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(1, p)-Wardowski contraction for three maps in
G-metric spaces

SEJAL PUVAR AND RAJENDRA G. VYAS

ABSTRACT. Introducing (¢, ) — Gp-Wardowski contraction for three
maps, a common fixed point result is obtained for complete Gp-metric
spaces. An application related to discontinuous activation function in a
neural network is also established.

1. Introduction and preliminaries

One of the interesting problems of fixed point theory is the Rhoades’ prob-
lem on discontinuity at a fixed point. Rhoades [8] mentioned the question
“whether there exists a contractive condition that is strong enough to gen-
erate a fixed point but that does not force the map to be continuous at the
fixed point?” After the first solution given by Pant [6], several solutions of
this open problem have been presented via different approaches.

Here we solve this problem for a Gp-metric spaces.

Definition 1 ([1]). Let X be a nonempty set, s > 1 and Gp : X x X x X —
R* a function satisfying the following properties:

(GB1) Gy(z,y,2) =0,if z =y = z,

(GB2) Gp(z,x,y) > 0, for all x,y € X with = # y,

(GB3) Gp(z,z,y) < G(zx,y, z), for all z,y,z € X with z # y,

(GB4) Gp(z,y,z) = Gp(p{z,y,2}), where p is a permutation of z,y, z,
(GB5) Gp(z,y,2) < s[Gp(z,a,a) + Gy(a,y, z)], for all z,y,z,a € X.

Then Gy, is called a generalized b-metric on X and the pair (X, Gp) is called
a Gp-metric space.

Note that, for s = 1, a Gp-metric space reduces to a G-metric space.
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Example 1. Let X = R. Define a mapping G : X3 — R by
G(.ﬁ,y, Z) = max{\x - y’27 |y - z‘27 |Z - $|2}
Then (X, G) is a Gy-metric space, but not a G-metric space.

Definition 2 ([1]). A Gy-metric space (X, Gp) is said to be symmetric if
Gb(xvyay) = Gb(y,$,$), for all z,y € X.
([

Definition 3
that:

(1) {zn} Gp-converges to z, if lim Gpy(zp,Tm,x) = 0, that is, for

n,m—00
every £ > 0 there exists ng € N satisfying Gy(zp, m,x) < &, for all
n,m > no;
(2) {zn} is Gp-Cauchy if lim  Gy(xn, zm,xr) = 0, that is, for every

n,m,k— o0
e > 0 there exists ng € N satisfying Gy(xp, Tm, i) < €, for all
n,m, k> no;
(3) (X, Gyp) is complete if every Gy-Cauchy sequence in X is Gp-convergent
in X.

1]). For a sequence {z,} and a point x in (X, G}), we say

Proposition 1 ([1]). For a sequence {x,,} and a point x in (X, Gy), the
following are equivalent:
(a) {zn} Gp-converges to x,
(b) lim Gp(xn,zpn,x) =0,
n—oo

(c) le Gp(zp,x,x) = 0.

Proposition 2 ([1]). For a sequence {x,} and a point x in (X, Gy), {xn}
is Gyp-Cauchy if and only if 1i11>1 Go(Tn, Ty T) = 0.
n,Mm—00

Definition 4. Let (X,G) and (X,G’) be two Gp-metric spaces. Then
a function f : X — X' is Gp-continuous at a point x € X if and only if
{f(zn)} — f(x), whenever {z,,} — x.

Proposition 3 ([1]). Let (X,Gp) be a Gy-metric space. Then, for each
T,y,z,a € X:
(1) Gb(.ﬁU,y,Z):O — r=Yy=2z,
(2) Gb(-ﬁU,?j, Z) < S[Gb(l’, x7y) + Gb(xa z, Z)]v
(3) Gb($,y,y) < QSGb(y,LU,ZE),
(4) Gb($7ya Z) < S[Gb(l‘a a, Z) + Gb(aaya Z)]

In 1997, Matkowski [3] introduced the concept of comparison functions.
A function ¢ : R™ — RT is called a comparison function if it satisfies the
following;:

(a) % is monotone increasing,
(b) le Y™ (t) = 0 for all t > 0, where 1" is n'”* iterate of .
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The collection of all comparison functions is denoted by Fi,n,. Notice that,
if ¢ is a comparison function, then ¥ (t) < ¢ for each ¢t > 0.

In the sequel, ® denotes the collection of non-decreasing, continuous func-
tions ¢ : RT™ — R such that for each sequence {t,} C (0,00), lim ¢(t,) =0

n—oo
if and only if lim ¢, = 0.
n—oo
In 2012, Wardowski [9] introduced the F-contraction and proved fixed

point results for such mappings. Later, Liu et al. [2] introduced the (v, ¢)-
type contraction for metric spaces as follows.

Definition 5. Let T be a self-map defined on the metric space (X,d).
Then T is said to be a (¢, ¢)-type contraction, if there exists ¢ € ® and
P € Foom, such that

d(Tz,Ty) >0 = ¢(d(Tz,Ty)) < Y(p(M(x,y))),Y z,y € X,
where
M(z,y) = max{d(z,y),d(x,Tz),d(y, Ty), %d(w, Ty),d(y, Tz)}.

The objective of this article is to find a contractive condition which does
not force the mapping to be continuous at their common fixed points. For
this, we first introduce generalized (i, ¢) — Gp-Wardowski contraction for
three maps and establish a common fixed point theorem in the setting of
complete Gp-metric spaces.

2. Main result

Definition 6. Let f be a self-map defined on the Gp-metric space (X, G).
Suppose that there exist ¢ € ® and ¢ € F,,,, such that

G(fz, fy, fz) >0 = ¢(25'G(fz, fy, [2)) < Y(6(Mi(x,y,2))),
for all z,y, 2 € X, where
Ml(x7 y) Z) — maX{G(‘/L" y? Z)? G(l‘7 f$’ fy)’ G(y7 fy’ fZ)’ G(z7 fZ7 f‘/B)7

i[G(fx, Y, Z) + G(xa fy7 Z) + G(JI, Ys fz)]}

Then f is said to be a (¢, ¢) — G-Wardowski contraction.

Definition 7. Let f,g,h be self-maps defined on the Gp-metric space
(X, G). Suppose that there exist ¢ € ® and 1) € Fyp,, such that

G(fr,gy,hz) >0 = ¢(25'G(fz, gy, hz)) < Y($(Ma(x,y,2))), (1)
for all x,y,z € X, where

M2(x7 y? Z) = maX{G(x7 y? Z)? G(x7 fx7 gy)’ G(y? gy7 hz)? G(z7 hz? fx)7
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1

&[G(fl’,y, Z) + G($79y7 Z) + G(l‘a Y, hz)]}

Then we say that (f, g, h) is a generalized (¢, ¢) —Gp-Wardowski contraction.

Now, we establish a common fixed point theorem for three maps related
to a generalized (1, ¢) — Gp-Wardowski contraction.

Theorem 1. Let f,g,h : X — X be a generalized (¢, ¢) — Gy,- Wardowski
contraction in a complete Gy-metric space. Then f, g, h have a unique com-
mon fized point, say u, and f"xr — u, ¢"x — u and h"x — u, for each
x € X. Further, at least one of f,g and h is not continuous at u if and only

if
lim Ms(x,u,u) # 0 or lim Ms(u,y,u) # 0 or lim Ms(u,u,z) # 0.
y—u z—u

T—U

Proof. For any initial point xy € X, we can construct a sequence {z,} by
setting
T3n4+1 = [T3n, T3n+2 = 9T3n+1, T3n+3 = hTznya, n > 0.

Suppose that x, = x,41, for some n € N.
If x3, = x3p+1, then x3, is a fixed point of f.
If 3,41 = T3n42, then x3,41 is a fixed point of g.
If 3742 = T3n43, then x3,49 is a fixed point of h.
Thus, at least, one of the mappings f, g or h has a fixed point.
We assume that z, # z,41, for all n. Let d,, = G(zpn, Tny1, Tnt2) > 0, for
all n.
Hence
G(f23n, 923n+1, he3n12) = G(T3n11, T3n42, Z3n43) = d3ny1 > 0

implies that

¢(25%dsn11) = G(25" G (23041, T3n42, T3ns3))
< P(P(M2 (230, T3n11, T3n42))), (2)

where

M (230, £3n+1, T3n42)

= HlaX{G(QESn, T3n+415 T3n+2)s G@3ns T30, 973041), G@3n41, 9T3n11, MT3n42),

G(x3n+27 h$3n+2a fl'dn)a [G(fxdn’ L3n+1, J53n+2)

4s

+ G(23n, 9T3n+1, T3n+2) + G(3n, T3n+1, h$3n+2)]}

= maX{G(l‘?m, T3n41, Z3n+2), G(T3n11, T3n42, T3n+43),
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1
e (G(Z3n+1, T3n+1, T3n+2) + G(T3n, T3nt2, T3nt2)
+ G(3n, T3n+41, T3n+3)] }
We have

G(Z3n+1, T3n+1, Tant+2) < G(T3n+41, T3n+2, L3nt3) = d3nt1,

G('ISTL? Z3n+2, x3n+2) < G(Ign, T3n+1, :E3n+2) = d?’n7

73

G(Z3n, T3n+1, T3n+3) < S[G(x3n, T3nt1, T3n+2) + G(T3n41, T3n+2, T3n+3)]

= s[d3, + d3nt1].
Hence

s+1
My = max{dsy, d3n+1, Ts(d?m + dsnt1)}

= HlaX{dgn, d3n+1}.
If My = dsjq1, then, from (2), we have

¢(25 dsni1) < Y(P(dznt1)) < d(dznt1),

which is not possible. Hence Ms = dg,,.
Using (2), we obtain

6(25%d311) < (&(dsn)) < ddsn), for all n € N,
Also, we have
¢(25 dsnt2) = (25" G (w3012, T3nt3, T3nia))

H(G(9x3n+1, ht3nt2, f3n+3))
V(Mo (231435 T3n41, T3n+2))),

IN

where

Mo (23043, T3n+1, L3n+2)

= maX{G(ﬂﬂgnJr:s, 3041, Z3n+2), G(T3n+3, fT3n13, 9T3n11),

G(23n+1, 9T3n+1, heant2), G(T3n+2, heant2, fT3n43),

1

ZS[G(fﬂfzmsa ZTant+1, L3nt2) + G(T3n43, 9T3n+1, T3n+2)

+ G(x3n+3, T3nt+1, hT3n42)] }

= maX{G($3n+3, T3n41, Z3n+2), G(T3n13, T3n44, T3nt2),

3)
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1
—[G(23n+4, T3nt+1, T3n+2) + G(23n43, T3nt2, T3n42)
4s

+ G(23n43, T3n+1, T3n+3)] }

< maX{G (T3n+1, T3n+25 T3n+3), G(T3n42, T3n+3, T3nt4),
s+1
4s
= max{dsn+1,d3n+2}-
If My = dsj,42, then from (4) we get
B(28 d3pr2) < Y(P(dzni2)) < P(dsnta),

which is not possible. Hence My = d3p,41.
Using (4), we have

[G(23n+1, T3n+2, L3n+3) + G(T3n42, L3043, L3n+4)] }

B(28 d3pr2) < Y(P(dznt1)) < P(dsntr). (5)
Similarly, we can obtain
P(25 d3n13) < Y(P(dzni2)) < P(dsnta). (6)

From (3),(5) and (6), we have

H(dn+1) < D25 dns1) < P(D(dn)) < P (D(dp-1)) < .. <Y ((1)).
Letting n — oo, we get nl;ngo Y™ (p(dr)) = 0.
Thus nlgl;o G(xn, Tpt1, Tnt2) = 0.

Since x,, # xp41 for every n, so by property (GB3), we obtain

G(l‘n, $n+1,$n+1) < G(xnvxn-l—hxn—f—?)'

Hence

lim G(zp, Zpt1, Tnt1) = 0.
n—oo

Since G(xn, Tn, Tnt1) < SG(Xn, Tpt1, Tny1), for all n >0,

lim G(zpn,Zn, Tnt1) = 0.
n—oo

Now, we prove that {z,} is a Gj-Cauchy sequence in X. It is sufficient to
show that {3} is G-Cauchy in X. On contrary, assume that {z3,} is not a
Gp-Cauchy sequence. There exists € > 0 for which we can find subsequences
{z3m, } and {z3,,} of {x3,} such that my is the smallest index for which
3my > 3ng > k and

G(Z3ny, > T3me—3: L3my—3) < € < G(Z3n,,, T3my, L3my, )-

Since

e < G(-TSnka T3my, x3mk)
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S S[G<x3nk7 x3nk+17 $3nk+1) + G(x3nk+17 x?)mka xSmk>]
S S[G<x3nk7 xSnk—i-h $3nk+1) + G($3nk+17 333mka xSmk—l)L
taking upper limit as k — oo, we get

9 .
— < limsup G(Z3n,+1, T3my » T3mp—1),
S k—o00

which implies that G(23n,+1, Z3m,,, T3m,—1) > 0, for all £ € N.
Hence, from (1), we have

B(25" G (T30, 41, T3mp—1, Tamy,)) = (28" G(f 23y, GT3my—20 KT3my—1))
< Y(A( Mo (23, T3my—25 T3my—1)))s

where
Mo (230, ©3m—25 T3mp—1)
= maX{G(JU?mk s T3my—25 L3my—1), G(T3ny s 23,5 9T3m,—2),

G(3my,—25 9T3me—2: h3my—1) G(T3mp—1, hT3m, 1, fT3n,,),
1

4s
+ G(x3n,,, T3my—2, thmkl)]}

(G(f23n;,, 3my,—2, T3my—1) + G(23n,, 973m,—2, T3m;,—1)

= maX{G(xSHk ) x3mk—27 J;Smk—l)a G(x?mk ) xSnk—f—l; $3mk—1)7

G(x3mk—27 x3mk—17 $3mk)7 G(‘T?)mk—la xSmk ) x3nk+1)7
1

@ [G<x3nk+1; x3mk—27 x3mk—1) + G(xfink ’ $3mk—17 x?)mk—l)

+ G(23n,, T3mj,—2, L3m,, )] }

Since
G(Z3ny» T3my—2, T3mp—1) <8[G(T3n,, T3my—3, T3my—3)
+ G(3my—3> T3my—2> L3my—1))
taking upper limit as k — oo, we get

lim sup G(23n,,, T3my—25 T3my—1) < SE.
k—oo

Also,
G230y T3ny+1> T3my—1)
< S[G(23my—15 T3my—3, T3myp—3) + G(3m,—3, T3ny, L3n,+1))

2
< SG(X3mp—1, T3mp—3> T3mp—3) + S“G(T3m—3, T3ng Tang )

75

(8)
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2
+s G(x?)’nk; T3ny, s $3nk+1)

3
< SG(T3my—1, T3my—3> T3my—3) + 25°G(T3my—3, T3my,—35 T3ny, )

+ SZG(x-?)nka T3ny, 5 $3nk+1)-
Taking upper limit as k — oo, we get

: 3
lim sup G(23n,,, T3m,+1, T3m;,—1) < 25°€.

k—o0
Again,
G(‘r3mk—17 x3mk7x3nk+1)
2
S 8G(£3nk+17 x3nk 3 x3nk) + s G(xSTLk 9 x3mk—37 x3mk—3)
2
+ 5°G(T3mp,—3, L3my » T3mpy—1)-
Hence
. 2
lm sup G(23m,—1, T3my » Tang+1) < S°€.
k—o0
Also,
G(x?)nk-‘rla $3mk—2yx3mk—l)
< 582G (x3n,, * x ) + 582G (230, T30, T )
= 3Ing s L3mg—3- L3my—3 Ing s L3ng s L3ng+1
+ 5G(T3my—3> T3my—2> T3mp—1)
implies
. 2
lim sup G(x3nk+17 T3my—2, xSmk—l) S SE.
k—o00
Also,
G (X304 415 T3mp—1, L3my—1) < G (L3041, T3my—25 T3mp—1)
implies
. 2
lim sup G(x3nk+17 T3my—1, x3mk—1) < s%e.
k—o0
Again,
G(23ny s T3mp—15 T3my—1) < G(T3n,, T3my—25 T3me—1)
implies
lim sup G(z3n,,, ©3my—1, T3m,—1) < SE.
k—o0
Also,
G(x3n,,, 3my—2, T3my,)
< 8G( X3y, 5 T3my—35 T3my—3) + SG(T3my—3> T3my—2, T3my, ) -
Hence

lim sup G(3n,,, T3m,—2; T3m, ) < SE.
k—o0

(10)

(11)

(12)

(13)

(15)



(¥, $)-WARDOWSKI CONTRACTION FOR THREE MAPS 7

Using (9)-(15), we get

lim sup Ma(z3n, , 3m;—2, T3m,—1) < max{se, 253¢,

k—o0

1
g, 4—8(2325 + se)}
= 25%¢.
Now, using (7) and (8), we get

9 .
B(25*=) < ¢(25* limsup G (T30, 41, T3mp—15 T3my )
S k—oo

= ¢(2s* likm sup G(fxan,, 9T3my—2, hT3m, 1))
—00
< w(¢(h£n sup MQ('r37Lk y L3my—25 x3mk_1)))
—00
< Y(p(25%))
< ¢(25%),

which is a contradiction. Hence, {z3,} is Cauchy in X and so {z,} is
Cauchy in X. Since X is a complete metric space, there exists u € X such

that lim x, = u. Therefore
n—0o0

lim x3,+1 = lim fzs, = lim x3,492
n—oo n—o0 n—oo
= lim gx3p41 = lim 23,43 = lim hxs,io = u.
n—oo n—oo n—oo
We will prove that u = hu. We have,

G(fxs3n, 9r3n+t1, htsny2) < S[G(fxan, gT3nt1, hu) + G(hu, hu, hazn42)].

Suppose G(fxan, gxsnt1, hu) = 0 and G(hu, hu, hxsg,+2) = 0, for some n €
N, then G(fz3y, 923n+1, hesnt+2) = 0, a contradiction to our assumption.
Therefore, we take G(fx3,, gx3n+1, hu) > 0, for all n.

From (1) we get

D25 G(fr3n, grant1, hu)) < (p(Ma(23n, Tant1,1))), (16)

where

Ms(z3n, T3n+41, )
= max{G(23n, T3n+1,u), G(T3n, fT3n, 9Z3n+1),

G($3n+1, gT3n+1, hu)a G(u7 hu7 f$3n)a
1
g[G(fﬂfsm 3n41,u) + G(230, 923n11, ) + G(23n, L3041, hu)]}.

Taking limit as n — oo, we get
1

lim Ms(zsy, 23041, v) = max{G(u,u,u), G(u,u, hu), 4—G(u, u, hu)}
s

n—o0
= G(u, u, hu).
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Taking limit as n — oo in (16), we get
¢(25 G (u, u, hu)) < P(S(G(u,u, hu)) < (G (u,u, hu)),
which implies that
251 G(u, u, hu) < G(u,u, hu),
a contradiction. Hence, u = hu, that is u is a fixed point of h.

Similarly, we can prove that u is a fixed point of both f and g. Therefore
u is a common fixed point of f, g and h.

To prove that u is the unique common fixed point of f,g and h, let v
be another common fixed point of f,g and h. Then fu = gu = hu = u
and fv = gv = hv = v. We have G(u,u,v) = G(fu,gu,hv) > 0 and
G(u,v,v) = G(fu,gv,hv) > 0. From (1), we have

¢(284G(fua qgu, h’U)) < 1/}(¢(M2 (ua u, U))) < ¢(M2 (ua u, U))? (17)
where
Ms(u,u,v) = max{G(u,u,v),G(u,v,v)}.
If Ms(u,u,v) = G(u,v,v), then from (17) we get
$(25'G (u, u,v)) < (G(u,v,v)),
which implies
251G (u, u,v) < G(u,v,v) < 25G(u,u,v),
a contradiction.
Similarly, if Ms(u,u,v) = G(u,u,v), then from (17) we get
$(25'G(u, u,v)) < (G(u, u,0)),
which implies
251G (u, u,v) < G(u,u,v),
a contradiction. Hence f, g and h have a unique common fixed point in X.

Further, we prove that at least one of f,g and h is not continuous at w if
and only if

lim My (x,u,u) # 0 or lim Ms(u,y,u) # 0 or lim Ms(u,u, z) # 0.
U y—u z—u

Equivalently, we prove that f,g and h are continuous at w if and only if

lim Ms(z,u,u) =0 and lim Ms(u,y,u) =0 and lim Ms(u,u,z) = 0.
T—U y—u z—u

We suppose that
lim Ms(x,u,u) =0 and liin Ms(u,y,u) =0 and lim Ms(u,u, z) = 0.
Yy—u

T—U Z—Uu

Now

lim M (2zp,u,u)
Ty —U
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= lim maX{G(:cn,uju),G(xnjf:cn,gu),G(u,gu,hu),G(u, hu, fz,),

Tp—U

1

ZS[G(fxn’ u,u) + G(xn, gu,u) + G(xn, u, hu)]} =0.

Thus lim G(zp, fn,u) = 0. This implies that fx,, — u = fu, that is, f is
Ty —U

continuous at u. Similarly we can prove that g and h are continuous at u.
On the other hand, if f,¢g and h are continuous at their common fixed

point u, that is lim fz, = fu, lim gz, = gu and lim hz, = hu. Then
Ty —>U Ty —U Tp—U

lim Mas (2, u,u)
Ty —rU

= lim maX{G(a:n,u,u),G(:cn,fa:n,gu),G(u,gu,hu),G(u, hu, fz,),

Tn—U
G0 00) + Gl ) + Gl b | =0,

lim Ms(u, zy, u)
Ty —rU

= lim max{G(u,xn,u),G(u, fu,gzy), G(xy, gy, hu), G(u, hu, fu),

Tp—U
1

G u00,) + Gl g, 0) + Gl )] | =0
and

lim Moy (u,u, x,)
Tp—rU

~ lim max{Gm,  0), Gty Fut, ), G, g, haen), G, hivns f10),

Tp—U
1
ZS[G(fu,u, xn) + G(u, gu, x,) + G(u, u, hxn)]} =0.
]
The subsequent example affirms the result obtained by us.
Example 2. Let X = [0,00) and define G : X® — [0,00) by
_ 0, if xr = y g Z’
Gz,y,2) = { max{z,y, z}, otherwise.
Then (X, G) is a complete Gp-metric space with s = 1.
We define f,g,h: X — X by
— %67 xe [071]? — %’ xe [0’]‘7 — %? $€|:O?]‘:|7
fz {o, ze(1,00), 9 S ze(loo), TV 0, we(l,00)
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Also, take ¢(t) = ¢ and ¥(t) = 5. Then f, g, h satisfy all the conditions of
Theorem 1 and z = 0 is the only common fixed point of f, g and h.

Corollary 1. Let f: X — X be a (¢, ¢) — Gp-Wardowski contraction in
a complete Gy-metric space. Then f has a unique fixed point, say u, and
f"r — u, for each x € X. Further, f is discontinuous at u if and only if

lim M (x,u,u) # 0.
T—U
Proof. By taking f = g = h in Theorem 1, we get the result. O

Corollary 2. Let (X, Gy) be a complete Gy-metric space and let f : X —
X satisfy

G(fx, fy, fz) >0 = ¢(2s'G(fx, fy, f2)) < Y(3(G(z,y,2))),

for all x,y,z € X, where ¢ € ® and ¥ € F,yy,. Then f has a unique fixed
point, say u, and f"x — u, for each x € X. Further, f is discontinuous at
w if and only if
lim G(x,u,u) # 0.
Tr—u
Proof. Taking M;(x,y,z) = G(x,y, z), the conclusion follows from Corol-
lary 1. 0

The following result is for Wardowski type contractions in Gp-metric
spaces.

Corollary 3. Let (X, Gp) be a complete Gy-metric space and let f : X —
X satisfy

G(fz, fy,f2) >0 = 7+ F(2s'G(fz, fy, f2)) < F(G(z,y,2)),

for all x,y,z € X. Then f has a unique fived point, say u, and f"x — u,
for each x € X. Further, f is discontinuous at u if and only if

il_rg G(z,u,u) # 0.

Proof. In Corollary 1, we take M (z,y,z) = G(x,y,2) and ¢¥(t) = e "t,
where 7 > 0 and ¢(t) = eF® where F is an F-contraction, then we get the
result. O

3. Application

In fixed point theorems, contractive mappings that admit discontinuity at
the fixed point have found applications in neural networks with discontinuous
activation functions (e.g. Ozgiir and Tas [5] and Rashid et al. [7]). Here
we give an application of our result by considering discontinuous activation
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functions occurring in the neural networks. Nie and Zheng [4] generalized
the class of discontinuous activation functions as follows:

Usg, —o0 < T < pjg,
filz) = lizz+cii, pi<z <,
lipr + ¢ 2, r; <z < g,
Vi, g < x < +00,

where p;, i, q;, i, vi, li 1,1 2, ¢i 1, ¢; 2 are constants with
—00 < p; <1 <@g <400,
li,l > 0, li72 < 0,
u; = lipi + ¢in = li2q; + ¢ 2,
liari +cin = liar; + ¢ 2,
v; > fi(ri), 1=1,2,....n.

The function f; is continuous at every real number except the value z = g;.
Here we consider the discontinuous activation functions f, g and h:

4, —00 < x < —2,
_J z+6, —2<x <1,
flz) = —x+8, 1l<xz<4,
8, 4 < x < 400,
where
ui:47 'Ui:3, p’L:_27 T’i:17 QZ:47
lir=1, ;1 =06, lijp=—1, ¢;2 =8,
-3, —0o < x < —2,
(2) = 2041, —2<az<-3,
=Y —22-1, —L<a<1,
4, 1 <2< 4o,
where
1
ui:_37 U’L:47 p’L:_27 Ti:_i, Q’Lzlv
lit=2,¢c1=1,lig=-2, ¢cip=—1
and
-2, —o00 < x < —4,
) 22+6, —4<z<-3,
h(z) =93 gy _ 6, —3<ax< -2
4, -2 <z < 400,
where

U; = _27 Vi = 47 bi = _47 Ty = _37 qi = _27
lin=2, ;1 =06, lio=—2, ¢;o = —6.
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=1

The function g has four fixed points, u; = —3,us = —1,u3 = 5= and ug = 4,
and the functions f and h have only one fixed point at * = 4. So z =4 is
the common fixed point of f, g and h. Since

lim My(z,4,4) # 0,
r—4

f is discontinuous at = = 4.
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