $x \to \infty$. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e., Piatetski–Shapiro sequence, Beatty sequence and the floor function set.

1. Introduction and results

Let $\lfloor z \rfloor$ denote the integer part of a real number z. As usual, let μ be Möbius function and ζ the Riemann zeta-function.

The natural density for the set of pairs of integers which are relatively prime is a classical result in number theory. In 1849, Dirichlet [8] asserts that the proportion of coprime pairs of integers in $\{1, \ldots, n\}$,

$$\frac{1}{n^2} \# \{ (n_1, n_2) \in \{1, \ldots, n\}^2 : \gcd(n_1, n_2) = 1 \},$$

tends to $\frac{1}{\zeta(2)} = \frac{6}{\pi^2} \approx 0.608$. For further details, we refer to [3, 4, 5, 7, 11]. More specially, Watson [13] proved that also for any given irrational number α, the positive integers n for which $\gcd(n, \lfloor \alpha n \rfloor) = 1$, have the natural density $\frac{6}{\pi^2}$. Later, Estermann [10] gave a different proof of a generalization of Watson’s theorem. In 1959 Erdős and Lorentz [9] established sufficient conditions for a differentiable function $f : [1, \infty) \to \mathbb{R}$ satisfying $\gcd(n, f(n)) = 1$, to have the natural density $\frac{6}{\pi^2}$. Recently, Bergelson and Richter [1] extended this problem to functions in the Hardy field H. They proved, under some
natural conditions on the k-tuple $f_1, \ldots, f_k \in H$, that the density of the set
\[\{n \in \mathbb{N} : \gcd(n, [f_1(n)], \ldots, [f_k(n)]) = 1\}\]
exists and equals $\frac{1}{\zeta(k+1)}$. Very recently, Pimbert et al. [12] studied the asymptotic formulas for the number of the integral pairs $([a^c], [b^c])$ that are coprime, $a, b \leq x$ and $1 < c < 2$. They proved that, as $x \to \infty$,
\[
\sum_{a, b \leq x, \gcd([a^c], [b^c])=1} 1 = \frac{1}{\zeta(2)} x^2 + \begin{cases} O\left(x^{(c+4)/3}\right), & \text{for } 1 < c \leq 5/4, \\
O\left(x^{c+1/2}\right), & \text{for } 5/4 \leq c < 3/2,
\end{cases}
\]
and for $k \geq 3$
\[
\sum_{a_1, \ldots, a_k \leq x, \gcd([a_1^c], [a_2^c], \ldots, [a_k^c])=1} 1 = \frac{1}{\zeta(k)} x^k + O\left(x^{k-(2-c)/3}\right).
\]
The above sums deal with the coprimality sequences $[a_1^c], [a_2^c], \ldots, [a_k^c]$ with the same parameter c, while those, for different parameters c, take the forms
\[
\sum_{a, b \leq x, \gcd([a^c_1], [b^c_2])=1} 1 = \frac{1}{\zeta(2)} x^2 + \begin{cases} O\left(x^{(c_2+4)/3}\right), & \text{for } 1 < c_1 \leq 5/4, \\
O\left(x^{1/2+(2c_1+c_2)/3}\right), & \text{for } 5/4 \leq c_1 < 3/2,
\end{cases}
\]
with $1 < c_1 < c_2 < 3/2$,
\[
\sum_{a_1, \ldots, a_k \leq x, \gcd([a_1^c_1], [a_2^c_2], \ldots, [a_k^c_k])=1} 1 = \frac{1}{\zeta(k)} x^k + O\left(x^{k-(2-c_k)/3}\right),
\]
with $k \geq 3, 1 < c_1 \leq c_2 \leq \ldots \leq c_k < 2$. Thus, it would be interesting to study the coprimality of any pairs in other sequences. Piatetksi–Shapiro sequences are defined by
\[\mathbb{N}^c = \{[n^c] \}_{n \in \mathbb{N}}, \ (c > 1, c \notin \mathbb{N}).\]
Let $\alpha > 1$ be an irrational number with bounded partial quotients and let $\beta \in [0, \alpha)$. The Beatty sequence of parameters α and β is defined as
\[\{[\alpha n + \beta]\}_{n \in \mathbb{N}}.
\]
Let $S(x) := \{[\frac{z}{n}] : 1 \leq n \leq x\}$. The characteristic function of the set $S(x)$ is denoted by $\mathbb{1}_{S(x)}(n)$.

The purpose of this paper is to establish the natural density of the set
\[\{(n, m) \in \mathbb{N}^2 : n, m \leq x, \ \gcd([g_1(n)], [g_2(m)]) = 1\},
\]
where $g_i(n) = n, n^c, \alpha n + \beta, \mathbb{1}_{S(x)}(n), i = 1, 2$. We obtain the following results.
Theorem 1. Let $\alpha > 1$ be an irrational number with bounded partial quotients and let $\beta \in [0, \alpha)$ and $1 < c < 2$. As $x \to \infty$, we have

$$\sum_{\substack{a, b \leq x \\ \gcd(a, b) = 1}} 1 = \frac{1}{\zeta(2)}x^2 + O\left(x^{(c+4)/3}\right)$$

and

$$\sum_{\substack{a, b \leq x \\ \gcd(|a^c|, |ab + \beta|) = 1}} 1 = \frac{1}{\zeta(2)}x^2 + O\left(x^{(c+4)/3}\right).$$

Theorem 2. Let $\alpha > 1$ be an irrational number with bounded partial quotients and let $\beta \in [0, \alpha)$. As $x \to \infty$, we have

$$\sum_{\substack{a, b \leq x \\ \gcd(a, |\alpha b + \beta|) = 1}} 1 = \frac{1}{\zeta(2)}x^2 + O(x^{3/2}\log^{3/2+\epsilon} x)$$

and

$$\sum_{\substack{a, b \leq x \\ \gcd(|\alpha a + \beta|, |\alpha b + \beta|) = 1}} 1 = \frac{1}{\zeta(2)}x^2 + O(x^{3/2}\log^{3/2+\epsilon} x).$$

Theorem 3. Let $S(x) := \{\left\lfloor \frac{x}{n} \right\rfloor : 1 \leq n \leq x\}$. Let $\alpha > 1$ be an irrational number with bounded partial quotients and let $\beta \in [0, \alpha)$ and $1 < c < 2$. As $x \to \infty$, we have

$$\sum_{\substack{a, b \leq x \\ \gcd(a, b) = 1}} 1_{S(x)}(b) = \frac{2}{\zeta(2)}x^{3/2} + O(x^{4/3} \log x),$$

$$\sum_{\substack{a, b \leq x \\ \gcd(|a^c|, b) = 1}} 1_{S(x)}(b) = \frac{2}{\zeta(2)}x^{3/2} + \begin{cases} O\left(x^{4/3} \log x\right), & 1 < c \leq \frac{3}{2}, \\ O\left(x^{(2c+5)/6}\right), & \frac{3}{2} < c < 2, \end{cases}$$

$$\sum_{\substack{a, b \leq x \\ \gcd(|\alpha a + \beta|, b) = 1}} 1_{S(x)}(b) = \frac{2}{\zeta(2)}x^{3/2} + O(x^{4/3} \log x),$$

and

$$\sum_{\substack{a, b \leq x \\ \gcd(a, b) = 1}} 1_{S(x)}(a)1_{S(x)}(b) = \frac{4}{\zeta(2)}x + O(x^{5/6} \log x).$$
2. Lemmas

Throughout this paper, implied constants in symbols O and \ll may depend on the parameters $\alpha, \beta, c, \epsilon$, but are absolute otherwise. For given functions F and G, the notations $F \ll G$ and $F = O(G)$ are both equivalent to the statement that the inequality $|F| \leq C|G|$ holds with some constant $C > 0$.

The main ingredients in the following proofs are several good estimates for the number of integers n up to x satisfying various floor functions $\lfloor g(n) \rfloor$ belonging to an arithmetic progression.

Lemma 1 ([6]). For $1 < c < 2$, let $x \in \mathbb{R}$ and $a, q \in \mathbb{Z}$ be such that $0 \leq a < q \leq x^c$. Then

$$\sum_{\lfloor n^c \rfloor \equiv a \pmod{q}} 1 = \frac{x}{q} + O\left(\min\left(\frac{x^c}{q}, \frac{x^{(c+1)/3}}{q^{1/3}}\right)\right).$$

Lemma 2 ([2]). For irrational $\alpha > 1$ with bounded partial quotients and for $\beta \in [0, \alpha)$, and for positive integers $d \geq 2, 0 \leq a < d$, we have

$$\sum_{\lfloor \alpha n + \beta \rfloor \equiv a \pmod{d}} 1 = \frac{x}{d} + O(d \log^3 x) \text{ as } x \to \infty.$$

For growing difference d the result is non-trivial provided $d \ll \sqrt{x \log^{-3/2-\varepsilon} x}$, for $\varepsilon > 0$.

Lemma 3 ([14]). Let x be a positive real number, and let q and a be two integers such that $0 \leq a < q \leq x^{1/4} \log^{-3/2} x$. Then

$$\sum_{n \leq x \atop n \equiv a \pmod{q}} \mathbb{1}_{S(x)}(n) = \frac{2x^{1/2}}{q} + O\left(\frac{x^{1/3}}{q^{1/2} \log x}\right).$$

3. Proofs

Proof of Theorem 1. Let $1 < c \leq \frac{3}{2}$. In view of the well known identity

$$\sum_{d \mid n} \mu(d) = \begin{cases} 1, & \text{if } n = 1, \\ 0, & \text{if } n > 1, \end{cases}$$

we have

$$\sum_{a, b \leq x \atop \gcd(a, b^c) = 1} 1 = \sum_{a, b \leq x \atop d \mid \gcd(a, b^c)} \sum_{d \leq x} \mu(d) \sum_{n \leq x} 1 \sum_{k \leq x} \mathbb{1}_{\lfloor k^c \rfloor = 0 \pmod{d}} 1.$$
By Lemma 1, we have
\[
\sum_{d \leq x} 1 = \sum_{d \leq x} \mu(d) \left(\frac{x}{d} + O(1) \right) \left(\frac{x}{d} + O\left(\frac{x^{(c+1)/3}}{d^{1/3}} \right) \right)
\]
\[
= \sum_{d \leq x^{c-1/2}} \mu(d) \left(\frac{x}{d} + O(1) \right) \left(\frac{x}{d} + O\left(\frac{x^{c}}{d^{1/3}} \right) \right)
\]
\[
+ \sum_{x^{c-1/2} < d \leq x} \mu(d) \left(\frac{x}{d} + O(1) \right) \left(\frac{x}{d} + O\left(\frac{x^{c}}{d^{1/3}} \right) \right)
\]
\[
= x^2 \sum_{d \leq x} \frac{\mu(d)}{d^2} + O\left(\sum_{d \leq x^{c-1/2}} \left(\frac{x}{d} + \frac{x^{c+1}}{d^2} + \frac{x^c}{d} \right) \right)
\]
\[
+ O\left(\sum_{x^{c-1/2} < d \leq x} \left(\frac{x}{d} + \frac{x^{c+1}}{d^2} + \frac{x^c}{d} \right) \right)
\]
\[
= x^2 \sum_{d \leq x} \frac{\mu(d)}{d^2} + O(x \log x) + O(x^{(c+4)/3})
\]
\[
+ O(x^c) + O(x^{3/2}) + O(x^{c} \log x).
\]
It is well known that \(\sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} = \frac{1}{\zeta(2)} \). Thus, we have
\[
\sum_{x} \frac{\mu(d)}{d^2} = \frac{1}{\zeta(2)} - \sum_{d > x} \frac{\mu(d)}{d^2} = \frac{1}{\zeta(2)} + O\left(\frac{1}{x} \right).
\]
From (10) and (11) we conclude that
\[
\sum_{a, b \leq x \text{ gcd}(a, [b^r]) = 1} 1 = \frac{1}{\zeta(2)} x^2 + O(x^{(c+4)/3}).
\]
Let \(c > \frac{3}{2} \). In view of (9) and (11), we have
\[
\sum_{a, b \leq x \text{ gcd}(a, [b^r]) = 1} 1 = \sum_{d \leq x} \mu(d) \left(\frac{x}{d} + O(1) \right) \left(\frac{x}{d} + O\left(\frac{x^{(c+1)/3}}{d^{1/3}} \right) \right)
\]
\[
= x^2 \sum_{d \leq x} \frac{\mu(d)}{d^2} + O\left(\sum_{d \leq x} \left(\frac{x}{d} + \frac{x^{(c+4)/3}}{d^{1/3}} + \frac{x^{(c+1)/3}}{d^{1/3}} \right) \right)
\]
\[
= \frac{1}{\zeta(2)} x^2 + O(x) + O(x \log x) + O(x^{(c+4)/3}) + O(x^{(c-3)/3})
\]
\[
= \frac{1}{\zeta(2)} x^2 + O(x^{(c+4)/3}).
\]
Then, (1) follows from (12) and (13).
Now we will prove (2). Let \(\alpha > 1 \) be irrational with bounded partial quotients and let \(\beta \in [0, \alpha) \). Similarly to proving (1), we write
\[
1 = \sum_{\substack{a, b \leq x \\ \gcd([a^e], [ab + \beta]) = 1}} \mu(d) = \sum_{d \leq \alpha x} \mu(d) \sum_{a \leq x} \sum_{b \leq x \atop d \mid [ab + \beta]} 1.
\]
In view of Lemma 1 and 2, we have
\[
\sum_{\substack{a, b \leq x \\ \gcd([a^e], [ab + \beta]) = 1}} 1 = \sum_{d \leq x^{1/2} \log^{-3/2 - \varepsilon} x} \mu(d) \left(\frac{x}{d} + O\left(\min\left(\frac{x^e}{d}, \frac{x^{(e+1)/3}}{d^{1/3}} \right) \right) \right) \times \\
\times \left(\frac{x}{d} + O\left(d \log^3 x \right) \right) + \sum_{x^{1/2} \log^{-3/2 - \varepsilon} x < d \leq \alpha x} \mu(d) \sum_{a \leq x \atop d \mid [ab + \beta]} \sum_{b \leq x \atop b \equiv \beta (\mod d)} 1
\]
\[
= \sum_{d \leq x^{1/2} \log^{-3/2 - \varepsilon} x} \mu(d) \left(\frac{x}{d} + O\left(\frac{x^{(e+1)/3}}{d^{1/3}} \right) \right) \times \\
\times \left(\frac{x}{d} + O\left(d \log^3 x \right) \right) + O\left(x^{2} \sum_{x^{1/2} \log^{-3/2 - \varepsilon} x < d \leq \alpha x} \frac{1}{d^2} \right)
\]
\[
= x^{2} \sum_{d \leq x^{1/2} \log^{-3/2 - \varepsilon} x} \frac{\mu(d)}{d^2} + O\left(x^{(e+4)/3} \right).
\]
Then, (2) follows from (11) and (14). \(\square \)

Proof of Theorem 2. Let \(\alpha > 1 \) be irrational with bounded partial quotients and let \(\beta \in [0, \alpha) \). We write
\[
1 = \sum_{\substack{a, b \leq x \\ \gcd([a^e], [ab + \beta]) = 1}} \mu(d) = \sum_{d \leq \alpha x} \mu(d) \sum_{a \leq x \atop a \equiv 0 (\mod d)} \sum_{b \leq x \atop b \equiv \beta (\mod d)} 1.
\]
In view of Lemma 2, we have
\[
\sum_{\substack{a, b \leq x \\ \gcd([a^e], [ab + \beta]) = 1}} 1 = \sum_{d \leq x^{1/2} \log^{-3/2 - \varepsilon} x} \mu(d) \left(\frac{x}{d} + O(1) \right) \left(\frac{x}{d} + O\left(d \log^3 x \right) \right)
\]
\[
+ \sum_{x^{1/2} \log^{-3/2 - \varepsilon} x < d \leq x} \mu(d) \left(\frac{x}{d} + O(1) \right) O\left(\frac{x}{d} \right)
\]
ON THE DISTRIBUTION OF THE GCD OF THE ELEMENTS

\[= x^2 \sum_{d \leq x^{1/2} \log^{-3/2-\varepsilon} x} \frac{\mu(d)}{d^2} \]

\[+ O \left(\sum_{d \leq x^{1/2} \log^{-3/2-\varepsilon} x} \left(x \log^3 x + \frac{x}{d} + d \log^3 x \right) \right) \]

\[+ O \left(\sum_{x^{1/2} \log^{-3/2-\varepsilon} x < d \leq x} \left(\frac{x^2}{d^2} + \frac{x}{d} \right) \right) \]

\[= x^2 \sum_{d \leq x^{1/2} \log^{-3/2-\varepsilon} x} \frac{\mu(d)}{d^2} + O(x^{3/2} \log^{3/2+\varepsilon} x). \quad (15) \]

Due to (15) and (11) we have

\[\sum_{a,b \leq x, \gcd(a, \lfloor \alpha b + \beta \rfloor) = 1} 1 = \frac{1}{\zeta(2)} x^2 + O(x^{3/2} \log^{3/2+\varepsilon} x). \]

The proof of (3) follows. Next we will prove (4). We have

\[\sum_{a,b \leq x, \gcd(\lfloor \alpha a + \beta \rfloor, \lfloor \alpha b + \beta \rfloor) = 1} 1 = \sum_{d \leq x} \mu(d) \sum_{\substack{a \leq x \lfloor \alpha a + \beta \rfloor \equiv 0 \pmod{d} \lfloor \alpha b + \beta \rfloor \equiv 0 \pmod{d}}} 1. \]

In view of Lemma 2, we have

\[\sum_{a,b \leq x, \gcd(\lfloor \alpha a + \beta \rfloor, \lfloor \alpha b + \beta \rfloor) = 1} 1 = \sum_{d \leq x^{1/2} \log^{-3/2-\varepsilon} x} \mu(d) \left(\frac{x}{d} + O \left(d \log^3 x \right) \right)^2 \]

\[+ O \left(x^2 \sum_{x^{1/2} \log^{-3/2-\varepsilon} x < d \leq x} \frac{1}{d^2} \right) \]

\[= x^2 \sum_{d \leq x^{1/2} \log^{-3/2-\varepsilon} x} \frac{\mu(d)}{d^2} \]

\[+ O \left(\sum_{x^{1/2} \log^{-3/2-\varepsilon} x \leq d \leq x} \left(x \log^3 x + d^2 \log^6 x \right) \right) \]

\[+ O(x^{3/2} \log^{3/2+\varepsilon} x) \]

\[= x^2 \sum_{d \leq x^{1/2} \log^{-3/2-\varepsilon} x} \frac{\mu(d)}{d^2} + O(x^{3/2} \log^{3/2+\varepsilon} x). \quad (16) \]
Because of (16) and (11), we have
\[
\sum_{\gcd(\lfloor \alpha a + \beta \rfloor, \lfloor \alpha b + \beta \rfloor) = 1} 1 = \frac{1}{\zeta(2)} x^2 + O\left(x^{3/2} \log^{3/2 + \epsilon} x \right).
\]
The proof of (4) follows.

\textbf{Proof of Theorem 3.} Similarly to proving (1), we write
\[
\sum_{\gcd(a, b) = 1} \mathbb{1}_{S(x)}(b) = \sum_{d \mid a, b \leq x} \mathbb{1}_{S(x)}(b) \sum_{d \mid \gcd(a, b)} \mu(d)
\]
\[
= \sum_{d \leq x} \mu(d) \sum_{\substack{a \leq x \mod d \atop a \equiv 0 \mod d}} \mathbb{1}_{S(x)}(b)
\]
By Lemma 3, we have
\[
\sum_{\gcd(a, b) = 1} \mathbb{1}_{S(x)}(b) = \sum_{d \leq x^{1/4} \log^{-3/4} x} \mu(d) \left(\frac{x}{d} + O(1)\right) \left(\frac{2x^{1/2}}{d} + O\left(\frac{x^{1/3} \log x}{d^{1/3}}\right)\right)
\]
\[
+ \sum_{x^{1/4} \log^{-3/4} x < d \leq x} \mu(d) \left(\frac{x}{d} + O(1)\right) O\left(\frac{x^{1/2}}{d}\right)
\]
\[
= 2x^{3/2} \sum_{d \leq x^{1/4} \log^{-3/4} x} \mu(d) \frac{d^2}{d^2}
\]
\[
+ O\left(\sum_{d \leq x^{1/4} \log^{-3/4} x} \left(\frac{x^{4/3} \log x}{d^{4/3}} + \frac{x^{1/2}}{d} + \frac{x^{1/3} \log x}{d^{1/3}}\right)\right)
\]
\[
+ O\left(\sum_{x^{1/4} \log^{-3/4} x < d \leq x} \left(\frac{x^{3/2}}{d^2} + \frac{x^{1/2}}{d}\right)\right)
\]
\[
= x^{3/2} \sum_{d \leq x^{1/2} \log^{-3/2 - \epsilon} x} \frac{\mu(d)}{d^2} + O(x^{4/3} \log x).
\]
(17)
The proof of (5) follows from (11) and (17).

Now we prove (6). We write
\[
\sum_{\gcd(\lfloor \alpha^x \rfloor, b) = 1} \mathbb{1}_{S(x)}(b) = \sum_{d \mid \lfloor \alpha^x \rfloor} \mathbb{1}_{S(x)}(b) \sum_{d \mid \lfloor \alpha^x \rfloor} \mu(d)
\]
\[
= \sum_{d \leq x} \mu(d) \sum_{\substack{b \leq x \mod d \atop b \equiv 0 \mod d}} \mathbb{1}_{S(x)}(b).
\]
In view of Lemma 1 and 3, we have
\[
\sum_{a, b \leq x, \gcd([a^\alpha], b) = 1} 1_S(x)(b) = \sum_{d \leq x^{1/4} \log^{-3/2} x} \mu(d) \left(\frac{x}{d} + O\left(\min\left(\frac{x^c}{d}, \frac{x^{(c+1)/3}}{d^{1/3}} \right) \right) \right) \times
\left(\frac{2x^{1/2}}{d} + O\left(\frac{x^{1/3} \log x}{d^{1/3}} \right) \right)
\]
\[
+ \sum_{x^{1/4} \log^{-3/2} x < d \leq x} \mu(d) \sum_{a \leq x \mid [a^\alpha] \equiv 0 \pmod{d}} 1 \sum_{b \equiv 0 \pmod{d}} 1_S(x)(b)
\]
\[
= \sum_{d \leq x^{1/4} \log^{-3/2} x} \mu(d) \left(\frac{x}{d} + O\left(\frac{x^{(c+1)/3}}{d^{1/3}} \right) \right) \times
\left(\frac{2x^{1/2}}{d} + O\left(\frac{x^{1/3} \log x}{d^{1/3}} \right) \right) + O\left(x^{3/2} \sum_{x^{1/4} \log^{-3/2} x < d \leq x} \frac{1}{d^2} \right)
\]
\[
= 2x^{3/2} \sum_{d \leq x^{1/4} \log^{-3/2} x} \frac{\mu(d)}{d^2} + O\left(\sum_{d \leq x^{1/4} \log^{-3/2} x} \left(\frac{x^{4/3} \log x}{d^{1/3}} + \frac{x^{(2c+5)/6}}{d^{1/3}} + \frac{x^{(c+2)/3} \log x}{d^{2/3}} \right) \right)
\]
\[
+ O\left(x^{5/4} \log^{3/2} x \right)
\]
\[
= 2x^{3/2} \sum_{d \leq x^{1/4} \log^{-3/2} x} \frac{\mu(d)}{d^2} + O(x^{4/3} \log x) + O(x^{(2c+5)/6}). \quad (18)
\]

Now (6) follows from (11) and (18).

Next we prove (7). We write
\[
\sum_{a, b \leq x, \gcd([a^\alpha + b^\beta], b) = 1} 1_S(x)(b) = \sum_{a, b \leq x} \sum_{d \mid [a^\alpha + b^\beta] \pmod{d}} \mu(d)
\]
\[
= \sum_{d \leq x} \mu(d) \sum_{a \leq x \mid [a^\alpha + b^\beta] \equiv 0 \pmod{d}} 1 \sum_{b \equiv 0 \pmod{d}} 1_S(x)(b).
\]

In view of Lemma 3 and 2, we have
\[
\sum_{a, b \leq x, \gcd([a^\alpha + b^\beta], b) = 1} 1_S(x)(b) = \sum_{d \leq x^{1/4} \log^{-3/2} x} \mu(d) \left(\frac{x}{d} + O\left(d \log^3 x \right) \right) \times
\left(\frac{2x^{1/2}}{d} + O\left(\frac{x^{1/3} \log x}{d^{1/3}} \right) \right)
\]
\begin{align*}
&+ \sum_{x^{1/4} \log^{-3/2} x < d \leq x} \mu(d) \sum_{\substack{a,b \leq x \mod d \equiv \alpha \mod d \equiv 0 \mod d}} 1 \sum_{b \leq x} \mathbb{1}_{S(x)}(b) \\
&= \sum_{d \leq x^{1/4} \log^{-3/2} x} \mu(d) \left(\frac{x}{d} + O(\log^3 x) \right) \\
&\quad \times \left(\frac{2x^{1/2}}{d} + O \left(\frac{x^{1/3} \log x}{d^{1/3}} \right) \right) \\
&\quad + O \left(x^{3/2} \sum_{x^{1/4} \log^{-3/2} x < d \leq x} \frac{1}{d^2} \right) \\
&= 2x^{3/2} \sum_{d \leq x^{1/4} \log^{-3/2} x} \frac{\mu(d)}{d^2} \\
&\quad + O \left(x^{3/2} \sum_{d \leq x^{1/4} \log^{-3/2} x} \left(\frac{x^{4/3} \log x}{d^{1/3}} + x^{1/2} \log x + x^{1/3} d^{2/3} \log^4 x \right) \right) \\
&\quad + O \left(x^{3/2} \log x \right) \\
&= 2x^{3/2} \sum_{d \leq x^{1/4} \log^{-3/2} x} \frac{\mu(d)}{d^2} + O(x^{4/3} \log x). \quad (19)
\end{align*}

Now (7) follows from (11) and (19).

Lastly, we prove (8). We write
\begin{align*}
\sum_{a,b \leq x \gcd(a,b)=1} \mathbb{1}_{S(x)}(a) \mathbb{1}_{S(x)}(b) &= \sum_{a,b \leq x} \mathbb{1}_{S(x)}(a) \mathbb{1}_{S(x)}(b) \sum_{d | a} \mu(d) \\
&= \sum_{d \leq x} \mu(d) \sum_{a \leq x \gcd(a,d)=1} \mathbb{1}_{S(x)}(a) \sum_{b \leq x \gcd(b,d)=1} \mathbb{1}_{S(x)}(b).
\end{align*}

In view of Lemma 3, we have
\begin{align*}
\sum_{a,b \leq x \gcd(a,b)=1} \mathbb{1}_{S(x)}(a) \mathbb{1}_{S(x)}(b) &= \sum_{d \leq x^{1/4} \log^{-3/2} x} \mu(d) \left(\frac{2x^{1/2}}{d} + O \left(\frac{x^{1/3}}{d^{1/3}} \log x \right) \right)^2 \\
&\quad + \sum_{x^{1/4} \log^{-3/2} x < d \leq x} \mu(d) \sum_{a \leq x \gcd(a,d)=1} \mathbb{1}_{S(x)}(a) \sum_{b \leq x \gcd(b,d)=1} \mathbb{1}_{S(x)}(b) \\
&= 4x \sum_{d \leq x^{1/4} \log^{-3/2} x} \frac{\mu(d)}{d^2} \\
&\quad + O \left(\sum_{d \leq x^{1/4} \log^{-3/2} x} \left(\frac{x^{5/6} \log x}{d^{1/3}} + \frac{x^{2/3} \log^2 x}{d^{2/3}} \right) \right).
\end{align*}
ON THE DISTRIBUTION OF THE GCD OF THE ELEMENTS

\[+ O \left(x \sum_{x^{1/4} \log^{-3/2} x < d \leq x} \left(\frac{1}{d^2} \right) \right) \]

\[= 4x \sum_{d \leq x^{1/2} \log^{-3/2} x} \frac{\mu(d)}{d^2} + O(x^{5/6} \log x). \tag{20} \]

The proof of (8) follows from (20) and (11). \qed

Acknowledgements. This work was financially supported by the Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Grant No. RGNS 63-40.

References

[1] V. Bergelson and F. K. Richter, On the density of coprime tuples of the form \((n, \lfloor f_1(n) \rfloor, \ldots, \lfloor f_k(n) \rfloor)\), where \(f_1, \ldots, f_k\) are functions from a Hardy field, in: Number Theory – Diophantine Problems, Uniform Distribution and Applications, Springer, Cham, 2017, pp. 109–135.

[9] P. Erdős and G. G. Lorentz, On the probability that “\(n\) and \(g(n)\) are relatively prime”, Acta Arith. 5 (1959), 35–44.

Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

E-mail address: fscitrp@ku.ac.th