(ψ, ϕ)-Wardowski contraction for three maps in G_{b}-metric spaces

Sejal Puvar and Rajendra G. Vyas

Abstract

Introducing $(\psi, \phi)-G_{b}$-Wardowski contraction for three maps, a common fixed point result is obtained for complete G_{b}-metric spaces. An application related to discontinuous activation function in a neural network is also established.

1. Introduction and preliminaries

One of the interesting problems of fixed point theory is the Rhoades' problem on discontinuity at a fixed point. Rhoades [8] mentioned the question "whether there exists a contractive condition that is strong enough to generate a fixed point but that does not force the map to be continuous at the fixed point?" After the first solution given by Pant [6], several solutions of this open problem have been presented via different approaches.

Here we solve this problem for a G_{b}-metric spaces.
Definition 1 ([1]). Let X be a nonempty set, $s \geq 1$ and $G_{b}: X \times X \times X \rightarrow$ \mathbb{R}^{+}a function satisfying the following properties:
(GB1) $G_{b}(x, y, z)=0$, if $x=y=z$,
(GB2) $G_{b}(x, x, y)>0$, for all $x, y \in X$ with $x \neq y$,
(GB3) $G_{b}(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,
(GB4) $G_{b}(x, y, z)=G_{b}(p\{x, y, z\})$, where p is a permutation of x, y, z,
(GB5) $G_{b}(x, y, z) \leq s\left[G_{b}(x, a, a)+G_{b}(a, y, z)\right]$, for all $x, y, z, a \in X$.
Then G_{b} is called a generalized b-metric on X and the pair (X, G_{b}) is called a G_{b}-metric space.

Note that, for $s=1$, a G_{b}-metric space reduces to a G-metric space.

Example 1. Let $X=\mathbb{R}$. Define a mapping $G: X^{3} \rightarrow \mathbb{R}^{+}$by

$$
G(x, y, z)=\max \left\{|x-y|^{2},|y-z|^{2},|z-x|^{2}\right\}
$$

Then (X, G) is a G_{b}-metric space, but not a G-metric space.
Definition $2([1])$. A G_{b}-metric space $\left(X, G_{b}\right)$ is said to be symmetric if $G_{b}(x, y, y)=G_{b}(y, x, x)$, for all $x, y \in X$.

Definition 3 ([1]). For a sequence $\left\{x_{n}\right\}$ and a point x in $\left(X, G_{b}\right)$, we say that:
(1) $\left\{x_{n}\right\} G_{b}$-converges to x, if $\lim _{n, m \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x\right)=0$, that is, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ satisfying $G_{b}\left(x_{n}, x_{m}, x\right)<\varepsilon$, for all $n, m \geq n_{0}$;
(2) $\left\{x_{n}\right\}$ is G_{b}-Cauchy if $\lim _{n, m, k \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x_{k}\right)=0$, that is, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ satisfying $G_{b}\left(x_{n}, x_{m}, x_{k}\right)<\varepsilon$, for all $n, m, k \geq n_{0}$;
(3) $\left(X, G_{b}\right)$ is complete if every G_{b}-Cauchy sequence in X is G_{b}-convergent in X.

Proposition 1 ([1]). For a sequence $\left\{x_{n}\right\}$ and a point x in $\left(X, G_{b}\right)$, the following are equivalent:
(a) $\left\{x_{n}\right\} G_{b}$-converges to x,
(b) $\lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x_{n}, x\right)=0$,
(c) $\lim _{n \rightarrow \infty} G_{b}\left(x_{n}, x, x\right)=0$.

Proposition 2 ([1]). For a sequence $\left\{x_{n}\right\}$ and a point x in $\left(X, G_{b}\right),\left\{x_{n}\right\}$ is G_{b}-Cauchy if and only if $\lim _{n, m \rightarrow \infty} G_{b}\left(x_{n}, x_{m}, x_{m}\right)=0$.

Definition 4. Let (X, G) and $\left(X, G^{\prime}\right)$ be two G_{b}-metric spaces. Then a function $f: X \rightarrow X^{\prime}$ is G_{b}-continuous at a point $x \in X$ if and only if $\left\{f\left(x_{n}\right)\right\} \rightarrow f(x)$, whenever $\left\{x_{n}\right\} \rightarrow x$.

Proposition 3 ([1]). Let $\left(X, G_{b}\right)$ be a G_{b}-metric space. Then, for each $x, y, z, a \in X$:
(1) $G_{b}(x, y, z)=0 \Longrightarrow x=y=z$,
(2) $G_{b}(x, y, z) \leq s\left[G_{b}(x, x, y)+G_{b}(x, x, z)\right]$,
(3) $G_{b}(x, y, y) \leq 2 s G_{b}(y, x, x)$,
(4) $G_{b}(x, y, z) \leq s\left[G_{b}(x, a, z)+G_{b}(a, y, z)\right]$.

In 1997, Matkowski [3] introduced the concept of comparison functions. A function $\psi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is called a comparison function if it satisfies the following:
(a) ψ is monotone increasing,
(b) $\lim _{n \rightarrow \infty} \psi^{n}(t)=0$ for all $t>0$, where ψ^{n} is $n^{t h}$ iterate of ψ.

The collection of all comparison functions is denoted by $F_{\text {com }}$. Notice that, if ψ is a comparison function, then $\psi(t)<t$ for each $t>0$.

In the sequel, Φ denotes the collection of non-decreasing, continuous functions $\phi: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for each sequence $\left\{t_{n}\right\} \subseteq(0, \infty), \lim _{n \rightarrow \infty} \phi\left(t_{n}\right)=0$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$.

In 2012, Wardowski [9] introduced the F-contraction and proved fixed point results for such mappings. Later, Liu et al. [2] introduced the (ψ, ϕ)type contraction for metric spaces as follows.

Definition 5. Let T be a self-map defined on the metric space (X, d). Then T is said to be a (ψ, ϕ)-type contraction, if there exists $\phi \in \Phi$ and $\psi \in F_{\text {com }}$, such that

$$
d(T x, T y)>0 \Longrightarrow \phi(d(T x, T y)) \leq \psi(\phi(M(x, y))), \forall x, y \in X
$$

where

$$
M(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{1}{2} d(x, T y), d(y, T x)\right\} .
$$

The objective of this article is to find a contractive condition which does not force the mapping to be continuous at their common fixed points. For this, we first introduce generalized $(\psi, \phi)-G_{b}$-Wardowski contraction for three maps and establish a common fixed point theorem in the setting of complete G_{b}-metric spaces.

2. Main result

Definition 6. Let f be a self-map defined on the G_{b}-metric space (X, G). Suppose that there exist $\phi \in \Phi$ and $\psi \in F_{\text {com }}$, such that

$$
G(f x, f y, f z)>0 \Longrightarrow \phi\left(2 s^{4} G(f x, f y, f z)\right) \leq \psi\left(\phi\left(M_{1}(x, y, z)\right)\right)
$$

for all $x, y, z \in X$, where

$$
\begin{aligned}
M_{1}(x, y, z)=\max \{ & G(x, y, z), G(x, f x, f y), G(y, f y, f z), G(z, f z, f x), \\
& \left.\frac{1}{4 s}[G(f x, y, z)+G(x, f y, z)+G(x, y, f z)]\right\} .
\end{aligned}
$$

Then f is said to be a $(\psi, \phi)-G_{b}$-Wardowski contraction.
Definition 7. Let f, g, h be self-maps defined on the G_{b}-metric space (X, G). Suppose that there exist $\phi \in \Phi$ and $\psi \in F_{\text {com }}$, such that

$$
\begin{equation*}
G(f x, g y, h z)>0 \Longrightarrow \phi\left(2 s^{4} G(f x, g y, h z)\right) \leq \psi\left(\phi\left(M_{2}(x, y, z)\right)\right) \tag{1}
\end{equation*}
$$

for all $x, y, z \in X$, where

$$
M_{2}(x, y, z)=\max \{G(x, y, z), G(x, f x, g y), G(y, g y, h z), G(z, h z, f x),
$$

$$
\left.\frac{1}{4 s}[G(f x, y, z)+G(x, g y, z)+G(x, y, h z)]\right\} .
$$

Then we say that (f, g, h) is a generalized $(\psi, \phi)-G_{b}$-Wardowski contraction.
Now, we establish a common fixed point theorem for three maps related to a generalized $(\psi, \phi)-G_{b}$-Wardowski contraction.

Theorem 1. Let $f, g, h: X \rightarrow X$ be a generalized $(\psi, \phi)-G_{b}$-Wardowski contraction in a complete G_{b}-metric space. Then f, g, h have a unique common fixed point, say u, and $f^{n} x \rightarrow u, g^{n} x \rightarrow u$ and $h^{n} x \rightarrow u$, for each $x \in X$. Further, at least one of f, g and h is not continuous at u if and only if

$$
\lim _{x \rightarrow u} M_{2}(x, u, u) \neq 0 \text { or } \lim _{y \rightarrow u} M_{2}(u, y, u) \neq 0 \text { or } \lim _{z \rightarrow u} M_{2}(u, u, z) \neq 0 .
$$

Proof. For any initial point $x_{0} \in X$, we can construct a sequence $\left\{x_{n}\right\}$ by setting

$$
x_{3 n+1}=f x_{3 n}, x_{3 n+2}=g x_{3 n+1}, x_{3 n+3}=h x_{3 n+2}, n \geq 0 .
$$

Suppose that $x_{n}=x_{n+1}$, for some $n \in \mathbb{N}$.
If $x_{3 n}=x_{3 n+1}$, then $x_{3 n}$ is a fixed point of f.
If $x_{3 n+1}=x_{3 n+2}$, then $x_{3 n+1}$ is a fixed point of g.
If $x_{3 n+2}=x_{3 n+3}$, then $x_{3 n+2}$ is a fixed point of h.
Thus, at least, one of the mappings f, g or h has a fixed point.
We assume that $x_{n} \neq x_{n+1}$, for all n. Let $d_{n}=G\left(x_{n}, x_{n+1}, x_{n+2}\right)>0$, for all n.

Hence

$$
G\left(f x_{3 n}, g x_{3 n+1}, h x_{3 n+2}\right)=G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)=d_{3 n+1}>0
$$

implies that

$$
\begin{align*}
\phi\left(2 s^{4} d_{3 n+1}\right) & =\phi\left(2 s^{4} G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right) \\
& \leq \psi\left(\phi\left(M_{2}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right)\right), \tag{2}
\end{align*}
$$

where

$$
\begin{aligned}
& M_{2}\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right) \\
& =\max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n}, f x_{3 n}, g x_{3 n+1}\right), G\left(x_{3 n+1}, g x_{3 n+1}, h x_{3 n+2}\right),\right. \\
& \quad G\left(x_{3 n+2}, h x_{3 n+2}, f x_{3 n}\right), \frac{1}{4 s}\left[G\left(f x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.\left.\quad+G\left(x_{3 n}, g x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n}, x_{3 n+1}, h x_{3 n+2}\right)\right]\right\} \\
& =\max \left\{G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4 s}\left[G\left(x_{3 n+1}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n}, x_{3 n+2}, x_{3 n+2}\right)\right. \\
& \left.\left.+G\left(x_{3 n}, x_{3 n+1}, x_{3 n+3}\right)\right]\right\}
\end{aligned}
$$

We have

$$
\begin{aligned}
& G\left(x_{3 n+1}, x_{3 n+1}, x_{3 n+2}\right) \leq G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)=d_{3 n+1} \\
& \begin{aligned}
G\left(x_{3 n}, x_{3 n+2}, x_{3 n+2}\right) & \leq G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)=d_{3 n} \\
G\left(x_{3 n}, x_{3 n+1}, x_{3 n+3}\right) & \leq s\left[G\left(x_{3 n}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)\right] \\
& =s\left[d_{3 n}+d_{3 n+1}\right]
\end{aligned}
\end{aligned}
$$

Hence

$$
\begin{aligned}
M_{2} & =\max \left\{d_{3 n}, d_{3 n+1}, \frac{s+1}{4 s}\left(d_{3 n}+d_{3 n+1}\right)\right\} \\
& =\max \left\{d_{3 n}, d_{3 n+1}\right\} .
\end{aligned}
$$

If $M_{2}=d_{3 n+1}$, then, from (2), we have

$$
\phi\left(2 s^{4} d_{3 n+1}\right) \leq \psi\left(\phi\left(d_{3 n+1}\right)\right)<\phi\left(d_{3 n+1}\right)
$$

which is not possible. Hence $M_{2}=d_{3 n}$.
Using (2), we obtain

$$
\begin{equation*}
\phi\left(2 s^{4} d_{3 n+1}\right) \leq \psi\left(\phi\left(d_{3 n}\right)\right)<\phi\left(d_{3 n}\right), \text { for all } n \in \mathbb{N} \tag{3}
\end{equation*}
$$

Also, we have

$$
\begin{align*}
\phi\left(2 s^{4} d_{3 n+2}\right) & =\phi\left(2 s^{4} G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right)\right) \\
& =\phi\left(G\left(g x_{3 n+1}, h x_{3 n+2}, f x_{3 n+3}\right)\right) \\
& \leq \psi\left(\phi\left(M_{2}\left(x_{3 n+3}, x_{3 n+1}, x_{3 n+2}\right)\right)\right) \tag{4}
\end{align*}
$$

where

$$
\begin{aligned}
& M_{2}\left(x_{3 n+3}, x_{3 n+1}, x_{3 n+2}\right) \\
& =\max \left\{G\left(x_{3 n+3}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+3}, f x_{3 n+3}, g x_{3 n+1}\right)\right. \\
& \\
& \quad G\left(x_{3 n+1}, g x_{3 n+1}, h x_{3 n+2}\right), G\left(x_{3 n+2}, h x_{3 n+2}, f x_{3 n+3}\right) \\
& \\
& \quad \frac{1}{4 s}\left[G\left(f x_{3 n+3}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n+3}, g x_{3 n+1}, x_{3 n+2}\right)\right. \\
& \left.\left.\quad+G\left(x_{3 n+3}, x_{3 n+1}, h x_{3 n+2}\right)\right]\right\} \\
& =\max \left\{G\left(x_{3 n+3}, x_{3 n+1}, x_{3 n+2}\right), G\left(x_{3 n+3}, x_{3 n+4}, x_{3 n+2}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4 s}\left[G\left(x_{3 n+4}, x_{3 n+1}, x_{3 n+2}\right)+G\left(x_{3 n+3}, x_{3 n+2}, x_{3 n+2}\right)\right. \\
&\left.\left.+G\left(x_{3 n+3}, x_{3 n+1}, x_{3 n+3}\right)\right]\right\} \\
& \leq \max \left\{G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right), G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right)\right. \\
&\left.\frac{s+1}{4 s}\left[G\left(x_{3 n+1}, x_{3 n+2}, x_{3 n+3}\right)+G\left(x_{3 n+2}, x_{3 n+3}, x_{3 n+4}\right)\right]\right\} \\
&=\max \left\{d_{3 n+1}, d_{3 n+2}\right\}
\end{aligned}
$$

If $M_{2}=d_{3 n+2}$, then from (4) we get

$$
\phi\left(2 s^{4} d_{3 n+2}\right) \leq \psi\left(\phi\left(d_{3 n+2}\right)\right)<\phi\left(d_{3 n+2}\right)
$$

which is not possible. Hence $M_{2}=d_{3 n+1}$.
Using (4), we have

$$
\begin{equation*}
\phi\left(2 s^{4} d_{3 n+2}\right) \leq \psi\left(\phi\left(d_{3 n+1}\right)\right)<\phi\left(d_{3 n+1}\right) \tag{5}
\end{equation*}
$$

Similarly, we can obtain

$$
\begin{equation*}
\phi\left(2 s^{4} d_{3 n+3}\right) \leq \psi\left(\phi\left(d_{3 n+2}\right)\right)<\phi\left(d_{3 n+2}\right) \tag{6}
\end{equation*}
$$

From (3),(5) and (6), we have

$$
\phi\left(d_{n+1}\right) \leq \phi\left(2 s^{4} d_{n+1}\right) \leq \psi\left(\phi\left(d_{n}\right)\right) \leq \psi^{2}\left(\phi\left(d_{n-1}\right)\right) \leq \ldots \leq \psi^{n}\left(\phi\left(d_{1}\right)\right)
$$

Letting $n \rightarrow \infty$, we get $\lim _{n \rightarrow \infty} \psi^{n}\left(\phi\left(d_{1}\right)\right)=0$.
Thus $\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+2}\right)=0$.
Since $x_{n} \neq x_{n+1}$ for every n, so by property ($G B 3$), we obtain

$$
G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq G\left(x_{n}, x_{n+1}, x_{n+2}\right)
$$

Hence

$$
\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n+1}, x_{n+1}\right)=0
$$

Since $G\left(x_{n}, x_{n}, x_{n+1}\right) \leq s G\left(x_{n}, x_{n+1}, x_{n+1}\right)$, for all $n \geq 0$,

$$
\lim _{n \rightarrow \infty} G\left(x_{n}, x_{n}, x_{n+1}\right)=0
$$

Now, we prove that $\left\{x_{n}\right\}$ is a G_{b}-Cauchy sequence in X. It is sufficient to show that $\left\{x_{3 n}\right\}$ is G_{b}-Cauchy in X. On contrary, assume that $\left\{x_{3 n}\right\}$ is not a G_{b}-Cauchy sequence. There exists $\varepsilon>0$ for which we can find subsequences $\left\{x_{3 m_{k}}\right\}$ and $\left\{x_{3 n_{k}}\right\}$ of $\left\{x_{3 n}\right\}$ such that m_{k} is the smallest index for which $3 m_{k}>3 n_{k}>k$ and

$$
G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)<\varepsilon \leq G\left(x_{3 n_{k}}, x_{3 m_{k}}, x_{3 m_{k}}\right)
$$

Since

$$
\varepsilon \leq G\left(x_{3 n_{k}}, x_{3 m_{k}}, x_{3 m_{k}}\right)
$$

$$
\begin{aligned}
& \leq s\left[G\left(x_{3 n_{k}}, x_{3 n_{k}+1}, x_{3 n_{k}+1}\right)+G\left(x_{3 n_{k}+1}, x_{3 m_{k}}, x_{3 m_{k}}\right)\right] \\
& \leq s\left[G\left(x_{3 n_{k}}, x_{3 n_{k}+1}, x_{3 n_{k}+1}\right)+G\left(x_{3 n_{k}+1}, x_{3 m_{k}}, x_{3 m_{k}-1}\right)\right]
\end{aligned}
$$

taking upper limit as $k \rightarrow \infty$, we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}+1}, x_{3 m_{k}}, x_{3 m_{k}-1}\right) \tag{7}
\end{equation*}
$$

which implies that $G\left(x_{3 n_{k}+1}, x_{3 m_{k}}, x_{3 m_{k}-1}\right)>0$, for all $k \in \mathbb{N}$.
Hence, from (1), we have

$$
\begin{align*}
\phi\left(2 s^{4} G\left(x_{3 n_{k}+1}, x_{3 m_{k}-1}, x_{3 m_{k}}\right)\right) & =\phi\left(2 s^{4} G\left(f x_{3 n_{k}}, g x_{3 m_{k}-2}, h x_{3 m_{k}-1}\right)\right) \\
& \leq \psi\left(\phi\left(M_{2}\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)\right)\right) \tag{8}
\end{align*}
$$

where

$$
\begin{aligned}
& M_{2}\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right) \\
& =\max \left\{G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right), G\left(x_{3 n_{k}}, f x_{3_{k}}, g x_{3 m_{k}-2}\right),\right. \\
& \\
& \quad G\left(x_{3 m_{k}-2}, g x_{3 m_{k}-2}, h x_{3 m_{k}-1}\right), G\left(x_{3 m_{k}-1}, h x_{3 m_{k}-1}, f x_{3 n_{k}}\right), \\
& \\
& \quad \frac{1}{4 s}\left[G\left(f x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)+G\left(x_{3 n_{k}}, g x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)\right. \\
& \left.\left.\quad+G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, h x_{3 m_{k}-1}\right)\right]\right\} \\
& =\max \left\{G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right), G\left(x_{3 n_{k}}, x_{3 n_{k}+1}, x_{3 m_{k}-1}\right),\right. \\
& \\
& \quad G\left(x_{3 m_{k}-2}, x_{3 m_{k}-1}, x_{3 m_{k}}\right), G\left(x_{3 m_{k}-1}, x_{3 m_{k}}, x_{3 n_{k}+1}\right), \\
& \\
& \quad \frac{1}{4 s}\left[G\left(x_{3 n_{k}+1}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)+G\left(x_{3 n_{k}}, x_{3 m_{k}-1}, x_{3 m_{k}-1}\right)\right. \\
& \left.\left.\quad+G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}}\right)\right]\right\} .
\end{aligned}
$$

Since

$$
\begin{aligned}
G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right) \leq & s\left[G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)\right. \\
& \left.+G\left(x_{3 m_{k}-3}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)\right]
\end{aligned}
$$

taking upper limit as $k \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right) \leq s \varepsilon \tag{9}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& G\left(x_{3 n_{k}}, x_{3 n_{k}+1}, x_{3 m_{k}-1}\right) \\
& \leq s\left[G\left(x_{3 m_{k}-1}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+G\left(x_{3 m_{k}-3}, x_{3 n_{k}}, x_{3 n_{k}+1}\right)\right] \\
& \leq s G\left(x_{3 m_{k}-1}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+s^{2} G\left(x_{3 m_{k}-3}, x_{3 n_{k}}, x_{3 n_{k}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad+s^{2} G\left(x_{3 n_{k}}, x_{3 n_{k}}, x_{3 n_{k}+1}\right) \\
& \leq s G\left(x_{3 m_{k}-1}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+2 s^{3} G\left(x_{3 m_{k}-3}, x_{3 m_{k}-3}, x_{3 n_{k}}\right) \\
& \quad+s^{2} G\left(x_{3 n_{k}}, x_{3 n_{k}}, x_{3 n_{k}+1}\right)
\end{aligned}
$$

Taking upper limit as $k \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}}, x_{3 m_{k}+1}, x_{3 m_{k}-1}\right) \leq 2 s^{3} \varepsilon . \tag{10}
\end{equation*}
$$

Again,

$$
\begin{aligned}
& G\left(x_{3 m_{k}-1}, x_{3 m_{k}}, x_{3 n_{k}+1}\right) \\
& \leq s G\left(x_{3 n_{k}+1}, x_{3 n_{k}}, x_{3 n_{k}}\right)+s^{2} G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right) \\
& \quad+s^{2} G\left(x_{3 m_{k}-3}, x_{3 m_{k}}, x_{3 m_{k}-1}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 m_{k}-1}, x_{3 m_{k}}, x_{3 n_{k}+1}\right) \leq s^{2} \varepsilon \tag{11}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& G\left(x_{3 n_{k}+1}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right) \\
& \leq s^{2} G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+s^{2} G\left(x_{3 n_{k}}, x_{3 n_{k}}, x_{3 n_{k}+1}\right) \\
& \quad+s G\left(x_{3 m_{k}-3}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)
\end{aligned}
$$

implies

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}+1}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right) \leq s^{2} \varepsilon \tag{12}
\end{equation*}
$$

Also,

$$
G\left(x_{3 n_{k}+1}, x_{3 m_{k}-1}, x_{3 m_{k}-1}\right) \leq G\left(x_{3 n_{k}+1}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)
$$

implies

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}+1}, x_{3 m_{k}-1}, x_{3 m_{k}-1}\right) \leq s^{2} \varepsilon \tag{13}
\end{equation*}
$$

Again,

$$
G\left(x_{3 n_{k}}, x_{3 m_{k}-1}, x_{3 m_{k}-1}\right) \leq G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)
$$

implies

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}}, x_{3 m_{k}-1}, x_{3 m_{k}-1}\right) \leq s \varepsilon \tag{14}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}}\right) \\
& \leq s G\left(x_{3 n_{k}}, x_{3 m_{k}-3}, x_{3 m_{k}-3}\right)+s G\left(x_{3 m_{k}-3}, x_{3 m_{k}-2}, x_{3 m_{k}}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}}\right) \leq s \varepsilon \tag{15}
\end{equation*}
$$

Using (9)-(15), we get

$$
\begin{aligned}
\limsup _{k \rightarrow \infty} M_{2}\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right) & \leq \max \left\{s \varepsilon, 2 s^{3} \varepsilon, s^{2} \varepsilon, \frac{1}{4 s}\left(2 s^{2} \varepsilon+s \varepsilon\right)\right\} \\
& =2 s^{3} \varepsilon
\end{aligned}
$$

Now, using (7) and (8), we get

$$
\begin{aligned}
\phi\left(2 s^{4} \frac{\varepsilon}{s}\right) & \leq \phi\left(2 s^{4} \limsup _{k \rightarrow \infty} G\left(x_{3 n_{k}+1}, x_{3 m_{k}-1}, x_{3 m_{k}}\right)\right) \\
& =\phi\left(2 s^{4} \limsup _{k \rightarrow \infty} G\left(f x_{3 n_{k}}, g x_{3 m_{k}-2}, h x_{3 m_{k}-1}\right)\right) \\
& \leq \psi\left(\phi\left(\limsup _{k \rightarrow \infty} M_{2}\left(x_{3 n_{k}}, x_{3 m_{k}-2}, x_{3 m_{k}-1}\right)\right)\right) \\
& \leq \psi\left(\phi\left(2 s^{3} \varepsilon\right)\right) \\
& <\phi\left(2 s^{3} \varepsilon\right)
\end{aligned}
$$

which is a contradiction. Hence, $\left\{x_{3 n}\right\}$ is Cauchy in X and so $\left\{x_{n}\right\}$ is Cauchy in X. Since X is a complete metric space, there exists $u \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=u$. Therefore

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{3 n+1}=\lim _{n \rightarrow \infty} f x_{3 n}=\lim _{n \rightarrow \infty} x_{3 n+2} \\
& =\lim _{n \rightarrow \infty} g x_{3 n+1}=\lim _{n \rightarrow \infty} x_{3 n+3}=\lim _{n \rightarrow \infty} h x_{3 n+2}=u
\end{aligned}
$$

We will prove that $u=h u$. We have,

$$
G\left(f x_{3 n}, g x_{3 n+1}, h x_{3 n+2}\right) \leq s\left[G\left(f x_{3 n}, g x_{3 n+1}, h u\right)+G\left(h u, h u, h x_{3 n+2}\right)\right]
$$

Suppose $G\left(f x_{3 n}, g x_{3 n+1}, h u\right)=0$ and $G\left(h u, h u, h x_{3 n+2}\right)=0$, for some $n \in$ \mathbb{N}, then $G\left(f x_{3 n}, g x_{3 n+1}, h x_{3 n+2}\right)=0$, a contradiction to our assumption. Therefore, we take $G\left(f x_{3 n}, g x_{3 n+1}, h u\right)>0$, for all n.
From (1) we get

$$
\begin{equation*}
\phi\left(2 s^{4} G\left(f x_{3 n}, g x_{3 n+1}, h u\right)\right) \leq \psi\left(\phi\left(M_{2}\left(x_{3 n}, x_{3 n+1}, u\right)\right)\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{2}\left(x_{3 n}, x_{3 n+1}, u\right) \\
& =\max \left\{G\left(x_{3 n}, x_{3 n+1}, u\right), G\left(x_{3 n}, f x_{3 n}, g x_{3 n+1}\right)\right. \\
& \quad G\left(x_{3 n+1}, g x_{3 n+1}, h u\right), G\left(u, h u, f x_{3 n}\right) \\
& \left.\quad \frac{1}{4 s}\left[G\left(f x_{3 n}, x_{3 n+1}, u\right)+G\left(x_{3 n}, g x_{3 n+1}, u\right)+G\left(x_{3 n}, x_{3 n+1}, h u\right)\right]\right\} .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$, we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} M_{2}\left(x_{3 n}, x_{3 n+1}, u\right) & =\max \left\{G(u, u, u), G(u, u, h u), \frac{1}{4 s} G(u, u, h u)\right\} \\
& =G(u, u, h u)
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in (16), we get

$$
\phi\left(2 s^{4} G(u, u, h u)\right) \leq \psi(\phi(G(u, u, h u)))<\phi(G(u, u, h u))
$$

which implies that

$$
2 s^{4} G(u, u, h u) \leq G(u, u, h u)
$$

a contradiction. Hence, $u=h u$, that is u is a fixed point of h.
Similarly, we can prove that u is a fixed point of both f and g. Therefore u is a common fixed point of f, g and h.

To prove that u is the unique common fixed point of f, g and h, let v be another common fixed point of f, g and h. Then $f u=g u=h u=u$ and $f v=g v=h v=v$. We have $G(u, u, v)=G(f u, g u, h v)>0$ and $G(u, v, v)=G(f u, g v, h v)>0$. From (1), we have

$$
\begin{equation*}
\phi\left(2 s^{4} G(f u, g u, h v)\right) \leq \psi\left(\phi\left(M_{2}(u, u, v)\right)\right)<\phi\left(M_{2}(u, u, v)\right) \tag{17}
\end{equation*}
$$

where

$$
M_{2}(u, u, v)=\max \{G(u, u, v), G(u, v, v)\}
$$

If $M_{2}(u, u, v)=G(u, v, v)$, then from (17) we get

$$
\phi\left(2 s^{4} G(u, u, v)\right)<\phi(G(u, v, v))
$$

which implies

$$
2 s^{4} G(u, u, v)<G(u, v, v) \leq 2 s G(u, u, v)
$$

a contradiction.
Similarly, if $M_{2}(u, u, v)=G(u, u, v)$, then from (17) we get

$$
\phi\left(2 s^{4} G(u, u, v)\right)<\phi(G(u, u, v))
$$

which implies

$$
2 s^{4} G(u, u, v)<G(u, u, v)
$$

a contradiction. Hence f, g and h have a unique common fixed point in X.
Further, we prove that at least one of f, g and h is not continuous at u if and only if

$$
\lim _{x \rightarrow u} M_{2}(x, u, u) \neq 0 \text { or } \lim _{y \rightarrow u} M_{2}(u, y, u) \neq 0 \text { or } \lim _{z \rightarrow u} M_{2}(u, u, z) \neq 0
$$

Equivalently, we prove that f, g and h are continuous at u if and only if

$$
\lim _{x \rightarrow u} M_{2}(x, u, u)=0 \text { and } \lim _{y \rightarrow u} M_{2}(u, y, u)=0 \text { and } \lim _{z \rightarrow u} M_{2}(u, u, z)=0
$$

We suppose that

$$
\lim _{x \rightarrow u} M_{2}(x, u, u)=0 \text { and } \lim _{y \rightarrow u} M_{2}(u, y, u)=0 \text { and } \lim _{z \rightarrow u} M_{2}(u, u, z)=0
$$

Now

$$
\lim _{x_{n} \rightarrow u} M_{2}\left(x_{n}, u, u\right)
$$

$$
\begin{gathered}
=\lim _{x_{n} \rightarrow u} \max \left\{G\left(x_{n}, u, u\right), G\left(x_{n}, f x_{n}, g u\right), G(u, g u, h u), G\left(u, h u, f x_{n}\right),\right. \\
\\
\left.\frac{1}{4 s}\left[G\left(f x_{n}, u, u\right)+G\left(x_{n}, g u, u\right)+G\left(x_{n}, u, h u\right)\right]\right\}=0 .
\end{gathered}
$$

Thus $\lim _{x_{n} \rightarrow u} G\left(x_{n}, f x_{n}, u\right)=0$. This implies that $f x_{n} \rightarrow u=f u$, that is, f is continuous at u. Similarly we can prove that g and h are continuous at u.

On the other hand, if f, g and h are continuous at their common fixed point u, that is $\lim _{x_{n} \rightarrow u} f x_{n}=f u, \lim _{x_{n} \rightarrow u} g x_{n}=g u$ and $\lim _{x_{n} \rightarrow u} h x_{n}=h u$. Then

$$
\begin{aligned}
& \lim _{x_{n} \rightarrow u} M_{2}\left(x_{n}, u, u\right) \\
& =\lim _{x_{n} \rightarrow u} \max \left\{G\left(x_{n}, u, u\right), G\left(x_{n}, f x_{n}, g u\right), G(u, g u, h u), G\left(u, h u, f x_{n}\right),\right. \\
& \\
& \left.\quad \frac{1}{4 s}\left[G\left(f x_{n}, u, u\right)+G\left(x_{n}, g u, u\right)+G\left(x_{n}, u, h u\right)\right]\right\}=0, \\
& \lim _{x_{n} \rightarrow u} M_{2}\left(u, x_{n}, u\right) \\
& =\lim _{x_{n} \rightarrow u} \max \left\{G\left(u, x_{n}, u\right), G\left(u, f u, g x_{n}\right), G\left(x_{n}, g x_{n}, h u\right), G(u, h u, f u),\right. \\
& \left.\frac{1}{4 s}\left[G\left(f u, x_{n}, u\right)+G\left(u, g x_{n}, u\right)+G\left(u, x_{n}, h u\right)\right]\right\}=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim _{x_{n} \rightarrow u} M_{2}\left(u, u, x_{n}\right) \\
& =\lim _{x_{n} \rightarrow u} \max \left\{G\left(u, u, x_{n}\right), G(u, f u, g u), G\left(u, g u, h x_{n}\right), G\left(x_{n}, h x_{n}, f u\right)\right. \text {, } \\
& \left.\frac{1}{4 s}\left[G\left(f u, u, x_{n}\right)+G\left(u, g u, x_{n}\right)+G\left(u, u, h x_{n}\right)\right]\right\}=0 .
\end{aligned}
$$

The subsequent example affirms the result obtained by us.
Example 2. Let $X=[0, \infty)$ and define $G: X^{3} \rightarrow[0, \infty)$ by

$$
G(x, y, z)=\left\{\begin{array}{lr}
0, & \text { if } x=y=z \\
\max \{x, y, z\}, & \text { otherwise }
\end{array}\right.
$$

Then (X, G) is a complete G_{b}-metric space with $s=1$.
We define $f, g, h: X \rightarrow X$ by
$f x=\left\{\begin{array}{ll}\frac{x}{16}, & x \in[0,1], \\ 0, & x \in(1, \infty),\end{array} \quad g x=\left\{\begin{array}{ll}\frac{x}{12}, & x \in[0,1], \\ 0, & x \in(1, \infty),\end{array} \quad h x= \begin{cases}\frac{x}{10}, & x \in[0,1], \\ 0, & x \in(1, \infty) .\end{cases}\right.\right.$

Also, take $\phi(t)=t$ and $\psi(t)=\frac{t}{2}$. Then f, g, h satisfy all the conditions of Theorem 1 and $x=0$ is the only common fixed point of f, g and h.

Corollary 1. Let $f: X \rightarrow X$ be a $(\psi, \phi)-G_{b}$-Wardowski contraction in a complete G_{b}-metric space. Then f has a unique fixed point, say u, and $f^{n} x \rightarrow u$, for each $x \in X$. Further, f is discontinuous at u if and only if

$$
\lim _{x \rightarrow u} M_{1}(x, u, u) \neq 0
$$

Proof. By taking $f=g=h$ in Theorem 1, we get the result.
Corollary 2. Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space and let $f: X \rightarrow$ X satisfy

$$
G(f x, f y, f z)>0 \Longrightarrow \phi\left(2 s^{4} G(f x, f y, f z)\right) \leq \psi(\phi(G(x, y, z)))
$$

for all $x, y, z \in X$, where $\phi \in \Phi$ and $\Psi \in F_{\text {com }}$. Then f has a unique fixed point, say u, and $f^{n} x \rightarrow u$, for each $x \in X$. Further, f is discontinuous at u if and only if

$$
\lim _{x \rightarrow u} G(x, u, u) \neq 0
$$

Proof. Taking $M_{1}(x, y, z)=G(x, y, z)$, the conclusion follows from Corollary 1.

The following result is for Wardowski type contractions in G_{b}-metric spaces.

Corollary 3. Let $\left(X, G_{b}\right)$ be a complete G_{b}-metric space and let $f: X \rightarrow$ X satisfy

$$
G(f x, f y, f z)>0 \Longrightarrow \tau+F\left(2 s^{4} G(f x, f y, f z)\right) \leq F(G(x, y, z))
$$

for all $x, y, z \in X$. Then f has a unique fixed point, say u, and $f^{n} x \rightarrow u$, for each $x \in X$. Further, f is discontinuous at u if and only if

$$
\lim _{x \rightarrow u} G(x, u, u) \neq 0
$$

Proof. In Corollary 1, we take $M_{1}(x, y, z)=G(x, y, z)$ and $\psi(t)=e^{-\tau} t$, where $\tau>0$ and $\phi(t)=e^{F(t)}$, where F is an F-contraction, then we get the result.

3. Application

In fixed point theorems, contractive mappings that admit discontinuity at the fixed point have found applications in neural networks with discontinuous activation functions (e.g. Özgür and Tas [5] and Rashid et al. [7]). Here we give an application of our result by considering discontinuous activation
functions occurring in the neural networks. Nie and Zheng [4] generalized the class of discontinuous activation functions as follows:

$$
f_{i}(x)=\left\{\begin{array}{lr}
u_{i}, & -\infty<x<p_{i} \\
l_{i, 1} x+c_{i, 1}, & p_{i} \leq x \leq r_{i} \\
l_{i, 2} x+c_{i, 2}, & r_{i}<x \leq q_{i} \\
v_{i}, & q_{i}<x<+\infty
\end{array}\right.
$$

where $p_{i}, r_{i}, q_{i}, u_{i}, v_{i}, l_{i, 1}, l_{i, 2}, c_{i, 1}, c_{i, 2}$ are constants with

$$
\begin{aligned}
& -\infty<p_{i}<r_{i}<q_{i}<+\infty \\
& l_{i, 1}>0, l_{i, 2}<0 \\
& u_{i}=l_{i, 1} p_{i}+c_{i, 1}=l_{i, 2} q_{i}+c_{i, 2} \\
& l_{i, 1} r_{i}+c_{i, 1}=l_{i, 2} r_{i}+c_{i, 2} \\
& v_{i}>f_{i}\left(r_{i}\right), i=1,2, \ldots, n
\end{aligned}
$$

The function f_{i} is continuous at every real number except the value $x=q_{i}$.
Here we consider the discontinuous activation functions f, g and h :

$$
f(x)= \begin{cases}4, & -\infty<x<-2 \\ x+6, & -2 \leq x \leq 1 \\ -x+8, & 1<x \leq 4 \\ 8, & 4<x<+\infty\end{cases}
$$

where

$$
\begin{aligned}
& u_{i}=4, v_{i}=3, p_{i}=-2, r_{i}=1, q_{i}=4, \\
& l_{i, 1}=1, c_{i, 1}=6, l_{i, 2}=-1, c_{i, 2}=8, \\
& g(x)= \begin{cases}-3, & -\infty<x<-2, \\
2 x+1, & -2 \leq x \leq-\frac{1}{2}, \\
-2 x-1, & -\frac{1}{2}<x \leq 1, \\
4, & 1<x<+\infty,\end{cases}
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{i}=-3, v_{i}=4, p_{i}=-2, r_{i}=-\frac{1}{2}, q_{i}=1 \\
& l_{i, 1}=2, c_{i, 1}=1, l_{i, 2}=-2, c_{i, 2}=-1
\end{aligned}
$$

and

$$
h(x)= \begin{cases}-2, & -\infty<x<-4 \\ 2 x+6, & -4 \leq x \leq-3 \\ -2 x-6, & -3<x \leq-2 \\ 4, & -2<x<+\infty\end{cases}
$$

where

$$
\begin{aligned}
& u_{i}=-2, v_{i}=4, p_{i}=-4, r_{i}=-3, q_{i}=-2 \\
& l_{i, 1}=2, c_{i, 1}=6, l_{i, 2}=-2, c_{i, 2}=-6
\end{aligned}
$$

The function g has four fixed points, $u_{1}=-3, u_{2}=-1, u_{3}=\frac{-1}{3}$ and $u_{4}=4$, and the functions f and h have only one fixed point at $x=4$. So $x=4$ is the common fixed point of f, g and h. Since

$$
\lim _{x \rightarrow 4} M_{2}(x, 4,4) \neq 0,
$$

f is discontinuous at $x=4$.

Acknowledgements

The first author acknowledges the financial support by SHODH-Scheme (Gujarat Government) with student reference number-202001720096.

References

[1] A. Aghajani, M. Abbas, and J. Roshan, Common fixed points of generalized weak contractive mappings in partially ordered G_{b}-metric spaces, Filomat 28 (2014), 10871101.
[2] X. Liu, S. Chang, Y. Xiao, and L. Zhao, Some fixed point theorems concerning (ψ, ϕ) contraction in complete metric spaces, J. Nonlinear Sci. Appl. 9 (2016), 4127-4136.
[3] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc. 62 (1977), 344-348.
[4] X. Nie and W. X. Zheng, Multistability of neural networks with discontinuous nonmonotonic Piecewise linear activation functions and time-varying delays, Neural Netw. 65 (2015), 65-79.
[5] N. Y. Özgür and N. Tas, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42 (2017), 1433-1449.
[6] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289.
[7] M. Rashid, I. Batool, and N. Mehmood, Discontinuous mappings at their fixed points and common fixed points with applications, J. Math. Anal. 9 (2018), 90-104.
[8] B. E. Rhoades, Contractive definitions and continuity, Contemp. Math. 72 (1988), 233-245.
[9] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012, Art. 2012:94, 6 pp.

Department of Mathematics, Faculty of Science, The Maharaja Sayajirao
University of Baroda, Vadodara, Gujarat 390002, India
E-mail address: puvarsejal@gmail.com
E-mail address: drrgvyas@yahoo.com

